Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
1.
bioRxiv ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39005388

RESUMO

Distantly related organisms may evolve similar traits when exposed to similar environments or engaging in certain lifestyles. Several members of the Lactobacillaceae (LAB) family are frequently isolated from the floral niche, mostly from bees and flowers. In some floral LAB species (henceforth referred to as bee-associated), distinctive genomic (e.g., genome reduction) and phenotypic (e.g., preference for fructose over glucose or fructophily) features were recently documented. These features are found across distantly related species, raising the hypothesis that specific genomic and phenotypic traits evolved convergently during adaptation to the floral environment. To test this hypothesis, we examined representative genomes of 369 species of bee-associated and non-bee-associated LAB. Phylogenomic analysis unveiled seven independent ecological shifts towards the floral niche in LAB. In these bee-associated LAB, we observed pervasive, significant reductions of genome size, gene repertoire, and GC content. Using machine leaning, we could distinguish bee-associated from non-bee-associated species with 94% accuracy, based on the absence of genes involved in metabolism, osmotic stress, or DNA repair. Moreover, we found that the most important genes for the machine learning classifier were seemingly lost, independently, in multiple bee-associated lineages. One of these genes, adhE, encodes a bifunctional aldehyde-alcohol dehydrogenase associated with the evolution of fructophily, a rare phenotypic trait that was recently identified in many floral LAB species. These results suggest that the independent evolution of distinctive phenotypes in bee-associated LAB has been largely driven by independent loss of the same set of genes. Importance: Several lactic acid bacteria (LAB) species are intimately associated with bees and exhibit unique biochemical properties with potential for food applications and honeybee health. Using a machine-learning based approach, our study shows that adaptation of LAB to the bee environment was accompanied by a distinctive genomic trajectory deeply shaped by gene loss. Several of these gene losses occurred independently in distantly related species and are linked to some of their unique biotechnologically relevant traits, such as the preference of fructose over glucose (fructophily). This study underscores the potential of machine learning in identifying fingerprints of adaptation and detecting instances of convergent evolution. Furthermore, it sheds light onto the genomic and phenotypic particularities of bee-associated bacteria, thereby deepening the understanding of their positive impact on honeybee health.

2.
Sci Rep ; 14(1): 16548, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020011

RESUMO

When sex chromosomes evolve recombination suppression, the sex-limited chromosome (Y/W) commonly degenerate by losing functional genes. The rate of Y/W degeneration is believed to slow down over time as the most essential genes are maintained by purifying selection, but supporting data are scarce especially for ZW systems. Here, we study W degeneration in Sylvioidea songbirds where multiple autosomal translocations to the sex chromosomes, and multiple recombination suppression events causing separate evolutionary strata, have occurred during the last ~ 28.1-4.5 million years (Myr). We show that the translocated regions have maintained 68.3-97.7% of their original gene content, compared to only 4.2% on the much older ancestral W chromosome. By mapping W gene losses onto a dated phylogeny, we estimate an average gene loss rate of 1.0% per Myr, with only moderate variation between four independent lineages. Consistent with previous studies, evolutionarily constrained and haploinsufficient genes were preferentially maintained on W. However, the gene loss rate did not show any consistent association with strata age or with the number of W genes at strata formation. Our study provides a unique account on the pace of W gene loss and reinforces the significance of purifying selection in maintaining essential genes on sex chromosomes.


Assuntos
Evolução Molecular , Cromossomos Sexuais , Animais , Cromossomos Sexuais/genética , Masculino , Feminino , Filogenia , Aves Canoras/genética , Translocação Genética
3.
Vision Res ; 222: 108447, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906036

RESUMO

Among tetrapod (terrestrial) vertebrates, amphibians remain more closely tied to an amphibious lifestyle than amniotes, and their visual opsin genes may be adapted to this lifestyle. Previous studies have discussed physiological, morphological, and molecular changes in the evolution of amphibian vision. We predicted the locations of the visual opsin genes, their neighboring genes, and the tuning sites of the visual opsins, in 39 amphibian genomes. We found that all of the examined genomes lacked the Rh2 gene. The caecilian genomes have further lost the SWS1 and SWS2 genes; only the Rh1 and LWS genes were retained. The loss of the SWS1 and SWS2 genes in caecilians may be correlated with their cryptic lifestyles. The opsin gene syntenies were predicted to be highly similar to those of other bony vertebrates. Moreover, dual syntenies were identified in allotetraploid Xenopus laevis and X. borealis. Tuning site analysis showed that only some Caudata species might have UV vision. In addition, the S164A that occurred several times in LWS evolution might either functionally compensate for the Rh2 gene loss or fine-tuning visual adaptation. Our study provides the first genomic evidence for a caecilian LWS gene and a genomic viewpoint of visual opsin genes by reviewing the gains and losses of visual opsin genes, the rearrangement of syntenies, and the alteration of spectral tuning in the course of amphibians' evolution.

4.
Gigascience ; 132024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38837946

RESUMO

BACKGROUND: Theobroma grandiflorum (Malvaceae), known as cupuassu, is a tree indigenous to the Amazon basin, valued for its large fruits and seed pulp, contributing notably to the Amazonian bioeconomy. The seed pulp is utilized in desserts and beverages, and its seed butter is used in cosmetics. Here, we present the sequenced telomere-to-telomere genome of cupuassu, disclosing its genomic structure, evolutionary features, and phylogenetic relationships within the Malvaceae family. FINDINGS: The cupuassu genome spans 423 Mb, encodes 31,381 genes distributed in 10 chromosomes, and exhibits approximately 65% gene synteny with the Theobroma cacao genome, reflecting a conserved evolutionary history, albeit punctuated with unique genomic variations. The main changes are pronounced by bursts of long-terminal repeat retrotransposons at postspecies divergence, retrocopied and singleton genes, and gene families displaying distinctive patterns of expansion and contraction. Furthermore, positively selected genes are evident, particularly among retained and dispersed tandem and proximal duplicated genes associated with general fruit and seed traits and defense mechanisms, supporting the hypothesis of potential episodes of subfunctionalization and neofunctionalization following duplication, as well as impact from distinct domestication process. These genomic variations may underpin the differences observed in fruit and seed morphology, ripening, and disease resistance between cupuassu and the other Malvaceae species. CONCLUSIONS: The cupuassu genome offers a foundational resource for both breeding improvement and conservation biology, yielding insights into the evolution and diversity within the genus Theobroma.


Assuntos
Evolução Molecular , Genoma de Planta , Filogenia , Cromossomos de Plantas , Genômica/métodos , Malvaceae/genética
5.
Physiol Rep ; 12(11): e16089, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38828713

RESUMO

Solute carrier family 26 (Slc26) is a family of anion exchangers with 11 members in mammals (named Slc26a1-a11). Here, we identified a novel member of the slc26 family, slc26a12, located in tandem with slc26a2 in the genomes of several vertebrate lineages. BLAST and synteny analyses of various jawed vertebrate genome databases revealed that slc26a12 is present in coelacanths, amphibians, reptiles, and birds but not in cartilaginous fishes, lungfish, mammals, or ray-finned fishes. In some avian and reptilian lineages such as owls, penguins, egrets, and ducks, and most turtles examined, slc26a12 was lost or pseudogenized. Phylogenetic analysis showed that Slc26a12 formed an independent branch with the other Slc26 members and Slc26a12, Slc26a1 and Slc26a2 formed a single branch, suggesting that these three members formed a subfamily in Slc26. In jawless fish, hagfish have two genes homologous to slc26a2 and slc26a12, whereas lamprey has a single gene homologous to slc26a2. African clawed frogs express slc26a12 in larval gills, skin, and fins. These results show that slc26a12 was present at least before the separation of lobe-finned fish and tetrapods; the name slc26a12 is appropriate because the gene duplication occurred in the distant past.


Assuntos
Evolução Molecular , Filogenia , Transportadores de Sulfato , Animais , Anfíbios/genética , Anfíbios/metabolismo , Aves/genética , Répteis/genética , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
6.
Genome Biol Evol ; 16(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38864488

RESUMO

The redbanded stink bug, Piezodorus guildinii (Westwood) (Hemiptera: Pentatomidae), is a significant soybean pest in the Americas, which inflicts more physical damage on soybean than other native stink bugs. Studies suggest that its heightened impact is attributed to the aggressive digestive properties of its saliva. Despite its agricultural importance, the factors driving its greater ability to degrade plant tissues have remained unexplored in a genomic evolutionary context. In this study, we hypothesized that lineage-specific gene family expansions have increased the copy number of digestive genes expressed in the salivary glands. To investigate this, we annotated a previously published genome assembly of the redbanded stink bug, performed a comparative genomic analysis on 11 hemipteran species, and reconstructed patterns of gene duplication, gain, and loss in the redbanded stink bug. We also performed RNA-seq on the redbanded stink bug's salivary tissues, along with the rest of the body without salivary glands. We identified hundreds of differentially expressed salivary genes, including a subset lost in other stink bug lineages, but retained and expressed in the redbanded stink bug's salivary glands. These genes were significantly enriched with protein families involved in proteolysis, potentially explaining the redbanded stink bug's heightened damage to soybeans. Contrary to our hypothesis, we found no support for an enrichment of duplicated digestive genes that are also differentially expressed in the salivary glands of the redbanded stink bug. Nonetheless, these results provide insight into the evolution of this important crop pest, establishing a link between its genomic history and its agriculturally important physiology.


Assuntos
Glycine max , Heterópteros , Transcriptoma , Animais , Glycine max/genética , Heterópteros/genética , Glândulas Salivares/metabolismo , Genômica , Genoma de Inseto , Saliva
7.
Proc Biol Sci ; 291(2024): 20232847, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864338

RESUMO

Gene loss is an important mechanism for evolution in low-light or cave environments where visual adaptations often involve a reduction or loss of eyesight. The plaat gene family encodes phospholipases essential for the degradation of organelles in the lens of the eye. These phospholipases translocate to damaged organelle membranes, inducing them to rupture. This rupture is required for lens transparency and is essential for developing a functioning eye. Plaat3 is thought to be responsible for this role in mammals, while plaat1 is thought to be responsible in other vertebrates. We used a macroevolutionary approach and comparative genomics to examine the origin, loss, synteny and selection of plaat1 across bony fishes and tetrapods. We showed that plaat1 (probably ancestral to all bony fish + tetrapods) has been lost in squamates and is significantly degraded in lineages of low-visual-acuity and blind mammals and fishes. Our findings suggest that plaat1 is important for visual acuity across bony vertebrates, and that its loss through relaxed selection and pseudogenization may have played a role in the repeated evolution of visual systems in low-light environments. Our study sheds light on the importance of gene-loss in trait evolution and provides insights into the mechanisms underlying visual acuity in low-light environments.


Assuntos
Vertebrados , Animais , Vertebrados/genética , Vertebrados/fisiologia , Seleção Genética , Deleção de Genes , Peixes/genética , Peixes/fisiologia , Filogenia , Evolução Biológica , Luz , Evolução Molecular
8.
Mol Phylogenet Evol ; 198: 108134, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38901473

RESUMO

Glycoside hydrolases are enzymes that break down complex carbohydrates into simple sugars by catalyzing the hydrolysis of glycosidic bonds. There have been multiple instances of adaptive horizontal gene transfer of genes belonging to various glycoside hydrolase families from microbes to insects, as glycoside hydrolases can metabolize constituents of the carbohydrate-rich plant cell wall. In this study, we characterize the horizontal transfer of a gene from the glycoside hydrolase family 26 (GH26) from bacteria to insects of the order Hemiptera. Our phylogenies trace the horizontal gene transfer to the common ancestor of the superfamilies Pentatomoidea and Lygaeoidea, which include stink bugs and seed bugs. After horizontal transfer, the gene was assimilated into the insect genome as indicated by the gain of an intron, and a eukaryotic signal peptide. Subsequently, the gene has undergone independent losses and expansions in copy number in multiple lineages, suggesting an adaptive role of GH26s in some insects. Finally, we measured tissue-level gene expression of multiple stink bugs and the large milkweed bug using publicly available RNA-seq datasets. We found that the GH26 genes are highly expressed in tissues associated with plant digestion, especially in the principal salivary glands of the stink bugs. Our results are consistent with the hypothesis that this horizontally transferred GH26 was co-opted by the insect to aid in plant tissue digestion and that this HGT event was likely adaptive.


Assuntos
Transferência Genética Horizontal , Glicosídeo Hidrolases , Hemípteros , Filogenia , Animais , Hemípteros/genética , Hemípteros/enzimologia , Hemípteros/classificação , Glicosídeo Hidrolases/genética , Plantas/genética , Plantas/classificação
9.
Mol Biol Evol ; 41(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38781495

RESUMO

Transglutaminases (TGMs) cross-link proteins by introducing covalent bonds between glutamine and lysine residues. These cross-links are essential for epithelial cornification which enables tetrapods to live on land. Here, we investigated which evolutionary adaptations of vertebrates were associated with specific changes in the family of TGM genes. We determined the catalog of TGMs in the main clades of vertebrates, performed a comprehensive phylogenetic analysis of TGMs, and localized the distribution of selected TGMs in tissues. Our data suggest that TGM1 is the phylogenetically oldest epithelial TGM, with orthologs being expressed in the cornified teeth of the lamprey, a basal vertebrate. Gene duplications led to the origin of TGM10 in stem vertebrates, the origin of TGM2 in jawed vertebrates, and an increasing number of epithelium-associated TGM genes in the lineage leading to terrestrial vertebrates. TGM9 is expressed in the epithelial egg tooth, and its evolutionary origin in stem amniotes coincided with the evolution of embryonic development in eggs that are surrounded by a protective shell. Conversely, viviparous mammals have lost both the epithelial egg tooth and TGM9. TGM3 and TGM6 evolved as regulators of cornification in hair follicles and underwent pseudogenization upon the evolutionary loss of hair in cetaceans. Taken together, this study reveals the gain and loss of vertebrate TGM genes in association with the evolution of cornified skin appendages and suggests an important role of TGM9 in the evolution of amniotes.


Assuntos
Evolução Molecular , Filogenia , Transglutaminases , Vertebrados , Animais , Transglutaminases/genética , Transglutaminases/metabolismo , Vertebrados/genética , Evolução Biológica , Pele/metabolismo
10.
Cell Mol Life Sci ; 81(1): 230, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780625

RESUMO

Insect host defense comprises two complementary dimensions, microbial killing-mediated resistance and microbial toxin neutralization-mediated resilience, both jointly providing protection against pathogen infections. Insect defensins are a class of effectors of innate immunity primarily responsible for resistance to Gram-positive bacteria. Here, we report a newly originated gene from an ancestral defensin via genetic deletion following gene duplication in Drosophila virilis, which confers an enhanced resilience to Gram-positive bacterial infection. This gene encodes an 18-mer arginine-rich peptide (termed DvirARP) with differences from its parent gene in its pattern of expression, structure and function. DvirARP specifically expresses in D. virilis female adults with a constitutive manner. It adopts a novel fold with a 310 helix and a two CXC motif-containing loop stabilized by two disulfide bridges. DvirARP exhibits no activity on the majority of microorganisms tested and only a weak activity against two Gram-positive bacteria. DvirARP knockout flies are viable and have no obvious defect in reproductivity but they are more susceptible to the DvirARP-resistant Staphylococcus aureus infection than the wild type files, which can be attributable to its ability in neutralization of the S. aureus secreted toxins. Phylogenetic distribution analysis reveals that DvirARP is restrictedly present in the Drosophila subgenus, but independent deletion variations also occur in defensins from the Sophophora subgenus, in support of the evolvability of this class of immune effectors. Our work illustrates for the first time how a duplicate resistance-mediated gene evolves an ability to increase the resilience of a subset of Drosophila species against bacterial infection.


Assuntos
Defensinas , Proteínas de Drosophila , Drosophila , Drosophila/classificação , Drosophila/genética , Drosophila/imunologia , Drosophila/microbiologia , Defensinas/química , Defensinas/genética , Defensinas/imunologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/imunologia , Animais , Deleção de Genes , Duplicação Gênica , Feminino , Dobramento de Proteína , Motivos de Aminoácidos , Toxinas Bacterianas/metabolismo , Staphylococcus aureus/fisiologia
11.
BMC Biol ; 22(1): 128, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816863

RESUMO

BACKGROUND: In yeasts belonging to the subphylum Saccharomycotina, genes encoding components of the main metabolic pathways, like alcoholic fermentation, are usually conserved. However, in fructophilic species belonging to the floral Wickerhamiella and Starmerella genera (W/S clade), alcoholic fermentation was uniquely shaped by events of gene loss and horizontal gene transfer (HGT). RESULTS: Because HGT and gene losses were first identified when only eight W/S-clade genomes were available, we collected publicly available genome data and sequenced the genomes of 36 additional species. A total of 63 genomes, representing most of the species described in the clade, were included in the analyses. Firstly, we inferred the phylogenomic tree of the clade and inspected the genomes for the presence of HGT-derived genes involved in fructophily and alcoholic fermentation. We predicted nine independent HGT events and several instances of secondary loss pertaining to both pathways. To investigate the possible links between gene loss and acquisition events and evolution of sugar metabolism, we conducted phenotypic characterization of 42 W/S-clade species including estimates of sugar consumption rates and fermentation byproduct formation. In some instances, the reconciliation of genotypes and phenotypes yielded unexpected results, such as the discovery of fructophily in the absence of the cornerstone gene (FFZ1) and robust alcoholic fermentation in the absence of the respective canonical pathway. CONCLUSIONS: These observations suggest that reinstatement of alcoholic fermentation in the W/S clade triggered a surge of innovation that goes beyond the utilization of xenologous enzymes, with fructose metabolism playing a key role.


Assuntos
Transferência Genética Horizontal , Filogenia , Metabolismo dos Carboidratos/genética , Açúcares/metabolismo , Evolução Molecular , Genoma Fúngico
12.
Mol Ecol Resour ; 24(5): e13966, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38695851

RESUMO

Parasitic plants have a heterotrophic lifestyle, in which they withdraw all or part of their nutrients from their host through the haustorium. Despite the release of many draft genomes of parasitic plants, the genome evolution related to the parasitism feature of facultative parasites remains largely unknown. In this study, we present a high-quality chromosomal-level genome assembly for the facultative parasite Pedicularis kansuensis (Orobanchaceae), which invades both legume and grass host species in degraded grasslands on the Qinghai-Tibet Plateau. This species has the largest genome size compared with other parasitic species, and expansions of long terminal repeat retrotransposons accounting for 62.37% of the assembly greatly contributed to the genome size expansion of this species. A total of 42,782 genes were annotated, and the patterns of gene loss in P. kansuensis differed from other parasitic species. We also found many mobile mRNAs between P. kansuensis and one of its host species, but these mobile mRNAs could not compensate for the functional losses of missing genes in P. kansuensis. In addition, we identified nine horizontal gene transfer (HGT) events from rosids and monocots, as well as one single-gene duplication events from HGT genes, which differ distinctly from that of other parasitic species. Furthermore, we found evidence for HGT through transferring genomic fragments from phylogenetically remote host species. Taken together, these findings provide genomic insights into the evolution of facultative parasites and broaden our understanding of the diversified genome evolution in parasitic plants and the molecular mechanisms of plant parasitism.


Assuntos
Evolução Molecular , Transferência Genética Horizontal , Genoma de Planta , Pedicularis , Genoma de Planta/genética , Pedicularis/genética , Tamanho do Genoma , Filogenia , Cromossomos de Plantas/genética , Retroelementos/genética , Tibet
13.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766115

RESUMO

Dendroctonus frontalis, also known as southern pine beetle (SPB), represents the most damaging forest pest in the southeastern United States. Strategies to predict, monitor and suppress SPB outbreaks have had limited success. Genomic data are critical to inform on pest biology and to identify molecular targets to develop improved management approaches. Here, we produced a chromosome-level genome assembly of SPB using long-read sequencing data. Synteny analyses confirmed the conservation of the core coleopteran Stevens elements and validated the bona fide SPB X chromosome. Transcriptomic data were used to obtain 39,588 transcripts corresponding to 13,354 putative protein-coding loci. Comparative analyses of gene content across 14 beetle and 3 other insects revealed several losses of conserved genes in the Dendroctonus clade and gene gains in SPB and Dendroctonus that were enriched for loci encoding membrane proteins and extracellular matrix proteins. While lineage-specific gene losses contributed to the gene content reduction observed in Dendroctonus, we also showed that widespread misannotation of transposable elements represents a major cause of the apparent gene expansion in several non-Dendroctonus species. Our findings uncovered distinctive features of the SPB gene complement and disentangled the role of biological and annotation-related factors contributing to gene content variation across beetles.

14.
BMC Plant Biol ; 24(1): 406, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38750463

RESUMO

BACKGROUND: The lifestyle transition from autotrophy to heterotrophy often leads to extensive degradation of plastomes in parasitic plants, while the evolutionary trajectories of plastome degradation associated with parasitism in hemiparasitic plants remain poorly understood. In this study, phylogeny-oriented comparative analyses were conducted to investigate whether obligate Loranthaceae stem-parasites experienced higher degrees of plastome degradation than closely related facultative root-parasites and to explore the potential evolutionary events that triggered the 'domino effect' in plastome degradation of hemiparasitic plants. RESULTS: Through phylogeny-oriented comparative analyses, the results indicate that Loranthaceae hemiparasites have undergone varying degrees of plastome degradation as they evolved towards a heterotrophic lifestyle. Compared to closely related facultative root-parasites, all obligate stem-parasites exhibited an elevated degree plastome degradation, characterized by increased downsizing, gene loss, and pseudogenization, thereby providing empirical evidence supporting the theoretical expectation that evolution from facultative parasitism to obligate parasitism may result in a higher degree of plastome degradation in hemiparasites. Along with infra-familial divergence in Loranthaceae, several lineage-specific gene loss/pseudogenization events occurred at deep nodes, whereas further independent gene loss/pseudogenization events were observed in shallow branches. CONCLUSIONS: The findings suggest that in addition to the increasing levels of nutritional reliance on host plants, cladogenesis can be considered as another pivotal evolutionary event triggering the 'domino effect' in plastome degradation of hemiparasitic plants. These findings provide new insights into the evolutionary trajectory of plastome degradation in hemiparasitic plants.


Assuntos
Loranthaceae , Filogenia , Loranthaceae/genética , Loranthaceae/fisiologia , Evolução Biológica , Plastídeos/genética , Evolução Molecular
15.
Sci Total Environ ; 927: 172251, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604355

RESUMO

Animal hosts harbor diverse assemblages of microbial symbionts that play crucial roles in the host's lifestyle. The link between microbial symbiosis and host development remains poorly understood. In particular, little is known about the adaptive evolution of gut bacteria in host-microbe symbioses. Recently, symbiotic relationships have been categorized as open, closed, or mixed, reflecting their modes of inter-host transmission and resulting in distinct genomic features. Members of the genus Bacteroides are the most abundant human gut microbiota and possess both probiotic and pathogenic potential, providing an excellent model for studying pan-genome evolution in symbiotic systems. Here, we determined the complete genome of an novel clinical strain PL2022, which was isolated from a blood sample and performed pan-genome analyses on a representative set of Bacteroides cellulosilyticus strains to quantify the influence of the symbiotic relationship on the evolutionary dynamics. B. cellulosilyticus exhibited correlated genomic features with both open and closed symbioses, suggesting a mixed symbiosis. An open pan-genome is characterized by abundant accessory gene families, potential horizontal gene transfer (HGT), and diverse mobile genetic elements (MGEs), indicating an innovative gene pool, mainly associated with genomic islands and plasmids. However, massive parallel gene loss, weak purifying selection, and accumulation of positively selected mutations were the main drivers of genome reduction in B. cellulosilyticus. Metagenomic read recruitment analyses showed that B. cellulosilyticus members are globally distributed and active in human gut habitats, in line with predominant vertical transmission in the human gut. However, existence and/or high abundance were also detected in non-intestinal tissues, other animal hosts, and non-host environments, indicating occasional horizontal transmission to new niches, thereby creating arenas for the acquisition of novel genes. This case study of adaptive evolution under a mixed host-microbe symbiosis advances our understanding of symbiotic pan-genome evolution. Our results highlight the complexity of genetic evolution in this unusual intestinal symbiont.


Assuntos
Bacteroides , Microbioma Gastrointestinal , Genoma Bacteriano , Simbiose , Microbioma Gastrointestinal/genética , Bacteroides/genética , Bacteroides/fisiologia , Humanos , Evolução Molecular , Transferência Genética Horizontal
16.
Mol Phylogenet Evol ; 196: 108087, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677353

RESUMO

Polyploidy, or whole-genome duplication, is expected to confound the inference of species trees with phylogenetic methods for two reasons. First, the presence of retained duplicated genes requires the reconciliation of the inferred gene trees to a proposed species tree. Second, even if the analyses are restricted to shared single copy genes, the occurrence of reciprocal gene loss, where the surviving genes in different species are paralogs from the polyploidy rather than orthologs, will mean that such genes will not have evolved under the corresponding species tree and may not produce gene trees that allow inference of that species tree. Here we analyze three different ancient polyploidy events, using synteny-based inferences of orthology and paralogy to infer gene trees from nearly 17,000 sets of homologous genes. We find that the simple use of single copy genes from polyploid organisms provides reasonably robust phylogenetic signals, despite the presence of reciprocal gene losses. Such gene trees are also most often in accord with the inferred species relationships inferred from maximum likelihood models of gene loss after polyploidy: a completely distinct phylogenetic signal present in these genomes. As seen in other studies, however, we find that methods for inferring phylogenetic confidence yield high support values even in cases where the underlying data suggest meaningful conflict in the phylogenetic signals.


Assuntos
Modelos Genéticos , Filogenia , Poliploidia , Evolução Molecular , Sintenia , Funções Verossimilhança
17.
Insect Sci ; 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462506

RESUMO

Microbial symbioses have had profound impacts on the evolution of animals. Conversely, changes in host biology may impact the evolutionary trajectory of symbionts themselves. Blattabacterium cuenoti is present in almost all cockroach species and enables hosts to subsist on a nutrient-poor diet. To investigate if host biology has impacted Blattabacterium at the genomic level, we sequenced and analyzed 25 genomes from Australian soil-burrowing cockroaches (Blaberidae: Panesthiinae), which have undergone at least seven separate subterranean, subsocial transitions from above-ground, wood-feeding ancestors. We find at least three independent instances of genome erosion have occurred in Blattabacterium strains exclusive to Australian soil-burrowing cockroaches. These shrinkages have involved the repeated inactivation of genes involved in amino acid biosynthesis and nitrogen recycling, the core role of Blattabacterium in the host-symbiont relationship. The most drastic of these erosions have occurred in hosts thought to have transitioned underground the earliest relative to other lineages, further suggestive of a link between gene loss in Blattabacterium and the burrowing behavior of hosts. As Blattabacterium is unable to fulfill its core function in certain host lineages, these findings suggest soil-burrowing cockroaches must acquire these nutrients from novel sources. Our study represents one of the first cases, to our knowledge, of parallel host adaptations leading to concomitant parallelism in their mutualistic symbionts, further underscoring the intimate relationship between these two partners.

18.
Genome Biol Evol ; 16(3)2024 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-38478711

RESUMO

It has been predicted that the highly degenerate mammalian Y chromosome will be lost eventually. Indeed, Y was lost in the Ryukyu spiny rat Tokudaia osimensis, but the fate of the formerly Y-linked genes is not completely known. We looked for all 12 ancestrally Y-linked genes in a draft T. osimensis genome sequence. Zfy1, Zfy2, Kdm5d, Eif2s3y, Usp9y, Uty, and Ddx3y are putatively functional and are now located on the X chromosome, whereas Rbmy, Uba1y, Ssty1, Ssty2, and Sry are missing or pseudogenized. Tissue expressions of the mouse orthologs of the retained genes are significantly broader/higher than those of the lost genes, suggesting that the destinies of the formerly Y-linked genes are related to their original expressions. Interestingly, patterns of gene retention/loss are significantly more similar than by chance across four rodent lineages where Y has been independently lost, indicating a level of certainty in the fate of Y-linked genes even when the chromosome is gone.


Assuntos
Genes Ligados ao Cromossomo Y , Cromossomo Y , Humanos , Camundongos , Ratos , Animais , Cromossomo Y/genética , Murinae/genética , Cromossomo X/genética , Genoma , Cromossomos Humanos Y , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
19.
Genetics ; 227(1)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38513719

RESUMO

Comparative approaches have revealed both divergent and convergent paths to achieving shared developmental outcomes. Thus, only through assembling multiple case studies can we understand biological principles. Yet, despite appreciating the conservation-or lack thereof-of developmental networks, the conservation of epigenetic mechanisms regulating these networks is poorly understood. The nematode Pristionchus pacificus has emerged as a model system of plasticity and epigenetic regulation as it exhibits a bacterivorous or omnivorous morph depending on its environment. Here, we determined the "epigenetic toolkit" available to P. pacificus as a resource for future functional work on plasticity, and as a comparison with Caenorhabditis elegans to investigate the conservation of epigenetic mechanisms. Broadly, we observed a similar cast of genes with putative epigenetic function between C. elegans and P. pacificus. However, we also found striking differences. Most notably, the histone methyltransferase complex PRC2 appears to be missing in P. pacificus. We described the deletion/pseudogenization of the PRC2 genes mes-2 and mes-6 and concluded that both were lost in the last common ancestor of P. pacificus and a related species P. arcanus. Interestingly, we observed the enzymatic product of PRC2 (H3K27me3) by mass spectrometry and immunofluorescence, suggesting that a currently unknown methyltransferase has been co-opted for heterochromatin silencing. Altogether, we have provided an inventory of epigenetic genes in P. pacificus to compare with C. elegans. This inventory will enable reverse-genetic experiments related to plasticity and has revealed the first loss of PRC2 in a multicellular organism.


Assuntos
Caenorhabditis elegans , Epigênese Genética , Evolução Molecular , Animais , Caenorhabditis elegans/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Histona Metiltransferases/metabolismo , Histona Metiltransferases/genética , Nematoides/genética , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo
20.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507653

RESUMO

Although gene loss is common in evolution, it remains unclear whether it is an adaptive process. In a survey of seven major mangrove clades that are woody plants in the intertidal zones of daily environmental perturbations, we noticed that they generally evolved reduced gene numbers. We then focused on the largest clade of Rhizophoreae and observed the continual gene set reduction in each of the eight species. A great majority of gene losses are concentrated on environmental interaction processes, presumably to cope with the constant fluctuations in the tidal environments. Genes of the general processes for woody plants are largely retained. In particular, fewer gene losses are found in physiological traits such as viviparous seeds, high salinity, and high tannin content. Given the broad and continual genome reductions, we propose the May-Wigner theory (MWT) of system stability as a possible mechanism. In MWT, the most effective solution for buffering continual perturbations is to reduce the size of the system (or to weaken the total genic interactions). Mangroves are unique as immovable inhabitants of the compound environments in the land-sea interface, where environmental gradients (such as salinity) fluctuate constantly, often drastically. Extending MWT to gene regulatory network (GRN), computer simulations and transcriptome analyses support the stabilizing effects of smaller gene sets in mangroves vis-à-vis inland plants. In summary, we show the adaptive significance of gene losses in mangrove plants, including the specific role of promoting phenotype innovation and a general role in stabilizing GRN in unstable environments as predicted by MWT.


Assuntos
Redes Reguladoras de Genes , Genoma , Perfilação da Expressão Gênica , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA