RESUMO
In this study, UiO-67 (Zr)/g-C3N4 composites (U67N) were synthesized at wt.% ratios of 05:95, 15:85, and 30:70 using the solvothermal method at 80 °C for 24 h followed by calcination at 350 °C. The composites were characterized using UV-Vis diffuse reflectance spectroscopy, Fourier-transform infrared spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy-energy-dispersive X-ray spectroscopy, transmission electron microscopy, and nitrogen physisorption analysis. In addition, thermal stability analysis of UiO-67 was conducted using thermogravimetric analysis. The photocatalytic performance of the composites was assessed during the degradation and mineralization of a mixture of methylparaben (MeP) and propylparaben (PrP) under simulated sunlight. The adsorption process of U67N 15:85 was characterized through kinetic studies and adsorption capacity experiments, which were modeled using pseudo-first-order and pseudo-second-order kinetics and Langmuir and Freundlich isotherms, respectively. The influence of pH levels 3, 5, and 7 on the photocatalytic degradation of the mixture was investigated, revealing enhanced degradation and mineralization at pH 3. The U67N composite exhibited dual capability in removing contaminants through adsorption and photocatalytic processes. Among the prepared composites, U67N 15:85 demonstrated the highest photocatalytic activity, achieving removal efficiencies of 96.8% for MeP, 92.5% for PrP, and 45.7% for total organic carbon in 300 kJ/m2 accumulated energy (3 h of reaction time). The detoxification of the effluent was confirmed through acute toxicity evaluation using the Vibrio fischeri method. The oxidation mechanism of the heterojunction formed between UiO-67 (Zr) and g-C3N4 was proposed based on PL analysis, photoelectrochemistry studies (including photocurrent response, Nyquist, and Mott-Schottky analyses), and scavenger assays.
Assuntos
Parabenos , Poluentes Químicos da Água , Parabenos/química , Adsorção , Poluentes Químicos da Água/química , Estruturas Metalorgânicas/química , Catálise , CinéticaRESUMO
The limited access to fresh water and the increased presence of emergent pollutants (EPs) in wastewater has increased the interest in developing strategies for wastewater remediation, including photocatalysis. Graphitic carbon nitride (g-C3N4) is a 2D non-metal material with outstanding properties, such as a 2.7 eV bandgap and physicochemical stability, making it a promising photocatalyst. This work reports the process of obtaining high-surface-area (SA) g-C3N4 using the thermal-exfoliation process and the posterior effect of Ag-nanoparticle loading over the exfoliated g-C3N4 surface. The photocatalytic activity of samples was evaluated through methylene blue (MB) degradation under visible-light radiation and correlated to its physical properties obtained by XRD, TEM, BET, and UV-Vis analyses. Moreover, 74% MB degradation was achieved by exfoliated g-C3N4 compared to its bulk counterpart (55%) in 180 min. Moreover, better photocatalytic performances (94% MB remotion) were registered at low Ag loading, with 5 wt.% as the optimal value. Such an improvement is attributed to the synergetic effect produced by a higher SA and the role of Ag nanoparticles in preventing charge-recombination processes. Based on the results, this work provides a simple and efficient methodology to obtain Ag/g-C3N4 photocatalysts with enhanced photocatalytic performance that is adequate for water remediation under sunlight conditions.
RESUMO
In this work, the prepared cobalt oxide decorated boron-doped g-C3N4 (CoOx/g-C3N4) heterojunction exhibits remarkable activity in CO2 reduction (CO2RR), resulting in high yields of CH3COOH (â¼383 µmol·gcatalyst-1) and CH3OH (â¼371 µmol·gcatalyst-1) with 58% selectivity to C2+ under visible light. However, the same system leads to high H2 evolution (HER) by increasing the cobalt oxide content, suggesting that the selectivity and preference for the CO2RR or HER depend on oxide decoration. By comparing HER and CO2RR evolution in the same system, this work provides critical insights into the catalytic mechanism, indicating that the CoOx/g-C3N4 heterojunction formation is necessary to foster high visible light photoactivity.
RESUMO
This work aims to develop a photoelectrochemical (PEC) platform for detection of SARS-CoV-2 spike glyprotein S1. The PEC platform is based on the modification of a fluorine-doped tin oxide (FTO) coated glass slide with strontium titanate (SrTiO3 or ST), sulfur-doped carbon nitride (g-C3N4-S or CNS) and palladium nanoparticles entrapped in aluminum hydroxide matrix (PdAlO(OH) or PdNPs). The PEC platform was denoted as PdNPs/CNS/ST/FTO and it was characterized by SEM, TEM, FTIR, DRX, and EIS. The PEC response of the PdNPs/CNS/ST/FTO platform was optimized by evaluating the effects of the concentration of the donor molecule, the nature of the buffer, pH, antibody concentration, potential applied to the working electrode, and incubation time. The optimized PdNPs/CNS/ST/FTO PEC platform was modified with 5 µg mL-1 of antibody for determination of SARS-CoV-2 spike glycoprotein S1. A decrease in the photocurrent was observed with an increase in the concentration of SARS-CoV-2 from 1 fg mL-1 to 1000 pg mL-1 showing that the platform is a promising alternative for the detection of S1 protein from SARS-CoV-2. The designed PEC platform exhibited recovery percentages of 96.20% and 109.65% in artificial saliva samples.
RESUMO
The urgency for new materials in oncology is immediate. In this study we have developed the g-C3N4, a graphitic-like structure formed by periodically linked tris-s-triazine units. The g-C3N4has been synthesized by a simple and fast thermal process. XRD has shown the formation of the crystalline sheet with a compacted structure. The graphite-like structure and the functional groups have been shown by Raman and FTIR spectroscopy. TEM image and AFM revealed the porous composed of five or six C-N layers stacked. DRS and Photoluminescence analyses confirmed the structure with band gap of 2.87 eV and emission band at 448 nm in different wavelengths excitation conditions. The biological results showed inhibitory effect on cancer cell lines and non-toxic effect in normal cell lines. To the best of our knowledge, this is the first work demonstrating the cytotoxic effects of 2D g-C3N4in a cancer cell line, without any external or synergistic influence. The biodistribution/tissue accumulation showed that g-C3N4present a tendency to accumulation on the lung in the first 2 h, but after 24 h the profile of the biodistribution change and it is found mainly in the liver. Thus, 2D-g-C3N4showed great potential for the treatment of several cancer types.
Assuntos
Sobrevivência Celular , Grafite/síntese química , Grafite/metabolismo , Compostos de Nitrogênio/síntese química , Compostos de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Humanos , Distribuição TecidualRESUMO
Sewage treatment and water reuse are, undoubtedly, one of the main points on scientific agenda of the 21st century. Many technologies for sewage treatment are available; however, it is still as an open issue that deserves much attention in order to facilitate their application, develop more effective methods and propose alternative treatment for unusual situations. Developing high performance materials for sewage treatment fits the idea of the development of efficient and alternative methods for microorganism removal and the high organic load of wastewater and is of fundamental importance. In this paper, a heterojunction with perovskite-type strontium stannate (SrSnO3) and graphitic carbon nitride (g-C3N4) - SrSnO3/g-C3N4 - was synthesized and used for photocatalytic treatment of domestic sewage using only sunlight. Results were accompanied by assessing the total organic carbon decrease and removal of pathogenic microorganisms. X-ray diffraction and X-ray excited photoelectron spectroscopy demonstrated that a heterostructure was successfully formed and photocatalytic tests showed an important activity in the visible range, i.e., under sunlight. Exposing raw sewage to 240 min (from 11 a.m. until 3 p.m.) in the presence of SrSnO3/g-C3N4, led to a 56.1% mineralization. This process was 2.5 more efficient than photolysis under sunlight. Moreover, the treated sewage showed no coliform growth (either fecal or total) or heterotrophic bacteria. This simple treatment makes sewage suitable and safe for reuse, for example, for agriculture purposes according to Brazilian regulations criteria and could be an alternative for isolated areas in which sewage treatment plants are not available.