Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; : e2403334, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990887

RESUMO

Textiles with thermal/moisture managing functions are of high interest. However, making the textile sensitive to the surrounding environment is still challenging. Herein, a multimodal smart fabric is developed by stitching together the Ag coated thermal-humidity sensitive thermoplastic polyurethane (Ag-THSPU) and the hybrid of polyvinylidene fluoride and polyurethane (PU-PVDF). The porous PU-PVDF layer is used for solar reflection, infrared emissivity, and water resistance. The Ag-THSPU layer is designed for regulating thermal reflection, sweat evaporation as well as convection. In cold and dry state, the Ag domains are densely packed covering the crystalline polyurethane matrix, featuring low water transmission (102.74 g m-2·24 h-1), high thermal reflection and 2.4 °C warmer than with cotton fabric. In the hot and humid state, the THSPU layer is swollen by sweat and expands in area, resulting in the formation of micro-hook faces where the Ag domains spread apart to promote sweat evaporation (2084.88 g/m-2·24 h-1), thermal radiation and convection, offering 2.5 °C cooler than with cotton fabric. The strategy reported here opens a new door for the development of adaptive textiles in demanding situations.

2.
Sci Total Environ ; 873: 162438, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842591

RESUMO

The complication of stent implantation is the biggest obstacle to the success of its clinical application. In this study, we developed a combination way of 3D printing and the coating technique for preparation of functional polyurethane stents against stent implantation-induced thrombosis and postoperative infection. SEM, XPS, static water contact angle, and XRD demonstrated that the functional polyurethane stent had a 37 µm-thickness membrane composed of zein nanospheres (250-350 nm). Meanwhile, ZnO nanoparticles were encapsulated in zein nanospheres while heparin was adsorbed on the surface, causing 97.1 ± 6.4 % release of heparin in 120 min (first-order kinetic model) and 62.7 ± 5.6 % release of Zn2+ in 9 days (Korsmeyer-Peppas model). The mechanical analysis revealed that the functional polyurethane stents had about 8.61 MPa and 2.5 MPa tensile strength and bending strength, respectively. The in vitro biological analysis showed that the functional polyurethane stents had good EA.hy926 cells compatibility (97.9 ± 3.8 %), anti-coagulation response (comparable plasma protein, platelet adhesion and suppressed clotting) and sustained antibacterial activities by comparison with the bare polyurethane stent. The preliminary evaluation by rabbit ex vivo carotid artery intervention experiment demonstrated that the functional polyurethane stents could maintain blood circulation under the continuous stresses of blood flow. Meanwhile, the detailed data from the simulated implant infection experiment in vivo showed the functional polyurethane stents could effectively reduce microbial infection by 3-6 times lower and improve fibrosis and macrophage infiltration.


Assuntos
Nanosferas , Trombose , Zeína , Animais , Coelhos , Poliuretanos , Nanosferas/efeitos adversos , Trombose/etiologia , Heparina/farmacologia , Stents/efeitos adversos
3.
Polymers (Basel) ; 12(9)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887324

RESUMO

Over last few years, polyurethane (PU) has been applied in a number of areas because of its remarkable features, such as excellent mechanical strength, good abrasion resistance, toughness, low temperature flexibility, etc. More specifically, PU can be easily "tailor made" to meet specific demands. This structure-property relationship endows great potential for use in wider applications. With the improvement of living standards, ordinary polyurethane products cannot meet people's growing needs for comfort, quality, and novelty. This has recently drawn enormous commercial and academic attention to the development of functional polyurethane. Among the major applications, PU is one of the prominent retanning agents and coating materials in leather manufacturing. This review gives a summary of academic study in the field of functional PU as well as its recent application in leather manufacture.

4.
ACS Biomater Sci Eng ; 3(10): 2588-2597, 2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33465913

RESUMO

The increasing incidence of drug-resistant strains of bacteria necessitates the development of new classes of antimicrobials. Host defense peptides, also known as antimicrobial peptides, are promising in this regard but have several drawbacks. Herein, we show that peptidomimetic polyurethanes with pendant functional groups that mimic lysine and valine amino acid residues have high antibacterial activity against Gram negative Escherichia coli, yet are less effective against Gram positive Staphylococcus aureus. All the polyurethanes designed in this study display high bactericidal activity against E. coli, whereas the polyurethanes with high concentrations of lysine mimicking functional groups display minimal cytotoxicity toward mammalian cells. Control experiments with pexiganan, an analogue of the host defense peptide magainin, showed that the polyurethanes described here have high bactericidal activity, while having comparable hemocompatibility and lower mammalian cell toxicity. Overall, the results point to an encouraging new class of peptidomimetic synthetic polymers with selective bactericidal activity to E. coli and low mammalian cell toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA