Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 678(Pt C): 789-795, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39312867

RESUMO

Surface states have been a longstanding and sometimes underestimated problem in gallium nitride (GaN) based devices. The instability caused by surface-charge-trapping in GaN-based transistors is practically the same problem faced by the inventors of the silicon (Si) field effect transistors more than half a century ago. Although in Si this problem was eventually solved by oxygen and hydrogen-based passivation, in GaN, such breakthrough has yet to be made. Apparently, some of this surface charge originates in molecules adsorbed on its surface. Here, it is shown that the charge density associated with the GaN yellow band desorbs upon mild heat treatment in vacuum and re-adsorbs on exposure to the air. Selective exposure of GaN to nitrogen dioxide (NO2) reproduces this surface charge to its original distribution, as does exposure to air. Residual gas analysis of the gases desorbed during heat treatment shows a large concentration of nitric oxide (NO). These observations suggest that selective adsorption of NO2 is responsible for the surface charge that deleteriously affects the electrical properties of GaN. The physics and chemistry of this NO2 adsorption, reported here, may open a new path in the search for passivation to improve GaN device reliability.

2.
Materials (Basel) ; 17(18)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39336261

RESUMO

The impact of wet treatment using an (NH4)2S-alcohol solution on the interface state of the p-GaN/Ni/Au/Pt contact system and laser diode processing was investigated. Sulfur wet cleaning resulted in reduced surface roughness and contact resistivity. The lowest specific contact resistance (ρc < 1 × 10-4 Ω·cm2) was achieved with samples treated with an (NH4)2S-isopropanol solution, whereas the highest resistivity (ρc = 3.3 × 10-4 Ω·cm2) and surface roughness (Ra = 16 nm) were observed in samples prepared by standard methods. Annealing the contact system in an N2 + O2 + H2O atmosphere caused degradation through species inter-diffusion and metal-metal solid solution formation, irrespective of the preparation method. Standard prepared substrates developed a thin GaN-Au intermediate layer at the interface after heat treatment. Enhanced adhesion and the absence of GaN decomposition were observed in samples additionally cleaned with the (NH4)2S-solvent solution. Complete oxidation of nickel to NiO was observed in samples that underwent additional sulfur solution treatment. The intensity of metal species mixing and nickel oxidation was influenced by the metal diffusion rate and was affected by the initial state of the GaN substrate obtained through different wet treatment methods.

3.
Micromachines (Basel) ; 15(9)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39337760

RESUMO

We have investigated the electrical properties and reliability of AlGaN/GaN high electron mobility transistors (HEMT) under high-temperature RF overdrive stress. The experimental results show that the drain current and transconductance of the device decrease at 25 °C and 55 °C but do not change significantly at 85 °C before and after the stress. The decline rate of the saturation drain current, the degradation amplitude of transconductance, and the drift amplitude of threshold voltage decrease with the increase in temperature. The results of pulse I-V and low-frequency noise tests show that the current collapse is inhibited, and the trap density is reduced at higher temperatures. The Electroluminescence (EL) test shows that the luminescence characteristics of the device after RF overdrive stress are more scattered and weaker. We believe that the degradation at lower temperatures is mainly due to the influence of the hot electron effect (HEE), while the change in electrical properties at higher temperatures is due to the weakening of HEE and the improvement of the Schottky interface.

4.
Micromachines (Basel) ; 15(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39337786

RESUMO

This study investigates the operational characteristics of AlGaN/GaN high-electron-mobility transistors (HEMTs) by employing various passivation materials with different dielectric constants and passivation structures. To ensure the simulation reliability, the parameters were calibrated based on the measured data from the fabricated basic Si3N4 passivation structure of the HEMT. The Si3N4 passivation material was replaced with high-k materials, such as Al2O3 and HfO2, to improve the breakdown voltage. The Al2O3 and HfO2 passivation structures achieved breakdown voltage improvements of 6.62% and 17.45%, respectively, compared to the basic Si3N4 passivation structure. However, the increased parasitic capacitances reduced the cut-off frequency. To mitigate this reduction, the operational characteristics of hybrid and partial passivation structures were analyzed. Compared with the HfO2 passivation structure, the HfO2 partial passivation structure exhibited a 7.6% reduction in breakdown voltage but a substantial 82.76% increase in cut-off frequency. In addition, the HfO2 partial passivation structure exhibited the highest Johnson's figure of merit. Consequently, considering the trade-off relationship between breakdown voltage and frequency characteristics, the HfO2 partial passivation structure emerged as a promising candidate for high-power and high-frequency AlGaN/GaN HEMT applications.

5.
Adv Sci (Weinh) ; : e2406126, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225659

RESUMO

Free-standing gallium nitride has been prepared using various methods; however, the removal of the original substrate is still challenging with low success rates. In this work, 2-inch free-standing GaN films are obtained by direct growth on a fluoro phlogopite mica by hydride vapor-phase epitaxy. Depending on the van der Waals (vdW) interaction between GaN and mica, the effect of the significant lattice mismatch is effectively reduced; thus, enabling the production of a high-quality wafer-scale GaN film on mica. The vdW-induced cracks at GaN-mica interface are found to be initiated near the interface so that GaN can easily separate from mica during rapid cooling. Owing to the hydrophilic nature of mica, the residual GaN on the mica can be lifted off by following deionized water treatment, and the mica substrate can be repeatedly used to grow free-standing GaN films. The self-separated GaN films grown on both pristine and used mica substrates are single crystallinity and strain-free. Additionally, a fully functional ultraviolet light-emitting diode is demonstrated to show that the self-separated GaN films are of device quality. The proposed approach achieves epitaxial growth of wafer-scale single-crystalline GaN on 2D materials and provides a new substrate option in the technology of III-V materials.

6.
Materials (Basel) ; 17(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38998423

RESUMO

Group-III nitrides have transformed solid-state lighting and are strategically positioned to revolutionize high-power and high-frequency electronics. To drive this development forward, a deep understanding of fundamental material properties, such as charge carrier behavior, is essential and can also unveil new and unforeseen applications. This underscores the necessity for novel characterization tools to study group-III nitride materials and devices. The optical Hall effect (OHE) emerges as a contactless method for exploring the transport and electronic properties of semiconductor materials, simultaneously offering insights into their dielectric function. This non-destructive technique employs spectroscopic ellipsometry at long wavelengths in the presence of a magnetic field and provides quantitative information on the charge carrier density, sign, mobility, and effective mass of individual layers in multilayer structures and bulk materials. In this paper, we explore the use of terahertz (THz) OHE to study the charge carrier properties in group-III nitride heterostructures and bulk material. Examples include graded AlGaN channel high-electron-mobility transistor (HEMT) structures for high-linearity devices, highlighting the different grading profiles and their impact on the two-dimensional electron gas (2DEG) properties. Next, we demonstrate the sensitivity of the THz OHE to distinguish the 2DEG anisotropic mobility parameters in N-polar GaN/AlGaN HEMTs and show that this anisotropy is induced by the step-like surface morphology. Finally, we present the temperature-dependent results on the charge carrier properties of 2DEG and bulk electrons in GaN with a focus on the effective mass parameter and review the effective mass parameters reported in the literature. These studies showcase the capabilities of the THz OHE for advancing the understanding and development of group-III materials and devices.

7.
Materials (Basel) ; 17(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39063739

RESUMO

The focus of this study was the investigation of how the total pressure of reactants and ammonia flow rate influence the growth morphology of aluminum-gallium nitride layers crystallized by Halide Vapor Phase Epitaxy. It was established how these two critical parameters change the supersaturation levels of gallium and aluminum in the growth zone, and subsequently the morphology of the produced layers. A halide vapor phase epitaxy reactor built in-house was used, allowing for precise control over the growth conditions. Results demonstrate that both total pressure and ammonia flow rate significantly affect the nucleation and crystal growth processes which have an impact on the alloy composition, surface morphology and structural quality of aluminum-gallium nitride layers. Reducing the total pressure and adjusting the ammonia flow rate led to a notable enhancement in the homogeneity and crystallographic quality of the grown layers, along with increased aluminum incorporation. This research contributes to a deeper understanding of the growth mechanisms involved in the halide vapor phase epitaxy of aluminum-gallium nitride, and furthermore it suggests a trajectory for the optimization of growth parameters so as to obtain high-quality materials for advanced optoelectronic and electronic applications.

8.
Materials (Basel) ; 17(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38893877

RESUMO

It was demonstrated by ab initio calculations that energy optimization in the reconstruction of semiconductor surfaces is controlled by the global charge balance. The charge control was discovered during simulations of the influence of heavy doping in the GaN bulk, which changes sp3 to sp2 ratio in the reconstruction of stoichiometric GaN(0001), i.e., a Ga-polar surface. Thus, the reconstruction is not limited to the charge in the surface only; it can be affected by the charge in the bulk. The discovered new reconstruction of the GaN(0001) surface is (4 × 4), which is different from the previously reported (2 × 1) pattern. The undoped GaN reconstruction is surface charge controlled; accordingly, (3/8) top-layer Ga atoms remain in a standard position with sp3 hybridized bonding, while the remaining (5/8) top-layer Ga atoms are shifted into the plane of N atoms with sp2 hybridized bonding. The change in the charge balance caused by doping in the bulk leads to a change or disappearance of the reconstruction pattern.

9.
Sensors (Basel) ; 24(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38894156

RESUMO

The nonlinear characteristics of avalanche photodiodes (APDs) inhibit their performance in high-speed communication systems, thereby limiting their widespread application as optical detectors. Existing theoretical models have not fully elucidated complex phenomena encountered in actual device structures. In this study, actual APD structures exhibiting lower linearity than their ideal counterparts were revealed. Simulation analysis and physical inference based on GaN APDs reveal that electrode size is a noteworthy factor influencing response linearity. This discovery expands the nonlinear theory of APDs, suggesting that APD linearity can be enhanced by suppressing the electrode size effect. A physical model was developed to explain this phenomenon, which is attributed to charge accumulation at the edge of the contact layer. Therefore, we proposed an improved APD design that incorporates an additional gap layer and a buffer layer to stabilize the internal gain under high-current-density conditions, thereby enhancing linearity. Our improved APD design increases the linear threshold for optical input power by 4.46 times. This study not only refines the theoretical model for APD linearity but also opens new pathways for improving the linearity of high-speed optoelectronic detectors.

10.
IEEE Trans Power Electron ; 39(7): 7938-7951, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38882673

RESUMO

The arcing-involved pulsating coagulation mode with both active and blank periods is essential for modern electrosurgery. This paper begins with a comprehensive introduction to such a pulsating mode, followed by its implementation challenges. Then, an industrial-scale low-speed microcontroller unit (MCU), TMS320F28379D, is utilized to exemplify the proposed output sampling and data-transferring strategy on a gallium nitride (GaN)-based high-frequency inverter that enables coagulation mode with interweaved active periods and blank periods. The inverter prototype fills the active period with 390 kHz sinusoids of amplitude ranging from hundreds to thousands of Volts, while maintaining null outputs during blank periods. The strategy of sampling the above-mentioned sinusoidal outputs, coupled with their data transfer facilitated by direct memory access (DMA), is also articulated for subsequential power computation. Besides that, a novel nonfixed duty cycle approach, featuring an alterable number of sinusoids as the active period, is proposed and integrated into the GaN-based inverter to enhance mode safety. Finally, the power tracking performance of the mode is evaluated initially on resistive load, secondarily on resistive plus capacitive load (R-C), and thirdly on fresh biotissue with the appearance of electrical arcing. The existing necessity of the null blank periods is examined at the end of the paper.

11.
Materials (Basel) ; 17(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930290

RESUMO

GaN on Si plays an important role in the integration and promotion of GaN-based wide-gap materials with Si-based integrated circuits (IC) technology. A series of GaN film materials were grown on Si (111) substrate using a unique plasma assistant molecular beam epitaxy (PA-MBE) technology and investigated using multiple characterization techniques of Nomarski microscopy (NM), high-resolution X-ray diffraction (HR-XRD), variable angular spectroscopic ellipsometry (VASE), Raman scattering, photoluminescence (PL), and synchrotron radiation (SR) near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. NM confirmed crack-free wurtzite (w-) GaN thin films in a large range of 180-1500 nm. XRD identified the w- single crystalline structure for these GaN films with the orientation along the c-axis in the normal growth direction. An optimized 700 °C growth temperature, plus other corresponding parameters, was obtained for the PA-MBE growth of GaN on Si, exhibiting strong PL emission, narrow/strong Raman phonon modes, XRD w-GaN peaks, and high crystalline perfection. VASE studies identified this set of MBE-grown GaN/Si as having very low Urbach energy of about 18 meV. UV (325 nm)-excited Raman spectra of GaN/Si samples exhibited the GaN E2(low) and E2(high) phonon modes clearly without Raman features from the Si substrate, overcoming the difficulties from visible (532 nm) Raman measurements with strong Si Raman features overwhelming the GaN signals. The combined UV excitation Raman-PL spectra revealed multiple LO phonons spread over the GaN fundamental band edge emission PL band due to the outgoing resonance effect. Calculation of the UV Raman spectra determined the carrier concentrations with excellent values. Angular-dependent NEXAFS on Ga K-edge revealed the significant anisotropy of the conduction band of w-GaN and identified the NEXAFS resonances corresponding to different final states in the hexagonal GaN films on Si. Comparative GaN material properties are investigated in depth.

12.
Micromachines (Basel) ; 15(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38930688

RESUMO

This study focuses on the impact of negative fixed charge, achieved through fluorine (F) implantation, on breakdown voltage (BV) enhancement in vertical GaN Schottky diodes. Several device and implant-related parameters are examined using Synopsys Sentaurus TCAD simulations in order to determine the optimum fixed negative charge concentration required to achieve the highest BV. The simulated structure consisted of a Schottky diode with a box consisting of negative fixed charges to achieve the edge termination of the Schottky device. An empirical equation is proposed to determine the optimum fixed charge concentration for the highest BV based on depth. The simulation also considered implantation profiles derived from SIMS data from an actual device implanted with multi-energy and multi-dose F. It is demonstrated that the BV has a similar dependence on the key parameters like in the box profile. In summary, this work provides valuable insights into optimizing edge termination techniques using negative fixed charge for improved BV in vertical GaN power devices.

13.
J Phys Condens Matter ; 36(32)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738500

RESUMO

Analytical expressions for the low-field mobility of charge carrier gases with three-(3D), two-(2D) and one-(1D) dimensionalities are obtained. Multi-ion ionized impurities scattering, acoustic and polar optic phonons are considered as scattering mechanisms. The calculated values of mobility are compared to known experimental data for bulk (3D) n-and p-type wurtzite, n-type zinc-blende GaN crystals and low dimensional (2D and 1D) ternary GaAlN compounds. The resulting analytical expressions give the dependences of mobility on dimensionality of charge carrier gas, its density, effective mass, temperature and confining dimensions. A comparison of the experimental and calculated temperature dependences of the mobility in bulk GaN crystals (3D) and in AlGaN/GaN nanowires (1D) shows that the mobility atT>100Kis determined by the scattering of charge carriers by polar optical phonons with an energy of 91.2 meV. The temperature dependences of mobility in Al0.25Ga0.75N/GaN heterostructures (2D) atT>100Kare in consistent with experiment for electron scattering by polar optical phonons with a noticeably higher energy of 160 meV. We associate this fact with the heterointerface, which according to well-known theoretical studies can change both the strength of electron polar optical phonons scattering and the energy of the phonons.

14.
Sci Rep ; 14(1): 10861, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740895

RESUMO

Using our recently developed radical-enhanced metalorganic chemical vapor deposition (REMOCVD) technique, we have grown gallium nitride (GaN) on bulk GaN and GaN on Si templates. Three features make up this system: (1) applying very high-frequency power (60 MHz) to increase the plasma density; (2) introducing H2 and N2 gas in the plasma discharge region to produce active NHx radical species in addition to nitrogen radicals; and (3) supplying radicals under remote plasma arrangement with a Faraday cage to suppress charged ions and photons. Using this new REMOCVD system, it was found that high-quality crystals can be grown at lower temperatures than that of MOCVD but the disadvantage was that the growth rate was smaller as 0.2-0.8 µm/h than that by MOCVD. In the present work, we have used a pBN inner shield to prevent the deactivation of radicals to increase the growth rate. The growth conditions such as the plasma power, trimethylgallium (TMG) source flow rate, N2 + H2 gas mixture flow rate, and the ratio of N2/H2 were optimized and it was found that the growth rate could be increased up to 3.4 µm/h with remarkably high crystalline quality comparable to that of MOCVD. The XRD-FWHM of GaN grown on the GaN/Si template and the bulk GaN substrate were 977 arcsec and 72 arcsec respectively. This work may be very promising to achieve high-power GaN/GaN devices.

15.
Nanomaterials (Basel) ; 14(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38668226

RESUMO

The van der Waals epitaxy of wafer-scale GaN on 2D MoS2 and the integration of GaN/MoS2 heterostructures were investigated in this report. GaN films have been successfully grown on 2D MoS2 layers using three different Ga fluxes via a plasma-assisted molecular beam epitaxy (PA-MBE) system. The substrate for the growth was a few-layer 2D MoS2 deposited on sapphire using chemical vapor deposition (CVD). Three different Ga fluxes were provided by the gallium source of the K-cell at temperatures of 825, 875, and 925 °C, respectively. After the growth, RHEED, HR-XRD, and TEM were conducted to study the crystal structure of GaN films. The surface morphology was obtained using FE-SEM and AFM. Chemical composition was confirmed by XPS and EDS. Raman and PL spectra were carried out to investigate the optical properties of GaN films. According to the characterizations of GaN films, the van der Waals epitaxial growth mechanism of GaN films changed from 3D to 2D with the increase in Ga flux, provided by higher temperatures of the K-cell. GaN films grown at 750 °C for 3 h with a K-cell temperature of 925 °C demonstrated the greatest crystal quality, chemical composition, and optical properties. The heterostructure of 3D GaN on 2D MoS2 was integrated successfully using the low-temperature PA-MBE technique, which could be applied to novel electronics and optoelectronics.

16.
Microsc Microanal ; 30(2): 208-225, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38578956

RESUMO

In this article, porous GaN distributed Bragg reflectors (DBRs) were fabricated by epitaxy of undoped/doped multilayers followed by electrochemical etching. We present backscattered electron scanning electron microscopy (BSE-SEM) for sub-surface plan-view imaging, enabling efficient, non-destructive pore morphology characterization. In mesoporous GaN DBRs, BSE-SEM images the same branching pores and Voronoi-like domains as scanning transmission electron microscopy. In microporous GaN DBRs, micrographs were dominated by first porous layer features (45 nm to 108 nm sub-surface) with diffuse second layer (153 nm to 216 nm sub-surface) contributions. The optimum primary electron landing energy (LE) for image contrast and spatial resolution in a Zeiss GeminiSEM 300 was approximately 20 keV. BSE-SEM detects porosity ca. 295 nm sub-surface in an overgrown porous GaN DBR, yielding low contrast that is still first porous layer dominated. Imaging through a ca. 190 nm GaN cap improves contrast. We derived image contrast, spatial resolution, and information depth expectations from semi-empirical expressions. These theoretical studies echo our experiments as image contrast and spatial resolution can improve with higher LE, plateauing towards 30 keV. BSE-SEM is predicted to be dominated by the uppermost porous layer's uppermost region, congruent with experimental analysis. Most pertinently, information depth increases with LE, as observed.

17.
Small ; 20(27): e2310837, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38644345

RESUMO

Gallium Nitride (GaN), as the representative of wide bandgap semiconductors, has great prospects in accomplishing rapid charge delivery under high-temperature environments thanks to excellent structural stability and electron mobility. However, there is still a gap in wafer-scale GaN single-crystal integrated electrodes applied in the energy storage field. Herein, Si-doped GaN nanochannel with gallium oxynitride (GaON) layer on a centimeter scale (denoted by GaN NC) is reported. The Si atoms modulate electronic redistribution to improve conductivity and drive nanochannel formation. Apart from that, the distinctive nanochannel configuration with a GaON layer provides adequate active sites and extraordinary structural stability. The GaN-based supercapacitors are assembled and deliver outstanding charge storage capabilities at 140 °C. Surprisingly, 90% retention is maintained after 50 000 cycles. This study opens the pathway toward wafer-scale GaN single-crystal integrated electrodes with self-powered characteristics that are compatible with various (opto)-electronic devices.

18.
Micromachines (Basel) ; 15(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38542608

RESUMO

GaN heterostructure is a promising material for next-generation optoelectronic devices, and Indium gallium nitride (InGaN) has been widely used in ultraviolet and blue light emission. However, its applied potential for longer wavelengths still requires exploration. In this work, the ultra-thin InN/GaN superlattices (SL) were designed for long-wavelength light emission and investigated by first-principles simulations. The crystallographic and electronic properties of SL were comprehensively studied, especially the strain state of InN well layers in SL. Different strain states of InN layers were applied to modulate the bandgap of the SL, and the designed InN/GaN heterostructure could theoretically achieve photon emission of at least 650 nm. Additionally, we found the SL had different quantum confinement effects on electrons and holes, but an efficient capture of electron-hole pairs could be realized. Meanwhile, external forces were also considered. The orbital compositions of the valence band maximum (VBM) were changed with the increase in tensile stress. The transverse electric (TE) mode was found to play a leading role in light emission in normal working conditions, and it was advantageous for light extraction. The capacity of ultra-thin InN/GaN SL on long-wavelength light emission was theoretically investigated.

19.
ACS Appl Mater Interfaces ; 16(14): 17927-17936, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38546411

RESUMO

Gallium nitride quantum dots (GaN QDs) are a promising material for optoelectronics, but the synthesis of freestanding GaN QDs remains a challenge. To date, the size-dependent photonic properties of freestanding GaN QDs have not been reported. Here, we examine the photonic properties exhibited by thin films composed of GaN QDs synthesized by nonequilibrium plasma aerotaxy. Each film exhibited two photoluminescence peaks after exposure to ambient air. The first peak was in the ultraviolet spectral region, and the second peak was in the visible region. Both peak positions depended on the QD size. Our findings, supported by transient absorption spectroscopy experiments, suggest that conduction band to valence band recombination was the cause of the ultraviolet photoluminescence and that recombination between the conduction band and an acceptor level was the cause of visible photoluminescence. Furthermore, we show that coating the surface of fresh QDs with Al2O3 suppressed the visible region photoluminescence, corroborating the conclusion that the photoactive defect was caused by oxidation in air.

20.
Materials (Basel) ; 17(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38399050

RESUMO

Two-dimensional (2D) nanostructures of aluminum nitride (AlN) and gallium nitride (GaN), called nanosheets, have a graphene-like atomic arrangement and represent novel materials with important upcoming applications in the fields of flexible electronics, optoelectronics, and strain engineering, among others. Knowledge of their mechanical behavior is key to the correct design and enhanced functioning of advanced 2D devices and systems based on aluminum nitride and gallium nitride nanosheets. With this background, the surface Young's and shear moduli of AlN and GaN nanosheets over a wide range of aspect ratios were assessed using the nanoscale continuum model (NCM), also known as the molecular structural mechanics (MSM) approach. The NCM/MSM approach uses elastic beam elements to represent interatomic bonds and allows the elastic moduli of nanosheets to be evaluated in a simple way. The surface Young's and shear moduli calculated in the current study contribute to building a reference for the evaluation of the elastic moduli of AlN and GaN nanosheets using the theoretical method. The results show that an analytical methodology can be used to assess the Young's and shear moduli of aluminum nitride and gallium nitride nanosheets without the need for numerical simulation. An exploratory study was performed to adjust the input parameters of the numerical simulation, which led to good agreement with the results of elastic moduli available in the literature. The limitations of this method are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA