Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biofouling ; 35(8): 922-937, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31646895

RESUMO

The ability to form biofilms and the potential immunomodulatory properties of the human gastric isolate Lactobacillus rhamnosus UCO-25A were characterized in vitro. It was demonstrated that L. rhamnosus UCO-25A is able to form biofilms on abiotic and cell surfaces, and to modulate the inflammatory response triggered by Helicobacter pylori infection in gastric epithelial cells and THP-1 macrophages. L. rhamnosus UCO-25A exhibited a substantial anti-inflammatory effect in both cell lines and improved IL-10 levels produced by challenged macrophages. Additionally, UCO-25A protected AGS cells against H. pylori infection with a higher pathogen inhibition when a biofilm was formed. Given the importance of inflammation in H. pylori-mediated diseases, the differential modulation of the inflammatory response in the gastric mucosa by an autochthonous strain is an attractive alternative for improving H. pylori eradication and reducing the severity of the diseases that arise from the resulting chronic inflammation.


Assuntos
Biofilmes/crescimento & desenvolvimento , Células Epiteliais/microbiologia , Helicobacter pylori/crescimento & desenvolvimento , Fatores Imunológicos/farmacologia , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Macrófagos/microbiologia , Probióticos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Citocinas/biossíntese , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Mucosa Gástrica/imunologia , Mucosa Gástrica/microbiologia , Infecções por Helicobacter/prevenção & controle , Humanos , Lacticaseibacillus rhamnosus/isolamento & purificação , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia
2.
Benef Microbes ; 9(5): 829-841, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-29798705

RESUMO

Helicobacter pylori infection is associated with important gastric pathologies. An aggressive proinflammatory immune response is generated in the gastric tissue infected with H. pylori, resulting in gastritis and a series of morphological changes that increase the susceptibility to cancer development. Probiotics could present an alternative solution to prevent or decrease H. pylori infection. Among them, the use of immunomodulatory lactic acid bacteria represents a promising option to reduce the severity of chronic inflammatory-mediated tissue damage and to improve protective immunity against H. pylori. We previously isolated Lactobacillus fermentum UCO-979C from human gastric tissue and demonstrated its capacity to reduce adhesion of H. pylori to human gastric epithelial cells (AGS cells). In this work, the ability of L. fermentum UCO-979C to modulate immune response in AGS cells and PMA phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 (human monocytic leukaemia) macrophages in response to H. pylori infection was evaluated. We demonstrated that the UCO-979C strain is able to differentially modulate the cytokine response of gastric epithelial cells and macrophages after H. pylori infection. Of note, L. fermentum UCO-979C was able to significantly reduce the production of inflammatory cytokines and chemokines in AGS and THP-1 cells as well as increase the levels of immunoregulatory cytokines, indicating a remarkable anti-inflammatory effect. These findings strongly support the probiotic potential of L. fermentum UCO-979C and provide evidence of its beneficial effects against the inflammatory damage induced by H. pylori infection. Although our findings should be proven in appropriate experiments in vivo, in both H. pylori infection animal models and human trials, the results of the present work provide a scientific rationale for the use of L. fermentum UCO-979C to prevent or reduce H. pylori-induced gastric inflammation in humans.


Assuntos
Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/imunologia , Helicobacter pylori/fisiologia , Imunidade Inata/efeitos dos fármacos , Limosilactobacillus fermentum/fisiologia , Probióticos/farmacologia , Animais , Citocinas/genética , Citocinas/imunologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/imunologia , Humanos , Camundongos
3.
Int J Biol Macromol ; 62: 217-24, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23999014

RESUMO

EPS1190 was isolated from skim milk fermented with Stretococcus thermophilus CRL1190. The polysaccharide consisted of 33% glucose and 66% galactose with 1,4- and 1,4,6-galactose residues as main building blocks beside a high amount of 1,4-linked glucose. The polymer was characterized additionally concerning viscosity and zeta potential. EPS1190 stimulated cellular vitality and proliferation of human stomach AGS cells and human buccal KB cells significantly. EPS1190 stimulated phagocytosis rate of murine macrophages RAW264.7 significantly. NO-release or anti-inflammatory effects by inhibition of LPS-induced NO release were not observed. Confocal laser scanning microscopy revealed that EPS1190 is partially internalized into AGS cells via endosomes. The bioadhesive absorption of FITC-labeled EPS1190 into the mucus layer on the apical side of the epithelium using histological tissue sections from human stomach was observed. Specific interaction of EPS1190 with mucin can be excluded as shown by microviscosimetry studies. EPS1190 increased the adhesion of H. pylori to AGS cells, which resulted in increased secretion of proinflammatory cytokines TNFa, IL-6 and IL-8. Summarizing, EPS1190 seems to stimulate epithelial cell regeneration and immunological innate defense mechanisms, which again can rationalized the use of this polysaccharide as cytoprotective compound in probiotioc preparations.


Assuntos
Células Epiteliais/efeitos dos fármacos , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Estômago/citologia , Streptococcus thermophilus/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Células Epiteliais/microbiologia , Helicobacter/fisiologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Polissacarídeos/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA