Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 9(4): 1927-1937, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513127

RESUMO

Gas concentration estimation has a tremendous research significance in various fields. However, existing methods for estimating the concentration of mixed gases generally depend on specific data-preprocessing methods and suffer from poor generalizability to diverse types of gases. This paper proposes a graph neural network-based gas graph convolutional transformer model (GGCT) incorporating the information propagation properties and the physical characteristics of temporal sensor data. GGCT accurately predicts mixed gas concentrations and enhances its generalizability by analyzing the concentration tokens. The experimental results highlight the GGCT's robust performance, achieving exceptional levels of accuracy across most tested gas components, underscoring its strong potential for practical applications in mixed gas analysis.


Assuntos
Gases , Redes Neurais de Computação , Gases/química , Gases/análise , Algoritmos
2.
Foods ; 12(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37959084

RESUMO

Food products often face the risk of spoilage during processing, storage, and transportation, necessitating the use of rapid and effective technologies for quality assessment. In recent years, gas sensors have gained prominence for their ability to swiftly and sensitively detect gases, making them valuable tools for food quality evaluation. The various gas sensor types, such as metal oxide (MOX), metal oxide semiconductor (MOS) gas sensors, surface acoustic wave (SAW) sensors, colorimetric sensors, and electrochemical sensors, each offer distinct advantages. They hold significant potential for practical applications in food quality monitoring. This review comprehensively covers the progress in gas sensor technology for food quality assessment, outlining their advantages, features, and principles. It also summarizes their applications in detecting volatile gases during the deterioration of aquatic products, meat products, fruit, and vegetables over the past decade. Furthermore, the integration of data analytics and artificial intelligence into gas sensor arrays is discussed, enhancing their adaptability and reliability in diverse food environments and improving food quality assessment efficiency. In conclusion, this paper addresses the multifaceted challenges faced by rapid gas sensor-based food quality detection technologies and suggests potential interdisciplinary solutions and directions.

3.
Small Methods ; 7(3): e2201352, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36693793

RESUMO

Toxic and flammable gases pose a major safety risk in industrial settings; thus, their portable sensing is desired, which requires sensors with fast response, low-power consumption, and accurate detection. Herein, a low-power, multi-transduction array is presented for the accurate sensing of flammable and toxic gases. Specifically, four different sensors are integrated on a micro-electro-mechanical-systems platform consisting of bridge-type microheaters. To produce distinct fingerprints for enhanced selectivity, the four sensors operate based on two different transduction mechanisms: chemiresistive and calorimetric sensing. Local, in situ synthesis routes are used to integrate nanostructured materials (ZnO, CuO, and Pt Black) for the sensors on the microheaters. The transient responses of the four sensors are fed to a convolutional neural network for real-time classification and regression of five different gases (H2 , NO2 , C2 H6 O, CO, and NH3 ). An overall classification accuracy of 97.95%, an average regression error of 14%, and a power consumption of 7 mW per device are obtained. The combination of a versatile low-power platform, local integration of nanomaterials, different transduction mechanisms, and a real-time machine learning strategy presented herein helps advance the constant need to simultaneously achieve fast, low-power, and selective gas sensing of flammable and toxic gases.

4.
ACS Sens ; 8(2): 822-828, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36701636

RESUMO

Real-time mixed gas detection has attracted significant interest for being a key factor for applications of the electronic nose (E-nose). However, mixed gas detection still faces the challenge of long detection time and a large amount of training data. Therefore, in this work, we propose a feasible way to realize low-cost fast detection of mixed gases, which uses only the part response data of the adsorption process as the training set. Our results indicated that the proposed method significantly reduced the number of training sets and the prediction time of mixed gas. Moreover, it can achieve new concentration prediction of mixed gas using only the response data of the first 10 s, and the training set proportion can reduce to 60%. In addition, the convolutional neural network model can realize both the smaller training set but also the higher accuracy of mixed gas. Our findings provide an effective way to improve the detection efficiency and accuracy of E-noses for the experimental measurement.


Assuntos
Algoritmos , Redes Neurais de Computação , Gases , Nariz Eletrônico , Adsorção
5.
Sensors (Basel) ; 22(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35746097

RESUMO

With the development of Internet of Things (IoT) and edge computing technology, gas sensor arrays based on Micro-Electro-Mechanical System (MEMS) fabrication technique have broad application prospects in intelligent integrated systems, portable devices, and other fields. In such complex scenarios, the normal operation of a gas sensing system depends heavily on the accuracy of the sensor output. Therefore, a lightweight Self-Detection and Self-Calibration strategy for MEMS gas sensor arrays is proposed in this paper to monitor the working status of sensor arrays and correct the abnormal data in real time. Evaluations on real-world datasets indicate that the strategy has high performance of fault detection, isolation, and data recovery. Furthermore, our method has low computation complexity and low storage resource occupation. The board-level verification on CC1350 shows that the average calculation time and running power consumption of the algorithm are 0.28 ms and 9.884 mW. The proposed strategy can be deployed on most resource-limited IoT devices to improve the reliability of gas sensing systems.

6.
J Phys Condens Matter ; 33(46)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34404041

RESUMO

Metal-organic frameworks (MOFs) are nanoporous materials with good prospects as recognition elements for gas sensors owing to their adsorptive sensitivity and selectivity. A gravimetric, MOF-based sensor functions by measuring the mass of gas adsorbed in a MOF. Changes in the gas composition are expected to produce detectable changes in the mass of gas adsorbed in the MOF. In practical settings, multiple components of the gas adsorb into the MOF and contribute to the sensor response. As a result, there are typically many distinct gas compositions that produce the same single-sensor response. The response vector of a gas sensor array places multiple constraints on the gas composition. Still, if the number of degrees of freedom in the gas composition is greater than the number of MOFs in the sensor array, the map from gas compositions to response vectors will be non-injective (many-to-one). Here, we outline a mathematical method to determine undetectable changes in gas composition to which non-injective gas sensor arrays are unresponsive. This is important for understanding their limitations and vulnerabilities. We focus on gravimetric, MOF-based gas sensor arrays. Our method relies on a mixed-gas adsorption model in the MOFs comprising the sensor array, which gives the mass of gas adsorbed in each MOF as a function of the gas composition. The singular value decomposition of the Jacobian matrix of the adsorption model uncovers (i) the unresponsive directions and (ii) the responsive directions, ranked by sensitivity, in gas composition space. We illustrate the identification of unresponsive subspaces and ranked responsive directions for gas sensor arrays based on Co-MOF-74 and HKUST-1 aimed at quantitative sensing of CH4/N2/CO2/C2H6mixtures relevant to natural gas sensing.

7.
ACS Appl Mater Interfaces ; 12(5): 6546-6564, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31918544

RESUMO

Metal-organic frameworks (MOFs), tunable, nanoporous materials, are alluring recognition elements for gas sensing. Mimicking human olfaction, an array of cross-sensitive, MOF-based sensors could enable analyte detection in complex, variable gas mixtures containing confounding gas species. Herein, we address the question: given a set of MOF candidates and their adsorption properties, how do we select the optimal subset to compose a sensor array that accurately and robustly predicts the gas composition via monitoring the adsorbed mass in each MOF? We first mathematically formulate the MOF-based sensor array problem under dilute conditions. Instructively, the sensor array can be viewed as a linear map from gas composition space to sensor array response space defined by the matrix H of Henry coefficients of the gases in the MOFs. Characterizing this mapping, the singular value decomposition of H is a useful tool for evaluating MOF subsets for sensor arrays, as it determines the sensitivity of the predicted gas composition to measurement error, quantifies the magnitude of the response to changes in composition, and recovers which direction in gas composition space elicits the largest/smallest response. To illustrate, on the basis of experimental adsorption data, we curate MOFs for a sensor array with the objective of determining the concentration of CO2 and SO2 in the gas phase.

8.
Sensors (Basel) ; 17(4)2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28368294

RESUMO

Chemoresistors working at room temperature are attractive for low-consumption integrated sensors. Previous studies show that this feature can be obtained with photoconductive porphyrins-coated ZnO nanostructures. Furthermore, variations of the porphyrin molecular structure alter both the chemical sensitivity and the photoconductivity, and can be used to define the sensor characteristics. Based on these assumptions, we investigated the properties of an array of four sensors made of a layer of ZnO nanoparticles coated with porphyrins with the same molecular framework but different metal atoms. The array was tested with five volatile organic compounds (VOCs), each measured at different concentrations. Results confirm that the features of individual porphyrins influence the sensor behavior, and the differences among sensors are enough to enable the discrimination of volatile compounds disregarding their concentration.

9.
Sensors (Basel) ; 16(12)2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27929412

RESUMO

The k-nearest neighbour (kNN) rule, which naturally handles the possible non-linearity of data, is introduced to solve the fault detection problem of gas sensor arrays. In traditional fault detection methods based on the kNN rule, the detection process of each new test sample involves all samples in the entire training sample set. Therefore, these methods can be computation intensive in monitoring processes with a large volume of variables and training samples and may be impossible for real-time monitoring. To address this problem, a novel clustering-kNN rule is presented. The landmark-based spectral clustering (LSC) algorithm, which has low computational complexity, is employed to divide the entire training sample set into several clusters. Further, the kNN rule is only conducted in the cluster that is nearest to the test sample; thus, the efficiency of the fault detection methods can be enhanced by reducing the number of training samples involved in the detection process of each test sample. The performance of the proposed clustering-kNN rule is fully verified in numerical simulations with both linear and non-linear models and a real gas sensor array experimental system with different kinds of faults. The results of simulations and experiments demonstrate that the clustering-kNN rule can greatly enhance both the accuracy and efficiency of fault detection methods and provide an excellent solution to reliable and real-time monitoring of gas sensor arrays.

10.
Proc Natl Acad Sci U S A ; 110(35): E3265-70, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23942132

RESUMO

Chemically functionalized carbon nanotubes (CNTs) are promising materials for sensing of gases and volatile organic compounds. However, the poor solubility of carbon nanotubes hinders their chemical functionalization and the subsequent integration of these materials into devices. This manuscript describes a solvent-free procedure for rapid prototyping of selective chemiresistors from CNTs and graphite on the surface of paper. This procedure enables fabrication of functional gas sensors from commercially available starting materials in less than 15 min. The first step of this procedure involves the generation of solid composites of CNTs or graphite with small molecule selectors--designed to interact with specific classes of gaseous analytes--by solvent-free mechanical mixing in a ball mill and subsequent compression. The second step involves deposition of chemiresistive sensors by mechanical abrasion of these solid composites onto the surface of paper. Parallel fabrication of multiple chemiresistors from diverse composites rapidly generates cross-reactive arrays capable of sensing and differentiating gases and volatile organic compounds at part-per-million and part-per-thousand concentrations.


Assuntos
Gases/química , Nanotubos de Carbono/química , Papel , Microscopia Eletrônica de Varredura , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA