Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
Sci Rep ; 14(1): 23141, 2024 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367150

RESUMO

Cassava (Manihot esculenta Crantz) is a vital carbohydrate source for over 800 million people globally, yet its production in East Africa is severely affected by cassava brown streak disease (CBSD). Genebanks, through ex-situ conservation, play a pivotal role in preserving crop diversity, providing crucial resources for breeding resilient and disease-resistant crops. This study genotyped 234 South American cassava accessions conserved at the CIAT genebank, previously phenotyped for CBSD resistance by an independent group, to perform a genome-wide association analysis (GWAS) to identify genetic variants associated with CBSD resistance. Our GWAS identified 35 single nucleotide polymorphism (SNP) markers distributed across various chromosomes, associated with disease severity or the presence/absence of viral infection. Markers were annotated within or near genes previously identified with functions related to pathogen recognition and immune response activation. Using the SNP candidates, we screened the world's largest cassava collection for accessions with a higher frequency of favorable genotypes, proposing 35 accessions with potential resistance to CBSD. Our results provide insights into the genetics of CBSD resistance and highlight the importance of genetic resources to equip breeders with the raw materials needed to develop new crop varieties resistant to pests and diseases.


Assuntos
Resistência à Doença , Estudo de Associação Genômica Ampla , Manihot , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Manihot/genética , Manihot/virologia , Manihot/parasitologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , América do Sul , Genótipo , Genoma de Planta , Potyviridae
2.
J Neonatal Perinatal Med ; 17(5): 689-704, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39302385

RESUMO

BACKGROUND: Preterm birth (PTB) affects ∼15 million pregnancies worldwide. Genetic studies have identified several candidate loci for PTB, but results remain inconclusive and limited to European populations. Thus, we conducted a genome-wide association study (GWAS) of PTB and gestational age at delivery (GA) among 2,212 Peruvian women. METHODS: PTB cases delivered≥20 weeks' but < 37 weeks' gestation, while controls delivered at term (≥37 weeks but <42 weeks). Multivariable regressions were used to identify genetic markers for PTB and GA (∼6 million SNPs), adjusting for maternal age and the first two genetic principal components. In silico functional analysis was conducted among top signals detected with an arbitrary P < 1.0×10-5 . We sought to replicate genetic markers for PTB and GA identified in Europeans, and we developed a genetic risk score for GA based on European markers. RESULTS: Mean GA was 30 ± 4 weeks in PTB cases (N = 933) and 39 ± 1 in the controls (N = 1,279). No associatiosn were identified at genome-wide level. Nominal PTB variants were enriched for biological pathways associated with polyketide, progesterone, steroid hormones, and glycosyl metabolism. Nominal GA variants were enriched in intronic regions and cancer pathways. Variants in WNT4 associated with GA in Europeans were replicated in our study. A genetic risk score was associated with a 2-day longer GA (P = 0.002) in our sample. CONCLUSIONS: This study identified various signals suggestively associated with PTB and GA in pregnant Peruvian women. None of these variants overlapped with signals previously identified in Europeans.


Assuntos
Estudo de Associação Genômica Ampla , Idade Gestacional , Polimorfismo de Nucleotídeo Único , Nascimento Prematuro , Humanos , Feminino , Nascimento Prematuro/genética , Nascimento Prematuro/epidemiologia , Peru/epidemiologia , Estudos de Casos e Controles , Gravidez , Adulto , Recém-Nascido , Adulto Jovem , Predisposição Genética para Doença
3.
Int J Mol Sci ; 25(18)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39337639

RESUMO

Latent autoimmune diabetes in adults (LADA) is characterized by the presence of glutamate decarboxylase autoantibodies (GADA). LADA has intermediate features between type 1 diabetes and type 2 diabetes. In addition, genetic risk factors for both types of diabetes are present in LADA. Nonetheless, evidence about the genetics of LADA in non-European populations is scarce. This study aims to perform a genome-wide association study with a phenome-wide association study of LADA in a southeastern Mexican population. We included 59 patients diagnosed with LADA from a previous study and 3121 individuals without diabetes from the MxGDAR/ENCODAT database. We utilized the GENESIS package in R to perform the genome-wide association study (GWAS) of LADA and PLINK for the phenome-wide association study (PheWAS) of LADA features. Nine polymorphisms reach the nominal association level (1 × 10-5) in the GWAS. The PheWAS showed that rs7305229 is genome-wide and associated with serum GADA levels in our sample (p = 1.84 × 10-8). rs7305229 is located downstream of the FAIM2 gene; previous reports associate FAIM2 variants with childhood obesity, body mass index, body adiposity measures, lymphocyte CD8+ activity, and anti-thyroid peroxidase antibodies. Our findings reveal that rs7305229 affects the GADA levels in patients with LADA from southeastern Mexico. More studies are needed to determine if this risk genotype exists in other populations with LADA.


Assuntos
Autoanticorpos , Estudo de Associação Genômica Ampla , Glutamato Descarboxilase , Diabetes Autoimune Latente em Adultos , Polimorfismo de Nucleotídeo Único , Humanos , Autoanticorpos/sangue , Autoanticorpos/imunologia , México/epidemiologia , Feminino , Masculino , Glutamato Descarboxilase/imunologia , Glutamato Descarboxilase/genética , Adulto , Diabetes Autoimune Latente em Adultos/genética , Diabetes Autoimune Latente em Adultos/imunologia , Pessoa de Meia-Idade , Predisposição Genética para Doença , Fenótipo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/sangue
4.
Genes (Basel) ; 15(7)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39062669

RESUMO

Wheat (Triticum aestivum L.) production is adversely impacted by Septoria nodorum blotch (SNB), a fungal disease caused by Parastagonospora nodorum. Wheat breeders are constantly up against this biotic challenge as they try to create resistant cultivars. The genome-wide association study (GWAS) has become an efficient tool for identifying molecular markers linked with SNB resistance. This technique is used to acquire an understanding of the genetic basis of resistance and to facilitate marker-assisted selection. In the current study, a total of 174 bread wheat accessions from South Asia and CIMMYT were assessed for SNB reactions at the seedling stage in three greenhouse experiments at CIMMYT, Mexico. The results indicated that 129 genotypes were resistant to SNB, 39 were moderately resistant, and only 6 were moderately susceptible. The Genotyping Illumina Infinium 15K Bead Chip was used, and 11,184 SNP markers were utilized to identify marker-trait associations (MTAs) after filtering. Multiple tests confirmed the existence of significant MTAs on chromosomes 5B, 5A, and 3D, and the ones at Tsn1 on 5B were the most stable and conferred the highest phenotypic variation. The resistant genotypes identified in this study could be cultivated in South Asian countries as a preventative measure against the spread of SNB. This work also identified molecular markers of SNB resistance that could be used in future wheat breeding projects.


Assuntos
Ascomicetos , Resistência à Doença , Estudo de Associação Genômica Ampla , Doenças das Plantas , Plântula , Triticum , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Ascomicetos/patogenicidade , Ascomicetos/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Plântula/genética , Plântula/microbiologia , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Marcadores Genéticos , Genótipo
5.
Genes (Basel) ; 15(7)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39062696

RESUMO

Epidemiological studies frequently classify groups based on phenotypes like self-reported skin color/race, which inaccurately represent genetic ancestry and may lead to misclassification, particularly among individuals of multiracial backgrounds. This study aimed to characterize both global and local genome-wide genetic ancestries and to assess their relationship with self-reported skin color/race in an admixed population of Sao Paulo city. We analyzed 226,346 single-nucleotide polymorphisms from 841 individuals participating in the population-based ISA-Nutrition study. Our findings confirmed the admixed nature of the population, demonstrating substantial European, significant Sub-Saharan African, and minor Native American ancestries, irrespective of skin color. A correlation was observed between global genetic ancestry and self-reported color-race, which was more evident in the extreme proportions of African and European ancestries. Individuals with higher African ancestry tended to identify as Black, those with higher European ancestry tended to identify as White, and individuals with higher Native American ancestry were more likely to self-identify as Mixed, a group with diverse ancestral compositions. However, at the individual level, this correlation was notably weak, and no deviations were observed for specific regions throughout the individual's genome. Our findings emphasize the significance of accurately defining and thoroughly analyzing race and ancestry, especially within admixed populations.


Assuntos
Polimorfismo de Nucleotídeo Único , Autorrelato , Pigmentação da Pele , Humanos , Brasil , Pigmentação da Pele/genética , Masculino , Feminino , Adulto , População Branca/genética , População Urbana , População Negra/genética , Grupos Raciais/genética , Pessoa de Meia-Idade , Genética Populacional
6.
Plant Biol (Stuttg) ; 26(5): 705-714, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38899579

RESUMO

Sessile organisms, such as plants, developed various ways to sense and respond to external and internal stimuli to maximize their fitness through evolutionary time. Transcripts and protein regulation are, among many, the main mechanisms that plants use to respond to environmental changes. SKIP protein is one such, presenting an SNKW interacting domain, which is highly conserved among eukaryotes, where SKI interacting protein acts in regulating key processes. In the present work, many bioinformatics tools, such as phylogenetic relationships, gene structure, physical-chemical properties, conserved motifs, prediction of regulatory cis-elements, chromosomal localization, and protein-protein interaction network, were used to better understand the genome-wide SNW/SKIP domain-containing proteins. In total, 28 proteins containing the SNW/SKIP domain were identified in different plant species, including plants of agronomic interest. Two main protein clusters were formed in phylogenetic analysis, and gene structure analysis revealed that, in general, the coding region had no introns. Also, expression of these genes is possibly induced by abiotic stress stimuli. Primary structure analysis of the proteins revealed the existence of an evolutionarily conserved functional unit. But physicochemical properties show that proteins containing the SNW/SKIP domain are commonly unstable under in vivo conditions. In addition, the protein network, demonstrated that SKIP homologues could act by modulating plant fitness through gene expression regulation at the transcriptional and post-transcriptional levels. This could be corroborated by the expression number of gene copies of SKIP proteins in many species, highlighting it's crucial role in plant development and tolerance through the course of evolution.


Assuntos
Genoma de Planta , Filogenia , Proteínas de Plantas , Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Domínios Proteicos , Regulação da Expressão Gênica de Plantas
7.
Plant Biol (Stuttg) ; 26(5): 735-748, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38924267

RESUMO

YABBY genes encode specific TFs of seed plants involved in development and formation of leaves, flowers, and fruit. In the present work, genome-wide and expression analyses of the YABBY gene family were performed in six species of the Fragaria genus: Fragaria × ananassa, F. daltoniana, F. nilgerrensis, F. pentaphylla, F. viridis, and F. vesca. The chromosomal location, synteny pattern, gene structure, and phylogenetic analyses were carried out. By combining RNA-seq data and RT-qPCR analysis we explored specific expression of YABBYs in F. × ananassa and F. vesca. We also analysed the promoter regions of FaYABBYs and performed MeJA application to F. × ananassa fruit to observe effects on gene expression. We identified and characterized 25 YABBY genes in F. × ananassa and six in each of the other five species, which belong to FIL/YAB3 (YABBY1), YAB2 (YABBY2), YAB5 (YABBY5), CRC, and INO clades previously described. Division of the YABBY1 clade into YABBY1.1 and YABBY1.2 subclades is reported. We observed differential expression according to tissue, where some FaYABBYs are expressed mainly in leaves and flowers and to a minor extent during fruit development of F. × ananassa. Specifically, the FaINO genes contain jasmonate-responsive cis-acting elements in their promoters which may be functional since FaINOs are upregulated in F. × ananassa fruit under MeJA treatment. This study suggests that YABBY TFs play an important role in the development- and environment-associated responses of the Fragaria genus.


Assuntos
Ciclopentanos , Diploide , Fragaria , Regulação da Expressão Gênica de Plantas , Oxilipinas , Filogenia , Proteínas de Plantas , Fatores de Transcrição , Fragaria/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Poliploidia , Acetatos/farmacologia , Regiões Promotoras Genéticas/genética , Sintenia , Família Multigênica
8.
Plants (Basel) ; 13(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891260

RESUMO

Drought severely impacts plant development and reproduction, reducing biomass and seed number, and altering flowering patterns. Drought-tolerant Setaria italica and Setaria viridis species have emerged as prominent model species for investigating water deficit responses in the Poaceae family, the most important source of food and biofuel biomass worldwide. In higher plants, abscisic acid (ABA) regulates environmental stress responses, and its signaling entails interactions between PYR/PYL/RCAR receptors and clade A PP2C phosphatases, which in turn modulate SnRK2 kinases via reversible phosphorylation to activate ABA-responsive genes. To compare the diversity of PYR/PYL/RCAR, PP2C, and SnRK2 between S. italica and S. viridis, and their involvement in water deficit responses, we examined gene and regulatory region structures, investigated orthology relationships, and analyzed their gene expression patterns under water stress via a meta-analysis approach. Results showed that coding and regulatory sequences of PYR/PYL/RCARs, PP2Cs, and SnRK2s are highly conserved between Setaria spp., allowing us to propose pairs of orthologous genes for all the loci identified. Phylogenetic relationships indicate which clades of Setaria spp. sequences are homologous to the functionally well-characterized Arabidopsis thaliana PYR/PYL/RCAR, PP2C, and SnRK2 genes. Gene expression analysis showed a general downregulation of PYL genes, contrasting with upregulation of PP2C genes, and variable expression modulation of SnRK2 genes under drought stress. This complex network implies that ABA core signaling is a diverse and multifaceted process. Through our analysis, we identified promising candidate genes for further functional characterization, with great potential as targets for drought resistance studies, ultimately leading to advances in Poaceae biology and crop-breeding strategies.

10.
Genes (Basel) ; 15(4)2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38674387

RESUMO

Salinity in plants generates an osmotic and ionic imbalance inside cells that compromises the viability of the plant. Rab GTPases, the largest family within the small GTPase superfamily, play pivotal roles as regulators of vesicular trafficking in plants, including the economically important and globally cultivated tomato (Solanum lycopersicum). Despite their significance, the specific involvement of these small GTPases in tomato vesicular trafficking and their role under saline stress remains poorly understood. In this work, we identified and classified 54 genes encoding Rab GTPases in cultivated tomato, elucidating their genomic distribution and structural characteristics. We conducted an analysis of duplication events within the S. lycopersicum genome, as well as an examination of gene structure and conserved motifs. In addition, we investigated the transcriptional profiles for these Rab GTPases in various tissues of cultivated and wild tomato species using microarray-based analysis. The results showed predominantly low expression in most of the genes in both leaves and vegetative meristem, contrasting with notably high expression levels observed in seedling roots. Also, a greater increase in gene expression in shoots from salt-tolerant wild tomato species was observed under normal conditions when comparing Solanum habrochaites, Solanum pennellii, and Solanum pimpinellifolium with S. lycopersicum. Furthermore, an expression analysis of Rab GTPases from Solanum chilense in leaves and roots under salt stress treatment were also carried out for their characterization. These findings revealed that specific Rab GTPases from the endocytic pathway and the trans-Golgi network (TGN) showed higher induction in plants exposed to saline stress conditions. Likewise, disparities in gene expression were observed both among members of the same Rab GTPase subfamily and between different subfamilies. Overall, this work emphasizes the high degree of conservation of Rab GTPases, their high functional diversification in higher plants, and the essential role in mediating salt stress tolerance and suggests their potential for further exploration of vesicular trafficking mechanisms in response to abiotic stress conditions.


Assuntos
Proteínas de Plantas , Solanum lycopersicum , Proteínas rab de Ligação ao GTP , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Perfilação da Expressão Gênica , Filogenia , Duplicação Gênica , Íntrons , Éxons , Motivos de Aminoácidos , Vesículas Transportadoras/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Clin Transl Oncol ; 26(8): 1856-1871, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38581481

RESUMO

Latin American populations, characterized by intricate admixture patterns resulting from the intermingling of ancestries from European, Native American (NA) Asian, and African ancestries which result in a vast and complex genetic landscape, harboring unique combinations of novel variants. This genetic diversity not only poses challenges in traditional population genetics methods but also opens avenues for a deeper understanding of its implications in health. In cancer, the interplay between genetic ancestry, lifestyle factors, and healthcare disparities adds a layer of complexity to the varying incidence and mortality rates observed across different Latin American subpopulations. This complex interdependence has been unveiled through numerous studies, whether conducted on Latin American patients residing on the continent or abroad, revealing discernible differences in germline composition that influence divergent disease phenotypes such as higher incidence of Luminal B and Her2 breast tumors, EGFR and KRAS mutated lung adenocarcinomas in addition to an enrichment in BRCA1/2 pathogenic variants and a higher than expected prevalence of variants in colorectal cancer associated genes such as APC and MLH1. In prostate cancer novel risk variants have also been solely identified in Latin American populations. Due to the complexity of genetic divergence, inputs from each individual ancestry seem to carry independent contributions that interplay in the development of these complex disease phenotypes. By understanding these unique population characteristics, genomic ancestries hold a promising avenue for tailoring prognostic assessments and optimizing responses to oncological interventions.


Assuntos
Neoplasias , Humanos , América Latina/epidemiologia , Neoplasias/genética , Neoplasias/epidemiologia , Masculino , Feminino , Genômica , Neoplasias da Mama/genética , Neoplasias da Mama/epidemiologia
12.
Biomedica ; 44(1): 45-53, 2024 03 31.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-38648345

RESUMO

INTRODUCTION: Vitamin D is required for bone and mineral metabolism and participates in the regulation of the immune response. It is also linked to several chronic diseases and conditions, usually in populations of European descent. Brazil presents a high prevalence of vitamin D deficiency and insufficiency despite the widespread availability of sunlight in the country. Thus, it is important to investigate the role of vitamin D as a risk factor for disease and to establish causal relationships between vitamin D levels and health-related outcomes in the Brazilian population. OBJECTIVE: To examine genetic variants identified as determinants of serum vitamin D in genome-wide association studies of European populations and check whether the same associations are present in Brazil. If so, these single nucleotide polymorphisms (SNPs) could be developed locally as proxies to use in genetically informed causal inference methods, such as Mendelian randomization. MATERIALS AND METHODS: We extracted SNPs associated with vitamin D from the genomewide association studies catalog. We did a literature search to select papers ascertaining these variants and vitamin D concentrations in Brazil. RESULTS: GC was the gene with the strongest association with vitamin D levels, in agreement with existing findings in European populations. However, VDR was the most investigated gene, regardless of its non-existing association with vitamin D in the genomewide association studies. CONCLUSIONS: More research is needed to validate sound proxies for vitamin D levels in Brazil, for example, prioritizing GC rather than VDR.


Introducción. La vitamina D es necesaria para el metabolismo óseo y mineral, y participa en la regulación de la respuesta inmunitaria. También está relacionada con enfermedades crónicas en poblaciones europeas. En Brasil, existe una prevalencia elevada de deficiencia e insuficiencia de vitamina D, a pesar de la amplia disponibilidad de luz solar. Por lo tanto, es importante investigar el papel de la vitamina D como factor de riesgo de diversas enfermedades y establecer relaciones causales entre los niveles de vitamina D y los problemas de salud en la población brasileña. Objetivo. Examinar variantes genéticas relacionadas con la vitamina D sérica en estudios de asociación genómica de poblaciones europeas y comprobar si estas mismas están presentes en Brasil. De ser así, estos SNPs podrían utilizarse como proxies en métodos de inferencia causal, tales como la aleatorización mendeliana. Materiales y métodos. A partir del catálogo de estudios de asociación de genoma completo se extrajeron SNPs relacionados con los niveles de vitamina D. Luego se hizo una búsqueda bibliográfica para identificar los artículos que evaluaran estos SNPs y la concentración de vitamina D en Brasil. Resultados. GC fue el gen más fuertemente asociado con los niveles de vitamina D, en concordancia con los resultados existentes en poblaciones europeas. Sin embargo, el gen VDR fue el más investigado, aunque no esté vinculado con la vitamina D en los estudios de asociación de genoma completo. Conclusiones. Se necesita más investigación para validar proxies genéticos de los niveles de vitamina D en Brasil y se recomienda priorizar el gen GC en lugar de VDR.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Deficiência de Vitamina D , Vitamina D , Humanos , Brasil/epidemiologia , Vitamina D/sangue , Deficiência de Vitamina D/genética , Deficiência de Vitamina D/epidemiologia , Receptores de Calcitriol/genética , Proteína de Ligação a Vitamina D/genética
13.
Data Brief ; 54: 110300, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38586147

RESUMO

Three F2-derived biparental doubled haploid (DH) maize populations were generated for genetic mapping of resistance to common rust. Each of the three populations has the same susceptible parent, but a different resistance donor parent. Population 1 and 3 consist of 320 lines each, population 2 consists of 260 lines. The DH lines were evaluated for their susceptibility to common rust in two years and with two replications in each year. For phenotyping, a visual score (VS) for susceptibility was assigned. Additionally, unmanned aerial vehicle (UAV) derived multispectral and thermal infrared data was recorded and combined in different vegetation indices ("remote sensing", RS). The DH lines were genotyped with the DarTseq method, to obtain data on single nucleotide polymorphisms (SNPs). After quality control, 9051 markers remained. Missing values were "imputed" by the empirical mean of the marker scores of the respective locus. We used the data for comparison of genome-wide association studies and genomic prediction when based on different phenotyping methods, that is either VS or RS data. The data may be interesting for reuse for instance for benchmarking genomic prediction models, for phytopathological studies addressing common rust, or for specifications of vegetation indices.

14.
Braz J Psychiatry ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467473

RESUMO

OBJECTIVE: Post-traumatic stress disorder (PTSD) is triggered by traumatic events, but genetic vulnerability and a history of childhood trauma are additional factors that may increase the risk of PTSD. Thus, our study focused on exploring the interaction between genetic susceptibility, as assessed by polygenic risk score (PRS), and traumatic events. METHODS: We evaluated 68 women with PTSD who had been sexually assaulted and 63 healthy controls without a history of sexual assault. DNA was genotyped using the Infinium Global Screening Array (Illumina), and PRS analysis was performed using PRSice. Furthermore, logistic regression models were employed to examine the interaction between childhood trauma, traumatic life events, and PTSD-PRS and how they contribute to the risk of developing PTSD. RESULTS: We found a significant association between PRS, childhood trauma (p = 0.03; OR = 1.241), and PTSD. Additionally, an interaction was observed between PRS, traumatic life events, and childhood trauma, particularly relating to physical and emotional neglect (p = 0.028; OR = 1.010). When examining neglect separately, we found a modest association between emotional neglect and PTSD (p = 0.014; OR = 1.086). CONCLUSIONS: Our findings highlight the importance of considering genetic vulnerability and traumatic experiences in understanding the etiology of PTSD.

16.
J Hered ; 115(3): 302-310, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38451162

RESUMO

The Pacific whiteleg shrimp Penaeus (Litopenaeus) vannamei is a highly relevant species for the world's aquaculture development, for which an incomplete genome is available in public databases. In this work, PacBio long-reads from 14 publicly available genomic libraries (131.2 Gb) were mined to improve the reference genome assembly. The libraries were assembled, polished using Illumina short-reads, and scaffolded with P. vannamei, Feneropenaeus chinensis, and Penaeus monodon genomes. The reference-guided assembly, organized into 44 pseudo-chromosomes and 15,682 scaffolds, showed an improvement from previous reference genomes with a genome size of 2.055 Gb, N50 of 40.14 Mb, L50 of 21, and the longest scaffold of 65.79 Mb. Most orthologous genes (92.6%) of the Arthropoda_odb10 database were detected as "complete," and BRAKER predicted 21,816 gene models; from these, we detected 1,814 single-copy orthologues conserved across the genomic references for Marsupenaeus japonicus, F. chinensis, and P. monodon. Transcriptomic-assembly data aligned in more than 99% to the new reference-guided assembly. The collinearity analysis of the assembled pseudo-chromosomes against the P. vannamei and P. monodon reference genomes showed high conservation in different sets of pseudo-chromosomes. In addition, more than 21,000 publicly available genetic marker sequences were mapped to single-site positions. This new assembly represents a step forward to previously reported P. vannamei assemblies. It will be helpful as a reference genome for future studies on the evolutionary history of the species, the genetic architecture of physiological and sex-determination traits, and the analysis of the changes in genetic diversity and composition of cultivated stocks.


Assuntos
Genoma , Penaeidae , Penaeidae/genética , Animais , Bases de Dados Genéticas , Genômica/métodos , Anotação de Sequência Molecular
17.
WIREs Mech Dis ; 16(2): e1635, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38059513

RESUMO

Mental illnesses have a huge impact on individuals, families, and society, so there is a growing need for more efficient treatments. In this context, brain-computer interface (BCI) technology has the potential to revolutionize the options for neuropsychiatric therapies. However, the development of BCI-based therapies faces enormous challenges, such as power dissipation constraints, lack of credible feedback mechanisms, uncertainty of which brain areas and frequencies to target, and even which patients to treat. Some of these setbacks are due to the large gap in our understanding of brain function. In recent years, large-scale genomic analyses uncovered an unprecedented amount of information regarding the biology of the altered brain function observed across the psychopathology spectrum. We believe findings from genetic studies can be useful to refine BCI technology to develop novel treatment options for mental illnesses. Here, we assess the latest advancements in both fields, the possibilities that can be generated from their intersection, and the challenges that these research areas will need to address to ensure that translational efforts can lead to effective and reliable interventions. Specifically, starting from highlighting the overlap between mechanisms uncovered by large-scale genetic studies and the current targets of deep brain stimulation treatments, we describe the steps that could help to translate genomic discoveries into BCI targets. Because these two research areas have not been previously presented together, the present article can provide a novel perspective for scientists with different research backgrounds. This article is categorized under: Neurological Diseases > Genetics/Genomics/Epigenetics Neurological Diseases > Biomedical Engineering.


Assuntos
Interfaces Cérebro-Computador , Estimulação Encefálica Profunda , Transtornos Mentais , Humanos , Encéfalo/fisiologia , Transtornos Mentais/genética , Genômica
18.
J Anim Breed Genet ; 141(2): 179-192, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37917404

RESUMO

Both the measurement age of a longitudinal trait and the common pre-sampling procedures used in beef cattle herds may affect the identification of a functional candidate gene (FCG) that is potentially associated with a trait. To identify the FCG that takes part in the genetic control of body weight at five different ages in a beef cattle population with and without sequential sampling, the animals were weighed at different measurement events, around 330, 385, 440, 495 and 550 days old. Genetic parameters were estimated for body weight at each age using a single trait (STM) and a random regression model (RRM). In addition, two different databases were used to estimate the genetic parameters: the first (DB100) was formed by all animals that were weighed in the five measurement events, and the second (DB70) has records of the same population, considering that 70% of the heaviest animals were selected after each measurement event. For DB100, genome-wide association studies (GWAS) were performed with 21,667 SNP markers to identify genomic windows that explained at least 1% of the genetic variance. Additionally, prioritization analyses were performed and FCGs were selected. We associated seven different FCGs with body weight at different ages. Among them, the gene DUSP10 was suggested as FCG in all five ages evaluated. Genetic parameters estimated for body weight using DB100 were similar when STM and RRM were applied. However, when DB70 was used as phenotypic data, there were differences between the two models. When the STM was applied, there were differences between the genetic parameters estimated for body weight when DB100 or DB70 were used as sources of phenotypes, but not for the estimates obtained with RRM. The importance of each gene for animal growth can change at different ages, and different genes may be more relevant to body weight at each different growth stage for beef cattle. Besides, sequential sampling can affect the GWAS results of a longitudinal trait. The age of the animal when a longitudinal trait is measured and pre-sampling can also contribute to inconsistencies in GWAS results for body weight in beef cattle, depending on the time when that data were collected, and consequently on the identification of FCG between studies, even when models that consider a covariance structure are used.


Assuntos
Estudo de Associação Genômica Ampla , Genoma , Bovinos/genética , Animais , Estudo de Associação Genômica Ampla/veterinária , Fenótipo , Peso Corporal/genética , Genômica , Polimorfismo de Nucleotídeo Único
19.
Alzheimers Dement ; 20(2): 1298-1308, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985413

RESUMO

INTRODUCTION: Genome-wide association studies (GWAS) are fundamental for identifying loci associated with diseases. However, they require replication in other ethnicities. METHODS: We performed GWAS on sporadic Alzheimer's disease (AD) including 539 patients and 854 controls from Argentina and Chile. We combined our results with those from the European Alzheimer and Dementia Biobank (EADB) in a meta-analysis and tested their genetic risk score (GRS) performance in this admixed population. RESULTS: We detected apolipoprotein E ε4 as the single genome-wide significant signal (odds ratio  = 2.93 [2.37-3.63], P = 2.6 × 10-23 ). The meta-analysis with EADB summary statistics revealed four new loci reaching GWAS significance. Functional annotations of these loci implicated endosome/lysosomal function. Finally, the AD-GRS presented a similar performance in these populations, despite the score diminished when the Native American ancestry rose. DISCUSSION: We report the first GWAS on AD in a population from South America. It shows shared genetics modulating AD risk between the European and these admixed populations. HIGHLIGHTS: This is the first genome-wide association study on Alzheimer's disease (AD) in a population sample from Argentina and Chile. Trans-ethnic meta-analysis reveals four new loci involving lysosomal function in AD. This is the first independent replication for TREM2L, IGH-gene-cluster, and ADAM17 loci. A genetic risk score (GRS) developed in Europeans performed well in this population. The higher the Native American ancestry the lower the GRS values.


Assuntos
Doença de Alzheimer , Azidas , Estudo de Associação Genômica Ampla , Humanos , Chile , Doença de Alzheimer/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética
20.
Biochem Genet ; 62(1): 352-370, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37347449

RESUMO

Malignant pleural mesothelioma (MPM) is a rare and aggressive neoplasm of the pleural tissue that lines the lungs and is mainly associated with long latency from asbestos exposure. This tumor has no effective therapeutic opportunities nowadays and has a very low five-year survival rate. In this sense, identifying molecular events that trigger the development and progression of this tumor is highly important to establish new and potentially effective treatments. We conducted a meta-analysis of genome-wide expression studies publicly available at the Gene Expression Omnibus (GEO) and ArrayExpress databases. The differentially expressed genes (DEGs) were identified, and we performed functional enrichment analysis and protein-protein interaction networks (PPINs) to gain insight into the biological mechanisms underlying these genes. Additionally, we constructed survival prediction models for selected DEGs and predicted the minimum drug inhibition concentration of anticancer drugs for MPM. In total, 115 MPM tumor transcriptomes and 26 pleural tissue controls were analyzed. We identified 1046 upregulated DEGs in the MPM samples. Cellular signaling categories in tumor samples were associated with the TNF, PI3K-Akt, and AMPK pathways. The inflammatory response, regulation of cell migration, and regulation of angiogenesis were overrepresented biological processes. Expression of SOX17 and TACC1 were associated with reduced survival rates. This meta-analysis identified a list of DEGs in MPM tumors, cancer-related signaling pathways, and biological processes that were overrepresented in MPM samples. Some therapeutic targets to treat MPM are suggested, and the prognostic potential of key genes is shown.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Humanos , Mesotelioma/genética , Mesotelioma/metabolismo , Fosfatidilinositol 3-Quinases , Neoplasias Pleurais/genética , Neoplasias Pleurais/metabolismo , Neoplasias Pulmonares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA