Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37299182

RESUMO

Ruta chalepensis is an herb used to treat various ailments, and its potential cytotoxic effects on different tumor cell lines have been extensively studied. The present study aimed to evaluate the cytotoxic activity of R. chalepensis methanol extract (RCME), sub-partitions obtained from solvents of increasing polarity, and major compounds, as well as their hemolytic, anti-hemolytic, and antioxidant potential. The in vitro cytotoxic activity against the human hepatocarcinoma (HEP-G2) and the murine lymphoma cell line (L5178Y-R) was evaluated using the colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay, whereas selectivity indices (SIs) were determined by comparing cytotoxicity against normal African green monkey kidney cells (VERO) and human peripheral blood mononuclear cells (PBMC). Hemolytic and anti-hemolytic activities were evaluated on human erythrocytes. The most effective cytotoxic treatment was evaluated for nitric oxide release by J774A.1 macrophages. Antioxidant activity of R. chalepensis material was also determined. Results showed that RCME produced significant (p < 0.05) cytotoxicity in HEP-G2 (IC50 = 1.79 µg/mL) and L5178Y-R (IC50 = 1.60 µg/mL) cells and exhibited high SIs (291.50 and 114.80, respectively). In addition, the n-hexane fraction (RCHF) showed an IC50 of 18.31 µg/mL in HEP-G2 cells and an SI of 9.48 in VERO cells, whereas the chloroform fraction (RCCF) evidenced an IC50 of 1.60 µg/mL in L5178Y-R cells and an SI of 34.27 in PBMC cells. Chalepensin (CHL), rutamarin (RTM), and graveolin (GRV), which are major components of R. chalepensis, showed high activity against L5178Y-R cells, with IC50 of 9.15, 15.13 and SI of 45.08 µg/mL, respectively. In addition, CHL, RTM, and GRV showed SIs of 24.76, 9.98, and 3.52, respectively, when compared with PBMC cells. RCME at concentrations of 125 µg/mL and 250 µg/mL, significantly (p < 0.05) decreased nitrite production in J774A.1 cells, when exposed to lipopolysaccharide. This study demonstrated that RCME showed significant cytotoxic activity against HEP-G2 and L5178Y-R cells, without affecting normal VERO, PBMC, and J774A.1 cells.

2.
Molecules ; 27(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35889459

RESUMO

Psoralen (PSO) and 5-methoxypsoralen (5-MOP) are widely used drugs in oral photochemotherapy against vitiligo and major bioactive components of root bark extract of Brosimum gaudichaudii Trécul (EBGT), previously standardized by LC-MS. However, the exceptionally low water solubility of these psoralens can cause incomplete and variable bioavailability limiting their applications and patient adherence to treatment. Therefore, the purpose of this work was to investigate the effects of 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) inclusion complex on the solubility and jejunal permeability of PSO and 5-MOP from EBGT. Characterization of inclusion complexes were evaluated by current methods in nuclear magnetic resonance studies on aqueous solution, Fourier transform infrared spectroscopy, thermal analysis, and scanning electron microscopy in solid state. Ex vivo rat jejunal permeability was also investigated and compared for both pure psoralens and plant extract formulation over a wide HP-ß-CD concentration range (2.5 to 70 mM). Phase solubility studies of the PSO- and 5-MOP-HP-ß-CD inclusion complex showed 1:1 inclusion complex formation with small stability constants (Kc < 500 M−1). PSO and 5-MOP permeability rate decreased after adding HP-ß-CD by 6- and 4-fold for pure standards and EBGT markers, respectively. Nevertheless, the complexation with HP-ß-CD significantly improved solubility of PSO (until 10-fold) and 5-MOP (until 31-fold). As a result, the permeability drop could be overcome by solubility augmentation, implying that the HP-ß-CD inclusion complexes with PSO, 5-MOP, or EBGT can be a valuable tool for designing and developing novel oral drug product formulation containing these psoralens for the treatment of vitiligo.


Assuntos
Furocumarinas , Moraceae , Vitiligo , beta-Ciclodextrinas , 2-Hidroxipropil-beta-Ciclodextrina/química , Animais , Varredura Diferencial de Calorimetria , Permeabilidade , Extratos Vegetais/farmacologia , Ratos , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , beta-Ciclodextrinas/química
3.
Pest Manag Sci ; 77(10): 4638-4647, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34092005

RESUMO

BACKGROUND: Using plant-based extracts and their constituents has been suggested as an alternative tool to replace or integrate with the synthetic compounds used to manage insect pests. Here, we evaluated the potential of extracts obtained from Ficus carica Linn (Moraceae) branches and leaves against the Neotropical brown stink bug, Euschistus heros, one of the most prevalent insect pests in soybean fields. We further isolated and evaluated the toxicity of the extracts' major components against E. heros. Additionally, by using computational docking analysis and toxicological approaches, we assessed the physiological basis for the selectivity of these extracts against beneficial insects such as pollinator bees (i.e. Apis mellifera and the Neotropical stingless bee Partamona helleri), ladybeetles (Eriopis connexa and Coleomegilla maculata), and lacewings (Chrysoperla externa). RESULTS: Our results demonstrate that branch (LC50  = 5.9 [4.7-7.1] mg mL-1 ) and leaf (LC50  = 14.1 [12.5-15.4] mg mL-1 ) extracts exhibited similar toxicity against E. heros. Our phytochemical analysis revealed psoralen and bergapten furanocoumarins as the major components of the extract. Based on our computational predictions, these molecules' differential abilities to physically interact with the acetylcholinesterases of E. heros and beneficial insects play relevant roles in their selectivity actions. The estimated LC90 values of branch (30.0 mg mL-1 ) and leaf (30.0 mg mL-1 ) extracts killed less than 12% of the beneficial insects. CONCLUSION: Overall, our findings revealed that furanocoumarin-rich extracts obtained from F. carica extracts have the potential to be used as alternative tools in the integrated management of stink bug pests. © 2021 Society of Chemical Industry.


Assuntos
Besouros , Ficus , Heterópteros , Animais , Abelhas , Extratos Vegetais , Glycine max
4.
J Pharm Biomed Anal ; 191: 113593, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32942105

RESUMO

Roots´ bark extract of Brosimum gaudichaudii Trécul (EBGT) is traditionally used for photochemotherapy of vitiligo due to the presence of furanocoumarins psoralen (PSO) and 5-methoxypsoralen (5-MOP) as major compounds. Though plant extracts may provide additional highly permeable psoralens-like substances which may act synergically on vitiligo's therapy. Thus, the aim of this work was to develop an LC-MS/MS method for screening new highly permeable furanocoumarins from B. gaudichaudii and to compare biomarkers permeability and solubility provided as single compounds or as crude extract, according to BCS. An optimized LC-MS/MS method showed twelve permeable and bioactive compounds, among which 9 furanocoumarins, 2 pyranocoumarins and 1 dihydrocinnamic acid derivative were detected in EBGT samples. Solubility of PSO and 5-MOP was found to be, respectively, six- and eleven-fold higher in crude extract than as pure compounds. Permeability (Papp) of PSO and 5-MOP in EBGT were higher than metoprolol, the low/high BCS permeability class boundary reference compound. Hence, both biomarkers were considered as highly permeable (BCS2) compounds. Their permeability were concentration-dependent displaying values from 30.26 ± 5.13-8.21 ± 2.16 × 10-6 cm/s and 10.72 ± 1.73-6.07 ± 1.27 × 10-6 cm/s, respectively, over a wide range (2.3-200.0 mg mL-1). Thus, a carrier-mediated absorption process is suggested as the main mechanism. Accordingly, all additional permeated coumarins, identified by LC-MS/MS, showed to be at comparable amount of biomarkers in the permeated samples inferring similar high permeability rate. Moreover, biomarkers and other highly absorbable and bioactive linear furanocoumarins from EBGT may be used for vitiligo´s photochemotherapy. Taken together, these findings bring additional evidences for using crude plant extract when aiming synergistic effects of bioactive compounds on melanogenic therapies.


Assuntos
Moraceae , Vitiligo , Cromatografia Líquida , Absorção Intestinal , Permeabilidade , Extratos Vegetais , Espectrometria de Massas em Tandem
5.
Heliyon ; 5(6): e01937, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31245648

RESUMO

The present work analyses the chromatographic profile of the peels from fruits of different citrus cultivated in Colombia: sweet orange (Citrus sinensis [L.] Osbeck var. Valencia), mandarins (Citrus reticulata L. var. Arrayana and Oneco), Key lime (Citrus aurantifolia [Christ.] Swingle var. Pajarito), Mandarine lime (Citrus x limonia, a hybrid between Citrus reticulata and Citrus x limon) and Tahitian lime (C. latifolia Tanaka, syn. Persian lime). Coumarins, furanocoumarins and polymethoxylated flavones are the major compounds. Then, six coumarins were isolated and identified from fruits of Tahitian and Key lime corresponding to 5-geranyloxy-7-methoxycoumarin; 5,7-dimethoxycoumarin (syn. limettin); 5,8-dimethoxypsoralen (syn. isopimpinellin); 5-methoxypsoralen (syn. bergaptene); 5-geranoxypsoralen (syn. bergamottin) and 5-(2,3-dihydroxy-3-methylbutoxy) psoralen (syn. oxypeucedanin hydrate). Coumarins and furanocoumarins were quantified by liquid chromatography (HPLC-DAD). Results show that the prenylated compounds were present in high concentrations in Tahitian and Key lime but in very low amounts in mandarins and sweet orange. Subsequently, the antifungal activity (inhibition of mycelial growth and germination of spores) of the coumarins against the fungus causing the anthracnose, Colletotrichum sp. (isolated from aerial parts of Tahitian lime) was determined. The compounds limettin and bergaptene, as well as mixtures of them, showed significant inhibitory effect (radial growth and spore germination) when compared to the control. Finally, the effect of some recognized elicitors to induce the coumarin production in fruits of C. latifolia was evaluated. The results showed that the chemical profiles are dependent on the applied elicitor and the post-induction time. As a result of the induction, a high concentration of some coumarins and furanocoumarins was maintained in the course of time for the Tahitian lime. In conclusion, isolated coumarins could be involved in the defense mechanisms of C. latifolia, C. aurantifolia and C. limonia and their accumulation may be modulated by the application of elicitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA