Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 424: 110851, 2024 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-39116463

RESUMO

The frozen fruit sector has experienced significant growth due to improved product quality as well as the advantage of long-term preservation. However, freezing alone does not eliminate foodborne viruses, a major public health concern and considerable economic burden. One promising disinfecting treatment is pulsed light, shown previously to inactivate hepatitis A virus (HAV) and murine norovirus-1 (MNV-1) on the surface of fresh berries. Viral loads were reduced by 1-2 log, with minor visual quality deterioration observed. In this study, an FDA-compliant pulsed light treatment (11.52 J/cm2) was applied to frozen fruits and berries. Infectious MNV-1 and HAV titers were reduced by 1-2 log on most frozen fruits. A noteworthy finding was that reductions of both viruses on cranberries exceeded 3.5 log cycles. Although pulsed light caused a measurable rise in temperature on the product surface, no visible physical changes (e.g., color) were observed, and the fruit pieces were still frozen after treatment. Although the reduction of infectious titer by pulsed light alone was not large (1-2 log), considering the low amount of virus typically found on fruit, it may be beneficial in the frozen fruit sector. It would be easy to combine with other treatments, and synergic interactions might increase virus inactivation.


Assuntos
Frutas , Vírus da Hepatite A , Norovirus , Inativação de Vírus , Norovirus/efeitos da radiação , Vírus da Hepatite A/efeitos da radiação , Vírus da Hepatite A/fisiologia , Vírus da Hepatite A/crescimento & desenvolvimento , Inativação de Vírus/efeitos da radiação , Animais , Luz , Camundongos , Conservação de Alimentos/métodos , Microbiologia de Alimentos , Congelamento
2.
Methods Mol Biol ; 2822: 77-86, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38907913

RESUMO

Foodborne viruses remain the largest cause of human gastroenteritis and one of the largest contributors to foodborne illnesses worldwide. Currently, quantitative reverse transcription PCR (qRT-PCR) or real-time qPCR are the detection methods commonly used for quantification of foodborne viruses, but those methods have several disadvantages, such as relying on standard curves for quantification and the background noise from a bulk reaction. ddPCR uses an oil-water emulsion to form multiple droplets that partition small amounts of viral genetic material (DNA or RNA) into each of the droplets. These droplets then undergo amplification cycles and are analyzed using Poisson distributions. This allows for absolute quantification without the need for a standard curve, which makes ddPCR a precise tool in surveillance of foodborne viruses. Herein, we describe the process of detecting foodborne viruses using RNA isolated from various matrices. Up to 96 samples including the positive and negative controls can be analyzed on a single plate by ddPCR.


Assuntos
Doenças Transmitidas por Alimentos , Vírus de RNA , RNA Viral , Reação em Cadeia da Polimerase Via Transcriptase Reversa , RNA Viral/genética , Humanos , Doenças Transmitidas por Alimentos/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Microbiologia de Alimentos/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos
3.
Int J Food Microbiol ; 416: 110687, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38554558

RESUMO

Foodborne illnesses involving raw and minimally processed foods are often caused by human noroviruses (HuNoV) and hepatitis A virus (HAV). Since food is contaminated usually with small numbers of virions, these must be eluted from the food surface and then concentrated for detection. The objective of this study was to optimize an ultrafiltration (UF) concentration method for HAV and HuNoVs present on various fresh and frozen produce. The detection range of the optimized method and its applicability to different food matrices was compared to the reference method ISO 15216-1:2017. Strawberry, raspberry, blackberry, lettuce, and green onion (25 g) were contaminated with HAV, HuNoV GI.7 and HuNoV GII.4 and then recovered therefrom by elution. A commercial benchtop UF device was used for the concentration step. Viral RNA was extracted and detected by RT-qPCR. From fresh strawberries, recovery of HAV loaded at 104 genome copies per sample was 30 ± 13 %, elution time had no significant impact, and UF membrane with an 80-100 kDa cut-off in combination with Tris-glycine elution buffer at pH 9.5 was found optimal. At lower copy numbers on fresh strawberry, at least 1 log lower numbers of HuNoV were detectable by the UF method (103 vs 104 GII.4 copies/sample and 101 vs 103 GI.7 copies/sample), while HAV was detected at 101 genome copies/sample by both methods. Except on raspberry, the UF method was usually equivalent to the ISO method regardless of the virus tested. The UF method makes rapid viral concentration possible, while supporting the filtration of large volume of sample. With fewer steps and shorter analysis time than the ISO method, this method could be suitable for routine analysis of viruses throughout the food production and surveillance chain.


Assuntos
Vírus da Hepatite A , Norovirus , Vírus , Humanos , Ultrafiltração , Vírus da Hepatite A/genética , Contaminação de Alimentos/análise , Norovirus/genética , Verduras , RNA Viral/genética
4.
Food Environ Virol ; 16(1): 109-119, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38198031

RESUMO

Foodborne disease outbreaks linked to consumption of vegetables have been often attributed to human enteric viruses, such as Norovirus (NoV), Hepatitis A virus (HAV), and Rotavirus (RoV). Information about the occurrence of these viruses is scarce in many fresh-producing countries. Viral contamination detection of indicators, such as somatic coliphages, could indirectly reflect the presence of viral pathogens, being a valuable tool for better viral risk assessment in food industry. This study aimed to establish the occurrence and correlation of foodborne viruses and somatic coliphages in leafy greens in northern Mexico. A total of 320 vegetable samples were collected, resulting in 80 composite rinses, 40 of lettuce and 40 of parsley. Somatic coliphages were determined using the EPA 1602 method, while foodborne viruses (HAV, RoV, NoV GI, and GII) were determined by qPCR. The occurrence of RoV was 22.5% (9/40, mean 2.11 log gc/g) in lettuce and 20% (8/40, mean 1.91 log gc/g) in parsley. NoV and HAV were not detected in any samples. Somatic coliphages were present in all lettuce and parsley samples, with mean levels of 1.85 log PFU/100 ml and 2.28 log PFU/100 ml, respectively. Spearman analysis established the correlation of somatic coliphages and genomic copies of RoV, resulting in an r2 value of - 0.026 in lettuce and 0.349 in parsley. Although NoV or HAV were undetected in the samples, the presence of RoV is a matter of concern as leafy greens are usually eaten raw, which poses a potential risk of infection.


Assuntos
Enterovirus , Vírus da Hepatite A , Norovirus , Rotavirus , Vírus , Humanos , México , Enterovirus/genética , Vírus da Hepatite A/genética , Norovirus/genética , Rotavirus/genética , Colífagos , Contaminação de Alimentos/análise
5.
Int J Food Microbiol ; 410: 110492, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37988969

RESUMO

Hepatitis E (HEV), a zoonotic virus, is the leading cause of acute viral hepatitis in Europe. The presence of HEV in domestic pigs can result in infections in humans through consumption of pork products which are undercooked or where processing methods are insufficient to inactivate the virus. In Ireland, pork accounts for 34 % of all meat consumption (CSO, 2022) and the prevalence of HEV in products at point of retail has not previously been characterised. A sampling strategy was designed in which high pork content sausages, fresh pork liver and raw fermented sausages were systematically purchased from three types of retailers between May 2018 and March 2019. In total, 200 pork products were tested using a lysing agent to release the HEV from the product for detection. RT-PCR for HEV was performed on samples with an extraction efficiency >1 % (n = 188/200) (94 %). Low level HEV RNA was detected in 9/188 (4.8 %) pork products tested. The highest incidence of HEV RNA was in pork liver where 6/25 (24 %) samples were positive. The concentration of HEV ranged from 0.02 - to 9.4 genome copies/g of pork. Based on these data an exposure assessment was performed which found that if consumers followed advice from the Food Safety Authority of Ireland to achieve core temperatures of 70 °C or higher when cooking, the risk was likely to be negligible.


Assuntos
Vírus da Hepatite E , Hepatite E , Produtos da Carne , Carne de Porco , Carne Vermelha , Doenças dos Suínos , Humanos , Animais , Suínos , Hepatite E/epidemiologia , Vírus da Hepatite E/genética , Produtos da Carne/análise , Carne de Porco/análise , Irlanda/epidemiologia , Sus scrofa , RNA Viral/genética , RNA Viral/análise , Doenças dos Suínos/epidemiologia
6.
Food Res Int ; 174(Pt 1): 113502, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986417

RESUMO

Viruses are major pathogens that cause food poisoning when ingested via contaminated food and water. Therefore, the development of foodborne virus detection technologies that can be applied throughout the food distribution chain is essential for food safety. A common nucleic acid-based detection method is polymerase chain reaction (PCR), which has become the gold standard for monitoring food contamination by viruses due to its high sensitivity, and availability of commercial kits. However, PCR-based methods are labor intensive and time consuming, and are vulnerable to inhibitors that may be present in food samples. In addition, the methods are restricted with regard to site of analysis due to the requirement of expensive and large equipment for sophisticated temperature regulation and signal analysis procedures. To overcome these limitations, optical and electrical readout biosensors based on nucleic acid isothermal amplification technology and nanomaterials have emerged as alternatives for nucleic acid-based detection of foodborne viruses. Biosensors are promising portable detection tools owing to their easy integration into compact platforms and ability to be operated on-site. However, the complexity of food components necessitates the inclusion of tedious preprocessing steps, and the lack of stability studies on residual food components further restricts the practical application of biosensors as a universal detection method. Here, we summarize the latest advances in nucleic acid-based strategies for the detection of foodborne viruses, including PCR-based and isothermal amplification-based methods, gene amplification-free methods, as well as food pretreatment methods. The principles, strengths/disadvantages, and performance of each method, problems to be solved, and future prospects for the development of a universal detection method are discussed.


Assuntos
Ácidos Nucleicos , Vírus , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase/métodos , Inocuidade dos Alimentos , Vírus/genética , Ácidos Nucleicos/análise
7.
J Agric Food Chem ; 71(43): 15942-15953, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862248

RESUMO

Viral foodborne diseases cause serious harm to human health and the economy. Rapid, accurate, and convenient approaches for detecting foodborne viruses are crucial for preventing diseases. Biosensors integrating electrochemical and optical properties of nanomaterials have emerged as effective tools for the detection of viruses in foods. However, they still face several challenges, including substantial sample preparation and relatively poor sensitivity due to complex food matrices, which limit their field applications. Hence, the purpose of this review is to provide an overview of recent advances in biosensing techniques, including electrochemical, SERS-based, and colorimetric biosensors, for detecting viral particles in food samples, with emerging techniques for extraction/concentration of virus particles from food samples. Moreover, the principle, design, and advantages/disadvantages of each biosensing method are comprehensively described. This review covers the recent development of rapid and sensitive biosensors that can be used as new standards for monitoring food safety and food quality in the food industry.


Assuntos
Técnicas Biossensoriais , Doenças Transmitidas por Alimentos , Nanoestruturas , Humanos , Técnicas Biossensoriais/métodos , Inocuidade dos Alimentos , Nanoestruturas/química , Vírion , Técnicas Eletroquímicas/métodos
8.
Foods ; 12(18)2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37761170

RESUMO

Foodborne diseases are currently the most critical food safety issue in the world. There are not many hazard identification and exposure assessments for foodborne viruses (Norovirus GI, GII, Hepatitis A Virus, Rotavirus, Adenovirus) in shellfish. Multiplex qPCR for the simultaneous detection of five foodborne viruses was established and used to assess infection risk based on a 1-year pathogenesis study. The sensitivity, specificity and reproducibility of the multiplex qPCR method are consistent with that of conventional qPCR, which saves more time and effort. Overall, 37.86% of shellfish samples had one or more foodborne viruses. Risk assessment formulae and matrices were used to develop risk assessments for different age groups, different seasons and different shellfish. The annual probability of contracting a foodborne virus infection from shellfish is greater than 1.6 × 10-1 for all populations, and even for infants aged 0-4 years, it is greater than 1.5 × 10-2, which is much higher than the risk thresholds recommended by WHO (10-6) and the US EPA (10-4). High risk (level IV) is associated with springtime, and medium risk (level III) is associated with Mussel consumption. This study provides a basis for the risk of foodborne viral infections in people of different ages, in different seasons, and by consuming different shellfish.

9.
Food Environ Virol ; 15(3): 246-254, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37528267

RESUMO

Soft fruits are at particular risk of contamination with enteric viruses such as Hepatitis A virus (HAV), Hepatitis E Virus (HEV), Norovirus (NoV), Human Adenovirus (HAdV) and Sapovirus (SaV). The aim of this study was to investigate, for the first time, the presence of these biological agents in ready to eat (RTE) berries at point of retail in Ireland. A sampling strategy was designed in which RTE fresh and frozen strawberries and raspberries were purchased from five retailers between May and October 2018. Reverse Transcriptase Polymerase Chain Reaction (RT-qPCR) assays for HEV RNA, Nov RNA, SaV RNA, and human Adenovirus species F DNA (HAdV-F) were performed on 239 samples (25g portions). Viral nucleic acid was present in 6.7% (n = 16) of samples tested as follows: HAV RNA (n = 5), HAdV-F DNA (n = 5), HEV RNA (n = 3) and NoV GII RNA (n = 3). Sapovirus RNA was not detected in any product. No significant differences were found between berry type, fresh/frozen status, or supermarket source. This study suggests a risk that exists across all retail outlets however only low levels of nucleic acid ranging from 0 to 16 genome copies/g were present. Although these findings may reflect non-viable/non-infectious virus the continued provision of risk mitigation advice to consumers is warranted and further work is required to ensure control measures to reduce contamination are implemented and enforced.


Assuntos
Adenovírus Humanos , Vírus da Hepatite A , Hepatite A , Hepatite E , Norovirus , Ácidos Nucleicos , Humanos , Adenovírus Humanos/genética , Frutas , Microbiologia de Alimentos , Irlanda , Norovirus/genética , Vírus da Hepatite A/genética , RNA Viral/genética , RNA Viral/análise , DNA , Contaminação de Alimentos/análise
10.
Front Plant Sci ; 14: 1128579, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077630

RESUMO

Introduction: The impact of water quality on the survival of human norovirus (NoV) was determined in irrigation water field run-off (tail water) and well water from a representative Central Coast vegetable production site in the Salinas Valley, California. Methods: Tail water, well water, and ultrapure water samples were inoculated separately with two surrogate viruses for human NoV-Tulane virus (TV) and murine norovirus (MNV)-to achieve a titer of 1×105 plaque forming units (PFU)/ml. Samples were stored at 11, 19, and 24°C for 28 days. Additionally, inoculated water was applied to soil collected from a vegetable production site in the Salinas Valley or to the surface of growing romaine lettuce leaves, and virus infectivity was evaluated for 28 days in a growth chamber. Results: Virus survival was similar for water stored at 11, 19, and 24°C and there was no difference in infectivity based on water quality. After 28 days, a maximum 1.5 log reduction was observed for both TV and MNV. TV decreased by 1.97-2.26 log and MNV decreased by 1.28- 1.48 logs after 28 days in soil; infectivity was not influenced by water type. Infectious TV and MNV were recovered from lettuce surfaces for up to 7 and 10 days after inoculation, respectively. Across the experiments there was no significant impact of water quality on the stability of the human NoV surrogates. Discussion: Overall, the human NoV surrogates were highly stable in water with a less than 1.5 log reduction over 28 days and no difference observed based on the water quality. In soil, the titer of TV declined by approximately 2 logs over 28 days, while MNV declined by 1 log during the same time interval, suggesting surrogate-specific inactivation dynamics in the soil tested in this study. A 5-log reduction in MNV (day 10 post inoculation) and TV (day 14 post inoculation) was observed on lettuce leaves, and the inactivation kinetics were not significantly impacted by the quality of water used. These results suggest that human NoV would be highly stable in water, and the quality of the water (e.g., nutrient content, salinity, and turbidity) does not significantly impact viral infectivity.

11.
Foods ; 12(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36832797

RESUMO

It is known that the transmission of different foodborne viruses can occur either via discharge of contaminated water close to the production environment or via close contact with animal feces. Cranberries are intimately associated with water throughout their production cycle, and blueberries grow close to the ground which could lead to contact with wildlife. The aim of this study was to evaluate the prevalence of human norovirus (HuNoV GI and GII), hepatitis A virus (HAV) and hepatitis E virus (HEV) in two berries produced commercially in Canada. The detection of HuNoV and HAV on RTE cranberries and of HEV on wild blueberries was evaluated using the ISO method 15216-1:2017. Only 3 of 234 cranberry samples tested positive for HuNoV GI (3.6, 7.4, 5.3 genome copies/g, respectively) and all were negative for HuNoV GII and HAV. PMA pre-treatment and sequencing confirmed the absence of potential intact HuNoV GI particles on cranberries. None of the 150 blueberry samples tested positive for HEV. Overall, the prevalence of foodborne viruses in RTE cranberries and wild blueberries harvested in Canada is low, making these products relatively safe for consumers.

12.
FEMS Microbiol Lett ; 369(1)2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36352488

RESUMO

Foodborne and zoonotic viral pathogens are responsible for substantial morbidity and mortality worldwide. These viruses can be transmitted through foods such as dairy products to humans and cause several acute and chronic diseases. This study aimed to investigate the prevalence and profile of different foodborne and zoonotic viruses in raw cow milk samples. We collected 492 raw cow milk samples from local dairy markets in Qazvin, Iran. Then we evaluated the presence of hepatitis A virus, noroviruses, rotavirus, astrovirus, bovine leukaemia virus (BLV) and tick-borne encephalitis virus (TBEV) in samples using conventional and nested reverse transcription-polymerase chain reaction methods. We found that 34.95, 7.72, 25.81, 14.63, 66.86, 12.80 and 21.34% of raw milk samples were contaminated with norovirus GI, norovirus GII, hepatitis A virus, rotavirus, astrovirus, BLV and TBEV viruses, respectively. Interestingly, the samples collected from the city's south area revealed a higher prevalence of foodborne and zoonotic viruses. Astrovirus and its combination with norovirus GI were the most prevalent virus profiles. Also, the highest correlations were observed among the presence of rotavirus and hepatitis A viruses (0.36) and TBEV and norovirus GII (0.31). Considering the prevalence rate and virus profiles of different foodborne and zoonotic viruses in raw milk samples, hygiene practices and the pasteurization process are strongly suggested to be conducted throughout the cow milk production chain and in dairy industries to prevent infections with these pathogens.


Assuntos
Norovirus , Rotavirus , Vírus , Humanos , Animais , Feminino , Bovinos , Leite/química , Prevalência , RNA Viral , Norovirus/genética , Rotavirus/genética , Vírus/genética
13.
Front Vet Sci ; 9: 913622, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246307

RESUMO

Emerging infectious diseases (EID) in humans and animals are proving to be a serious health concern. This study investigated the prevalence of emerging or re-emerging human enteric viruses in porcine stools and swabs. Eleven enteric EID viruses were selected as target viruses for the current study and ranked based on their impact on public health and food safety: enterovirus (EV), hepatitis E virus, norovirus GI and GII, sapovirus (SaV), adenovirus (AdV), astrovirus, rotavirus, hepatitis A virus, aichivirus, and bocavirus. Using real-time RT-PCR or real-time PCR, EID viruses were detected in 129 (86.0%) of 150 samples. The most prevalent virus was EV, which was detected in 68.0% of samples, followed by AdV with a detection rate of 38.0%. In following sequencing and phylogenetic analyses, 33.0% (58/176) of the detected viruses were associated with human enteric EID viruses, including AdV-41, coxsackievirus-A2, echovirus-24, and SaV. Our results show that porcine stools frequently contain human enteric viruses, and that few porcine enteric viruses are genetically related to human enteric viruses. These findings suggest that enteric re-emerging or EID viruses could be zoonoses, and that continuous monitoring and further studies are needed to ensure an integrated "One Health" approach that aims to balance and optimize the health of humans, animals, and ecosystems.

14.
Crit Rev Anal Chem ; : 1-13, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35998062

RESUMO

Accepting the fact that there is a huge number of virus particles in food that lead to several infectious diseases, eliminating of the foodborne virus from food is tangible. In 2020, the appearance of new SARS-CoV-2 variants had remarked the importance of food safety in our lives. Detection virus is a dynamic domain. Recently, many papers have tried to detect several foodborne viruses by using conventional sensing platforms including ELISA (enzyme-linked immunosorbent assay), PCR (polymerase chain reaction-based methods) and NASBA (nucleic acid sequence-based amplification). However, small sizes, low infective doses and discrete distribution of the foodborne virus have converted these microorganisms into the most challengeable pathogen in the food samples matrix. Foodborne virus detection exploiting aptamer-based biosensors has attracted considerable attention toward the numerous benefits of sourcing from aptamers in which a variety of viruses could be detected by conjugation of aptamer-virus. The development of multiple sensing methodologies and platforms in terms of aptasensor application in real food and environment samples has demonstrated promising results. In this review, we present the latest developments in myriad types of aptasensors (including electrochemical, optical and piezoelectric aptasensor) for the quantification of foodborne viruses. Working strategies, benefits and disadvantages of these platforms are argued.

15.
Front Microbiol ; 13: 841875, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308332

RESUMO

Foodborne and enteric viruses continue to impose a significant public health and economic burden globally. As many of these viruses are highly transmissible, the ability to detect them portably, sensitively, and rapidly is critical to reduce their spread. Although still considered a gold standard for detection of these viruses, real time polymerase chain reaction (PCR)-based technologies have limitations such as limited portability, need for extensive sample processing/extraction, and long time to result. In particular, the limitations related to the susceptibility of real time PCR methods to potential inhibitory substances present in food and environmental samples is a continuing challenge, as the need for extensive nucleic acid purification prior to their use compromises the portability and rapidity of such methods. Isothermal amplification methods have been the subject of much investigation for these viruses, as these techniques have been found to be comparable to or better than established PCR-based methods in portability, sensitivity, specificity, rapidity, and simplicity of sample processing. The purpose of this review is to survey and compare reports of these isothermal amplification methods developed for foodborne and enteric viruses, with a special focus on the performance of these methods in the presence of complex matrices.

17.
Lett Appl Microbiol ; 73(4): 486-494, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34268776

RESUMO

During the period from late 2019 to early 2020, we performed a foodborne virus detection from shellfish collected in Singapore at retail level. Multiple human enteric viruses were included as our targets including human noroviruses (NoVs) GI and GII, hepatitis A virus, hepatitis E virus and rotavirus. Out of the 60 shellfish samples, 23 (38·3%) were detected to be positive by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) with human enteric viruses. Six samples were selected to proceed with virome capture sequencing with positive control samples spiked with serially diluted NoV GII clinical samples in oyster extract. As a result, the natural sample with comparable Ct values (34·0-35·0) of the spiked sample as detected by RT-qPCR generated much lower read counts (>7-log2 cumulative sum scaling difference) and genome coverage (406 nt. vs 3715 nt.), suggesting that the RT-qPCR positive signals detected from the shellfish samples collected at the retail market were likely from degraded RNA derived from inactive virus particles.


Assuntos
Norovirus , Ostreidae , Animais , Contaminação de Alimentos/análise , Humanos , Norovirus/genética , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Frutos do Mar , Singapura , Viroma
18.
Int J Food Microbiol ; 348: 109151, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-33940535

RESUMO

Foodborne outbreaks associated with transmission of norovirus are increasingly becoming a public health concern. Foods can be contaminated with faecal material at the point of production or during food preparation, in both the home and in commercial premises. Transmission of norovirus occurs through the faecal-oral route, either via person-to-person contact or through faecal-contamination of food, water, or environmental surfaces. Understanding the role and pathways of norovirus transmission - either via food handlers' hands, contaminated foods or the environment - remains a key public health priority to reduce the burden of norovirus-associated gastroenteritis. However the proportion of norovirus that is typically transferred remains unknown. Understanding this is necessary to estimate the risk of infection and the burden of gastroenteritis caused by norovirus. In this paper we present a novel method of capture, concentration and molecular detection of norovirus from a wider range of complex food matrices than those demonstrated in existing published methods. We demonstrate that this method can be used as a tool to detect and quantify norovirus from naturally contaminated food, and for monitoring norovirus transfer between food handlers' gloved hands, food or the environment. We measure the effect of introducing contamination at different food production process stages, to the final food product, to determine whether this could cause infection and disease. Between 5.9 and 6.3 Log10 cDNA copies/µl of norovirus GII were inoculated onto food handlers' gloved hands, food or the environment and 1.1-7.4% of norovirus contamination was recovered from all samples tested. When interpreted quantitatively, this percentage equates to levels predicted to be sufficient to cause infection and disease through consumption of the final food product, demonstrating a public health risk. Overall detection and quantification of norovirus from foods, food handlers' gloved hands and the environment, when suspected to be implicated in foodborne transmissions, is paramount for appropriate outbreak investigation.


Assuntos
Infecções por Caliciviridae/transmissão , Manipulação de Alimentos/métodos , Doenças Transmitidas por Alimentos/virologia , Gastroenterite/virologia , Norovirus/genética , Infecções por Caliciviridae/virologia , Surtos de Doenças , Fezes/virologia , Contaminação de Alimentos/análise , Humanos
19.
Virus Res ; 293: 198263, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33359173

RESUMO

Deformed wing virus (DWV) is a single-stranded positive sense RNA virus that mainly infects honey bees (Apis mellifera) and can have devastating impacts on the colony. Recent studies have shown the presence of this virus in several species of Apis spp. and some other Hymenoptera, but our knowledge of their host range is very limited. We screened previously sequenced RNAseq libraries from different tissues of Vietnamese Walking Stick, Medauroidea extradentata (Phasmatodea) for DWV. We only found this virus in six libraries from anterior and posterior midgut tissue. From the midgut libraries we were able to construct a complete DWV genome sequence, which consisted of 10,140 nucleotides and included one open reading frame. Pairwise genome comparison confirmed strong similarity (98.89 %) of these assembled sequences with only 113 SNPs to the original DWV genome. We hypothesize the M. extradentata acquired this virus via a foodborne transmission by consuming DWV-infected material such as pollen or leaves contaminated with virus infected bee faeces.


Assuntos
Vírus de RNA , Animais , Ásia , Insetos
20.
Viruses ; 12(9)2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899445

RESUMO

Human noroviruses (NoV) cause epidemics of acute gastroenteritis (AGE) worldwide and can be transmitted through consumption of contaminated foods. Fresh products such as shellfish can be contaminated by human sewage during production, which results in the presence of multiple virus strains, at very low concentrations. Here, we tested a targeted metagenomics approach by deep-sequencing PCR amplicons of the capsid (VP1) and polymerase (RdRp) viral genes, on a set of artificial samples and on shellfish samples associated to AGE outbreaks, to evaluate its advantages and limitations in the identification of strains from the NoV genogroup (G) II. Using artificial samples, the method allowed the sequencing of most strains, but not all, and displayed variability between replicates especially with lower viral concentrations. Using shellfish samples, targeted metagenomics was compared to Sanger-sequencing of cloned amplicons and was able to identify a higher diversity of NoV GII and GIV strains. It allowed phylogenetic analyses of VP1 sequences and the identification, in most samples, of GII.17[P17] strains, also identified in related clinical samples. Despite several limitations, combining RdRp- and VP1-targeted metagenomics is a sensitive approach allowing the study NoV diversity in low-contaminated foods and the identification of NoV strains implicated in outbreaks.


Assuntos
Gastroenterite/virologia , Norovirus/isolamento & purificação , Frutos do Mar/virologia , Surtos de Doenças , Contaminação de Alimentos/análise , França/epidemiologia , Gastroenterite/epidemiologia , Humanos , Metagenômica , Norovirus/classificação , Norovirus/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA