Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 795
Filtrar
1.
Toxicol Mech Methods ; : 1-10, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39370712

RESUMO

The waterpipe works by placing tobacco in a bowl with holes at the bottom, which is connected to a tube leading to a water-filled container. Upon heating the tobacco product with hot charcoal placed atop it, the emanating smoke is inhaled by the user via a hose linked to the water receptacle. The aim of this literature review is to evaluate whether the use of waterpipes can indeed induce genotoxicity in mammalian cells in vivo. Additionally, the study aims to assess the quality of the included research articles on this topic to ensure the reliability of the findings. We performed comprehensive searches in PubMed, SCOPUS, and Web of Science to identify relevant articles published until July 2024. The findings confirmed that waterpipe smoke induces genetic damage. This assertion is supported by the fact that 11 studies (out of 15) received a Strong or Moderate assessment categorization, suggesting that the majority of studies adhered to most technical standards, thereby enhancing the reliability of the research findings. Regarding the types of DNA damage reported, DNA strand breaks, chromosome damage and oxidative DNA damage were found in this review. Taken together, this study holds significant importance in assessing the efficacy of genotoxicity assays in detecting DNA damage due to waterpipe smoke and the comet and micronucleus assays are suitable biomarkers for biomonitoring people who use waterpipe.

2.
Toxicol Mech Methods ; : 1-10, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39381932

RESUMO

Professional painters represent an occupational population group that deserves attention for study in the field of occupational toxicology due to the wide range of complex chemical mixtures they are exposed to. It is imperative to underscore that the International Agency for Research on Cancer has classified commercial painting as a high-risk occupation for the development of cancer. Given this context, the primary objective of the present study was to conduct a systematic review aimed at addressing the following question: are car painters at occupational risk regarding potential genotoxicity? To address this question, a selection process was undertaken, with three reviewers carefully selecting, reading, and analyzing full manuscripts from 26 studies included in this review. The technical rigor of these studies underwent meticulous scrutiny, culminating in the classification of six studies as Strong, eight as Moderate, and 12 as Weak, predicated on the extent of confounders considered. Taken together, the findings suggest that chemical substances from paints may indeed pose a risk of genotoxicity for professionals in this field, as all studies indicated genotoxicity among professional painters through various tests.

3.
Drug Chem Toxicol ; : 1-9, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39257197

RESUMO

The plant species C. sativum L. is a staple in cuisine and holds significant ethnopharmacological value. Its essential oil (EO) is of particular interest, yet its toxicity profile remains a subject of inquiry. This study aimed to elucidate the chemical constituents of C. sativum L. EO and evaluate its toxicity through various parameters, including cytotoxicity assays on HaCaT keratinocytes, in vivo toxicity tests on Galleria mellonella larvae, in vivo genotoxicity assessments on mice and cytotoxicity assays on human erythrocytes. Notably, major constituents such as 2-decen-1-ol, dec-(2E)-enal, and 1,6-octadien-3-ol were found to remain predominant. The IC50 value for the essential oil on the keratinocyte cell line was determined to be 60.13 ± 2.02 µg/mL. However, in vivo toxicity tests with G. mellonella larvae demonstrated safety at doses below 4.5 g/kg. Additionally, genotoxicity assessment revealed that a single dose of 20 mg/mL (5 mg/kg) did not induce a significant increase in micronuclei formation. EO concentrations above 250 µg/mL led to significant changes in human erythrocytes cell viability (p < 0.0001), resulting in over 60% hemolysis. These findings collectively suggest that the essential oil of C. sativum L. exhibits a suitable toxicity profile for conducting preclinical studies in vertebrate animal models.

4.
Environ Mol Mutagen ; 65(8): 275-288, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39262276

RESUMO

Chlorothalonil (CTL) is a pesticide widely used in Brazil, yet its mutagenic potential is not fully determined. Thus, we assessed the mutagenicity of CTL and its bioactivation metabolites using the somatic mutation and recombination test (SMART) in Drosophila melanogaster, by exposing individuals, with basal and high bioactivation capacities (standard and high bioactivation cross offspring, respectively), from third instar larval to early adult fly stages, to CTL-contaminated substrate (0.25, 1, 10 or 20 µM). This substrate served as food and as physical medium. Increased frequency of large single spots in standard cross flies' wings exposed to 0.25 µM indicates that, if CTL is genotoxic, it may affect Drosophila at early life stages. Since the total spot frequency did not change, CTL cannot be considered mutagenic in SMART. The same long-term exposure design was performed to test whether CTL induces oxidative imbalance in flies with basal (wild-type, WT) or high bioactivation (ORR strain) levels. CTL did not alter reactive oxygen species and antioxidant capacity against peroxyl radicals levels in adult flies. However, lipid peroxidation (LPO) levels were increased in WT male flies exposed to 1 µM CTL. SMART and LPO alterations were observed only in flies with basal bioactivation levels, pointing to direct CTL toxicity to DNA and lipids. Survival, emergence and locomotor behavior were not affected, indicating no bias due to lethality, developmental and behavioral impairment. We suggest that, if related to CTL exposure, DNA and lipid damages may be residual damage of earlier life stages of D. melanogaster.


Assuntos
Drosophila melanogaster , Testes de Mutagenicidade , Mutagênicos , Nitrilas , Animais , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Nitrilas/toxicidade , Masculino , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Feminino , Mutação/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Recombinação Genética/efeitos dos fármacos , Praguicidas/toxicidade , Estresse Oxidativo/efeitos dos fármacos
5.
Toxicol Ind Health ; 40(12): 643-652, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39244648

RESUMO

Formaldehyde is a chemical compound capable of preserving cells and tissue morphology, being extensively used worldwide in industrial and medical processes. However, due to the many biological effects that take place after an individual is chronically exposed to formaldehyde, this compound poses a greater cancer risk for workers under its occupational exposure, even at lower concentrations. Thus, the present systematic review aimed to understand whether there may be a positive relation between polymorphism (in terms of individual susceptibility) and genotoxicity in individuals occupationally exposed to formaldehyde. For this purpose, a total of eight selected studies were carefully analyzed by two reviewers, who attributed scores to each study according to the used analysis parameters. First, all studies investigated either pathologists under formaldehyde exposure or anatomical laboratory pathology workers. In addition, the majority of studies were categorized as moderate or strong in the quality assessment. The results revealed a positive association between some polymorphism and genotoxicity in individuals exposed to formaldehyde, since more than half of the studies observed positive relations between genotoxicity and polymorphisms in xenobiotics metabolizing genes. We understand such parameters influence individuals' susceptibility to genomic damage induced by formaldehyde in peripheral blood. In conclusion, individuals with certain genotypes may show higher or lower DNA damage and/or lower or higher DNA repair potential.


Assuntos
Dano ao DNA , Formaldeído , Exposição Ocupacional , Polimorfismo Genético , Formaldeído/toxicidade , Humanos , Exposição Ocupacional/efeitos adversos , Dano ao DNA/efeitos dos fármacos , Mutagênicos/toxicidade
6.
Odovtos (En línea) ; 26(2): 91-100, May.-Aug. 2024. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1575328

RESUMO

Abstract Bioactive cements based on tricalcium silicate have been introducedto the market for use in dentistry, with a variety of clinical applications. These cements are in contact with vital tissues such as dental pulp or periodontium in cases of unintentional extrusion; thus, it is important to know the genotoxicity and cytoxicity of these materials. The objective of this study was to evaluate the cytotoxicity and genotoxicity of bioactive sealers, Bio-C® Sealer and MTA Repair HP®, in human fibroblasts. Discs of bioactive sealers Bio-C® Sealer, and MTA Repair HP®, were prepared and set for 24h under sterile conditions. The discs were placed in culture medium at 2.5mg/mL inside a SRT6D roller mixer (Stuart, UK) at 60rpm for 24h. The eluates obtained were incubated for 24h with previously activated and cultured ATCC cell line fibroblasts at 80% confluence. The cytotoxicity was evaluated by Alamar Blue® and LIVE/ DEAD assays, as well as the analysis of the Tunel and Mitotracker assays to evaluate genotoxicity using the confocal laser-scanning microscope. In the Alamar Blue® assay, the Bio-C® Sealer presented a cell proliferation of 87%, while the MTA Repair HP® Sealer was 72%. A statistically significant difference was found between the MTA Repair HP® Sealant and the negative control (p=<0.001). Regarding the genotoxicity tests, in the Tunel assay, both materials stain the nucleus of the fibroblast cells exposed to the eluates, while in the Mitotracker assay, the MTA Repair HP® Sealer showed greater mitochondrial function than the Bio-C® Sealer. Calcium silicate-based sealers, Bio-C® Sealer and MTA Repair HP®, are not cytotoxic and have low genotoxicity.


Resumen Los cementos bioactivos a base de silicato tricálcico se introdujeron en el mercado para uso en odontología, con una variedad de aplicaciones clínicas. Estos cementos pueden estar en contacto con tejidos como la pulpa dental o el periodonto, en caso de extrusión no intencionada. Por lo tanto, es importante conocer la genotoxicidad y la citoxicidad de estos materiales. El objetivo de este estudio fue evaluar la citotoxicidad y genotoxicidad de los selladores bioactivos Bio-C® Sealer y MTA Repair HP® en fibroblastos humanos. Se prepararon discos de selladores bioactivos Bio-C® Sealer y MTA Repair HP® y se colocaron durante 24h en condiciones de esterilidad. Los discos se colocaron en medio de cultivo a 2,5mg/mL dentro de un mezclador de rodillos SRT6D (Stuart, Reino Unido) a 60rpm durante 24h. Los eluidos obtenidos se incubaron durante 24h con fibroblastos de la línea celular ATCC previamente activados y cultivados al 80% de confluencia. La citotoxicidad se evaluó mediante ensayos Alamar Blue® y LIVE/DEAD; así como el análisis de los ensayos Tunnel y Mitotracker para evaluar la genotoxicidad, utilizando el microscopio confocal láser de barrido. En el ensayo Alamar Blue®, el Sellador Bio-C® presentó una proliferación celular del 87%, mientras que el sellador MTA Repair HP® fue del 72%. Se encontró una diferencia estadísticamente significativa entre el sellador MTA Repair HP® con respecto al control negativo (p=<0.001). En cuanto a las pruebas de genotoxicidad, en el ensayo Tunel, ambos materiales tiñen el núcleo de las células fibroblásticas expuestas a los eluidos, mientras que el ensayo Mitotracker, el sellador MTA Repair HP®, mostró una mayor función mitocondrial que el Bio-C® Sealer. Los selladores a base de silicato de calcio, Bio-C® Sealer y MTA Repair HP® no son citotóxicos y tienen una baja genotoxicidad.

7.
Toxicol Rep ; 13: 101693, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39131696

RESUMO

The Vanilla genus is crucial for global production in food, perfume, and pharmaceutical industries. However, exploitation threatens some species, leading to extinction. Traditional communities use vanilla for medicinal purposes, and there are species like Vanilla chamissonis Klotzsch and Vanilla bahiana Hoehne with potential to occupy the market. For this, methanolic extraction of these two mentioned species was conducted alongside Vanilla planifolia. Analyzes of the cell viability, mutagenic and genotoxic potential were performed. In the Ames test, the assays were performed with concentrations from 0.5 and 5000 µg/ml and on five strains. Only Vanilla planifolia exhibited mutagenicity at the highest concentration in the TA98 strain. Viability tests were performed within a dose range of 0.05-5000 µg/ml and 24, 48, and 72-hour exposures. It was possible to observe a reduction in cell viability observed only at the highest concentration, for all three species and both cell types tested. Genotoxicity induction by the extracts was assessed at concentrations from 0.5 to 500 µg/ml through the cytokinesis-block micronucleus assay. No genotoxic damage or reduction in the Nucleus Division Index (NDI). The study found no mutagenicity, cytotoxicity, or genotoxicity in the species tested, indicating potential human use for food or pharmaceutical purposes.

8.
Artigo em Inglês | MEDLINE | ID: mdl-39147449

RESUMO

Brazil is one of the world's largest consumers of pesticides. This intense use impacts the environment and exposes a wide range of individuals to pesticides, including rural workers who are occupationally exposed and rural residents who are environmentally exposed. We aimed to evaluate the effects of occupational exposure to pesticides on the health of rural workers and rural residents. We conducted an epidemiological study with 104 farmers and 23 rural residents of Casimiro de Abreu (Rio de Janeiro, Brazil). A comparison group (urban residents) comprised 103 residents of the urban area of the same city. We determined the activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) using a modified version of Ellman's method to evaluate exposure. In addition, we performed genotoxic and mutagenic analyses with the comet assay and the cytokinesis-block micronucleus (CBMN) assay. There was a reduction in cholinesterase activity, mainly BChE, in rural workers and rural residents compared with urban residents (p = 0.002). There was an increase in genotoxic effects in rural workers compared with urban residents (comet assay, p < 0.001; CBMN assay, p < 0.001). In addition, there was a greater chance of genotoxic changes in rural workers exposed to pesticides based on the comet assay (odds ratio [OR] 7.6, 95 % confidence interval [CI] 6.6-15.9) and the CBMN assay (OR 22.7, 95 % CI 10.3-49.9). We found that individuals occupationally exposed to pesticides are more likely to have genotoxic effects. These findings are useful for the development of programs to monitor populations exposed to genotoxic substances and allow the development of strategies for the prevention, control, and surveillance of effects that result from occupational and environmental exposures to pesticides.


Assuntos
Butirilcolinesterase , Ensaio Cometa , Dano ao DNA , Testes para Micronúcleos , Exposição Ocupacional , Praguicidas , População Rural , Humanos , Praguicidas/toxicidade , Brasil , Exposição Ocupacional/efeitos adversos , Adulto , Masculino , Pessoa de Meia-Idade , Butirilcolinesterase/genética , Feminino , Dano ao DNA/efeitos dos fármacos , Fazendeiros , Acetilcolinesterase , População Urbana
9.
J Sci Food Agric ; 104(14): 8991-9000, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38975867

RESUMO

BACKGROUND: Discussion of the benefits of moderate alcohol consumption is ongoing. Broadly, research focusing on ethanol consumption tends to report no benefits. However, studies that distinguish between different types of alcoholic beverages, particularly beers, often reveal positive effects. The present study evaluated the genotoxic and mutagenic effects of moderate chronic consumption of India Pale Ale (IPA) craft beer. Sixty-four adult male Swiss mice were used and divided into control and treatment groups receiving water, IPA beer with 55.23 g of ethanol per liter of beer, aqueous solution with 55.23 g of ethanol per liter, and hop infusion ad libitum for 30 days. After this period, the animals were genetically evaluated with a comet assay. For the ex vivo comet assay, blood was collected and exposed to hydrogen peroxide (H2O2). For the in vivo assay, the alkylating agent cyclophosphamide (CP) was administered to the groups after blood collection and sacrificed after 24 h. Brain, liver, and heart tissues were analyzed. Bone marrow was collected and submitted to the micronucleus test. RESULTS: The groups treated with IPA beer, ethanol, and hops did not show genotoxic and mutagenic action in the blood, brain, heart, or liver. The antigenotoxic action of IPA beer and hops was observed in both in vivo and ex vivo models, showing a similar reduction in DNA damage caused by CP. There was no significant difference between the groups with regard to the formation of micronuclei by CP. CONCLUSION: Moderate chronic consumption of IPA beer and hops infusion showed antigenotoxic effects in mice but no antimutagenic action. © 2024 Society of Chemical Industry.


Assuntos
Cerveja , Ensaio Cometa , Dano ao DNA , Animais , Cerveja/análise , Camundongos , Masculino , Dano ao DNA/efeitos dos fármacos , Índia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/química , Humanos , Testes para Micronúcleos , Etanol , Antimutagênicos/farmacologia
10.
Pathophysiology ; 31(3): 352-366, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39051223

RESUMO

Obesity is a big public health problem that claims several thousand lives every year. Bariatric surgery has arisen as a suitable procedure for treating obesity, particularly morbid obesity. Oxidative stress, genotoxicity, apoptosis, and inflammatory responses are recognized as the most important occurrences in carcinogenesis, as they actively contribute to the multistep process. This study aimed to briefly review the connection between oxidative stress, genotoxicity, apoptosis, and inflammation in obese patients undergoing bariatric surgery, focusing on its impact on carcinogenesis. Regarding oxidative stress, bariatric surgery may inhibit the synthesis of reactive oxygen species. Moreover, a significant reduction in the inflammatory status after weight loss surgery was not observed. Bariatric surgery prevents apoptosis in several tissues, but the maintenance of low body weight for long periods is mandatory for mitigating DNA damage. In conclusion, the association between bariatric surgery and cancer risk is still premature. However, further studies are yet needed to elucidate the real association between bariatric surgery and a reduced risk of cancer.

11.
J Appl Toxicol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951124

RESUMO

The present systematic review (SR) aims to evaluate manuscripts in order to help further elucidate the following question: is the micronucleus assay (MA) also a useful marker in gingiva, tongue, and palate for evaluating cytogenetic damage in vivo? A search was performed through the electronic databases PubMed/Medline, Scopus, and Web of Science, all studies published up to December 2023. The comparisons were defined as standardized mean difference (SMD), and 95% confidence intervals (CIs) were established. Full manuscripts from 34 studies were carefully selected and reviewed in this setting. Our results demonstrate that the MA may be a useful biomarker of gingival tissue damage in vivo, and this tissue could be a useful alternative to the buccal mucosa. The meta-analysis analyzing the different sites regardless of the deleterious factor studied, the buccal mucosa (SMD = 0.69, 95% CI, - 0.49 to 1.88, p = 0.25) and gingiva (SMD = 0.31, 95% CI, - 0.11 to 0.72, p = 0.15), showed similar results and different outcome for the tongue (SMD = 1.19, 95% CI, 0.47 to 1.91, p = 0.001). In summary, our conclusion suggests that the MA can be a useful marker for detecting DNA damage in gingiva in vivo and that this tissue could be effective site for smearing.

12.
Drug Chem Toxicol ; : 1-11, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953234

RESUMO

Psychotria carthagenensis is a shrubby plant, often consumed by traditional populations in religious rituals. Previous studies have shown that this plant's infusion can inhibit the activity of Acetylcholinesterase (AChE) in rats. Despite the therapeutic potential, there is a lack of research regarding its possible toxicological and genotoxic effects. Hence, this study aimed to analyze the chemical profile of the ethanol extract from P. carthagenensis leaves by LC-DAD-MS and assess its possible toxicity and genotoxicity in zebrafish (Danio rerio). Adult zebrafish (N = 9/group) were exposed at different concentrations and the LC50 was calculated. Frequencies of micronucleus (MN) and nuclear abnormalities (NA) were estimated for genotoxic effects, and degree of tissue changes (DTC) was used to assess the liver and gill histopathology. From the LC-DAD-MS analyses, the identified compounds included N-fructosyl valine, ethyl hexoside, 5-O-E-caffeoylquinic acid, N-feruloylagmatime, roseoside, di-O-deoxyhexoyl-hexosyl quercetin, loiolide, and oleamide. The calculated values of LC50 did not vary significantly during the time of exposure. At the concentrations of 1.25, 2.5, 3.75, 5, 7.5, 10 and 15 mg/L, there was no genotoxicity, and only low to moderate toxicity for the tissues was observed, despite mortality of 100% at doses of 20-100 mg/L of P. carthagenensis ethanolic leaf extract. There were changes in cytoplasm of hepatocytes at 1.25 mg/L, and karyorrhexis, karyolysis and megalocytosis at 10 mg/L. In the gills, the alterations were primary lamellar hyperplasia in all concentrations, and at 10 mg/L, secondary lamellar edema and vascular hyperemia were common. Additionally, the chemical composition of P. carthagenensis was expanded.

13.
Drug Chem Toxicol ; : 1-8, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984405

RESUMO

Mancozeb is a fungicide of the dithiocarbamate functional group, and it is widely used in agriculture to control various fungal diseases. Thus, studies detailing its toxicological characteristics are necessary, as the population may be exposed through the consumption of food or water contaminated with mancozeb. The aim of this study was to evaluate the cytotoxic, genotoxic, and mutagenic potentials of this dithiocarbamate using the Allium cepa L. test system as well as its cytotoxicity in erythrocytes of female rats (Rattus norvegicus). The meristematic roots of A. cepa bulbs were exposed to various concentrations of mancozeb (62.5, 125, 250, and 500 mg/L) for 24, 48, and 72 h to determine cytotoxicity by evaluating the mitotic index (MI), chromosomal aberrations (CA), and nuclear anomalies (NA) for genotoxicity analysis and micronuclei (MN) for mutagenicity analysis. Distilled water and copper sulfate (0.0006 mg/L) were used as the negative control (NC) and positive control (PC), respectively. The MI and the sum of CA and NA of all the mancozeb concentrations showed a significant difference (p ≤ 0.05) in relation to the NC, indicating possible cytotoxicity and genotoxicity induced by mancozeb. Additionally, MN significantly increased with mancozeb concentration from 250 mg/L to 500 mg/L in 24 h when compared to NC. In another study model, mancozeb showed to be cytolytic at concentrations starting from 125 mg/L. Therefore, these results indicate that mancozeb causes cytogenetic alterations and mutagenicity at lower concentrations than those used in agriculture, which emphasizes the need for more care when managing this fungicide.

14.
Artigo em Inglês | MEDLINE | ID: mdl-39054011

RESUMO

The extraction and burning of coal release genotoxic pollutants, and understanding the relationship between genetic damage and the spatial distribution of residences in coal-using regions is crucial. The study aimed to conduct a spatial analysis of genotoxic damage through the of micronuclei (MNs) number and their proximity to coal mining/burning in the largest coal exploration region in Brazil. In this study, the detection of genotoxic damage was performed using the MN assay in oral cells of residents exposed to coal mining activities. Spatial analysis was conducted using QGIS 3.28.10 based on information obtained from a questionnaire administered to the population. Multiple linear regression analysis was carried out to assess the influence of the distance from residential areas to polluting sources on the number of MNs found. Additionally, Spearman's correlation was performed to identify the strength and direction of the association between the frequency of MNs and each of the polluting sources. A total of 147 MNs were quantified among all participants in the coal mining region. Notably, residents living within 2 km and 10 km of pollution sources exhibited the highest prevalence of MNs. The analysis demonstrated a significant correlation between closer proximity to pollution sources and increased MN frequency, underscoring the spatial relationship between these sources and genotoxic damage. Environmental pollutants from anthropogenic sources present a major health risk, potentially leading to irreversible damage. The spatial analysis in this study highlights the importance of targeted public policies. These policies should aim for a sustainable balance between economic development and public health, promoting effective measures to mitigate environmental impacts and protect community health.


Assuntos
Minas de Carvão , Micronúcleos com Defeito Cromossômico , Testes para Micronúcleos , Mucosa Bucal , Brasil , Humanos , Mucosa Bucal/citologia , Micronúcleos com Defeito Cromossômico/estatística & dados numéricos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Adulto , Masculino , Exposição Ambiental/efeitos adversos , Feminino , Pessoa de Meia-Idade , Dano ao DNA , Análise Espacial , Adulto Jovem
15.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062785

RESUMO

Zeolite type 5A combined with the magnetic properties of maghemite nanoparticles facilitate the rapid absorption of heavy metals, which makes them an interesting proposal for the remediation of water contaminated with lead and arsenic. However, the physicochemical analysis related to concentration and size for the use of this magnetic zeolite composite (MZ0) in water bodies and the possible toxicological effects on aquatic fauna has not yet been carried out. The main objective of the research work is to determine lethal concentrations that cause damage to Daphnia magna based on LC50 tests, morphology, reproductive rate, and quantification of the expression of three genes closely involved in the morphological development of vital structures (Glass, NinaE, Pph13). To achieve this objective, populations of neonates and young individuals were used, and results showed that the LC50 for neonates was 11,314 mg L-1, while for young individuals, it was 0.0310 mg L-1. Damage to morphological development was evidenced by a decrease in eye size in neonates, an increase in eye size in young individuals, variations in the size of the caudal spine for both age groups, and slight increases in the heart size, body, and antenna for both age groups. The reproductive rate of neonates was not affected by the lower concentrations of MZ0, while in young individuals, the reproductive rate decreased by more than 50% from the minimum exposure concentration of MZ0. And for both ages, Glass gene expression levels decreased as the MZ0 concentration increased. Also, the MZ0 evidenced its affinity for the exoskeleton of D. magna, which was observed using both light microscopy and electron microscopy. It is concluded that MZ0 did not generate significant damage in the mortality, morphology, reproductive rate, or gene expression in D. magna at lower concentrations, demonstrating the importance of evaluating the possible impacts on different life stages of the cladoceran.


Assuntos
Daphnia , Zeolitas , Animais , Daphnia/efeitos dos fármacos , Daphnia/genética , Zeolitas/toxicidade , Zeolitas/química , Poluentes Químicos da Água/toxicidade , Reprodução/efeitos dos fármacos , Dose Letal Mediana , Daphnia magna
16.
Environ Pollut ; 358: 124485, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960115

RESUMO

New mixtures of pesticides are being placed on the market to increase the spectrum of phytosanitary action. Thus, the eco(geno)toxic effects of the new commercial mixture named Platinum Neo, as well as its constituents the neonicotinoid Thiamethoxam and the pyrethroid Lambda-Cyhalothrin, were investigated using the species Daphnia magna, Raphidocelis subcapitata, Danio rerio, and Allium cepa L. The lowest- and no-observed effect concentration (LOEC and NOEC) were measured in ecotoxicological tests. While Thiamethoxam was ecotoxic at ppm level, Lambda-Cyhalothrin and Platinum Neo formulation were ecotoxic at ppb level. The mitotic index (MI), chromosomal aberrations and micronucleus [MN] frequency were measured as indicators of phytogenotoxicity in A. cepa plants exposed for 12 h to the different insecticides and their mixture under different dilutions. There were significant alterations in the MI and MN frequency in comparison with the A. cepa negative control group, with Thiamethoxam, Lambda-Cyhalothrin, and Platinum Neo treatments all significantly reducing MI and increasing MN frequency. Thus, MI reduction was found at 13.7 mg L-1 for Thiamethoxam, 0.8 µg L-1 for Lambda-Cyahalothrin, and 2.7:2 µg L-1 for Platinum Neo, while MN induction was not observed at 14 mg L-1 for Thiamethoxam, 0.8 µg L-1 for Lambda-Cyahalothrin, and 1.4:1 µg L-1 for Platinum Neo. The insecticide eco(geno)toxicity hierarchy was Platinun Neo > Lambda-Cyhalothrin > Thiamethoxam, and the organism sensitivity hierarchy was daphnids > fish > algae > A. cepa. Eco(geno)toxicity studies of new pesticide mixtures can be useful for management, risk assessment, and avoiding impacts of these products on living beings.


Assuntos
Daphnia , Inseticidas , Nitrilas , Cebolas , Piretrinas , Tiametoxam , Piretrinas/toxicidade , Tiametoxam/toxicidade , Animais , Inseticidas/toxicidade , Nitrilas/toxicidade , Cebolas/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Neonicotinoides/toxicidade , Peixe-Zebra , Tiazóis/toxicidade , Oxazinas/toxicidade , Aberrações Cromossômicas/induzido quimicamente , Nitrocompostos/toxicidade , Testes para Micronúcleos
17.
Environ Sci Pollut Res Int ; 31(31): 44036-44048, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38922465

RESUMO

Fungicides are pesticides that are frequently used in agriculture because of their action against fungal diseases. However, the widespread application of pesticides around the world raises environmental and public health concerns, since these compounds are toxic and can pose risks to ecosystems and human health. The aim of this study was to evaluate the phytotoxic, cytogenotoxic, and biochemical effects of azoxystrobin and carbendazim on Lactuca sativa L. and their physiological effects on Phaseolus vulgaris L. by analyzing the cell cycle and chromosomal and nuclear alterations in L. sativa; the biochemical effects of azoxystrobin and carbendazim on Phaseolus vulgaris L. and their physiological effects on Phaseolus vulgaris L. by analyzing the cell cycle and chromosomal and nuclear alterations in L. sativa; the biochemical effects by analyzing the activity of antioxidant enzymes in L. sativa; and the physiological effects by analyzing chlorophyll content and chlorophyll a fluorescence in P. vulgaris. It was observed that both fungicides were phytotoxic and cytotoxic, reducing root growth and the mitotic index, cytogenotoxic, increasing the occurrence of chromosomal alterations, as well as inducing oxidative stress and an increase in chlorophyll fluorescence emission and altered energy absorption in the plants used as a test system. In view of this, studies such as the one presented here indicate that the use of pesticides, even in small quantities, can lead to damage to the metabolism of plant organisms.


Assuntos
Benzimidazóis , Carbamatos , Fungicidas Industriais , Lactuca , Phaseolus , Estrobilurinas , Phaseolus/efeitos dos fármacos , Estrobilurinas/toxicidade , Benzimidazóis/toxicidade , Fungicidas Industriais/toxicidade , Carbamatos/toxicidade , Lactuca/efeitos dos fármacos , Pirimidinas/toxicidade , Clorofila/metabolismo
18.
J Appl Toxicol ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840431

RESUMO

Steroids stand for a class of hormones (natural and synthetic) known to be helpful for a number of disorders. Despite the aforementioned beneficial effects of using these hormones, anabolic-androgenic steroids (AAS) are also widely abused in a non-therapeutic manner for muscle-building and strength-increasing properties that may lead to genotoxicity in different tissues. The present study aims to understand whether genotoxicity may be a suitable biomarker for AAS exposure in vivo in both experimental animal and human studies. All studies published in PubMed/Medline, Scopus, and Web of Science electronic databases that presented data on DNA damage caused by AAS were analyzed. A total of 15 articles were included in this study, and after thoroughly reviewing the studies, a total of 8 articles were classified as Strong, 6 were classified as Moderate, and only 1 was classified as Weak, totaling 14 studies being considered either Strong or Moderate. This classification makes it possible to consider the present findings as reliable. The meta-analysis data revealed a statistically significant difference in Wistar rat testis cells with AAS compared to control for tail length and % tail DNA (p < 0.001), so that the selected articles were considered homogeneous and the I2 of 0% indicated low heterogeneity. In summary, genotoxicity can be considered a suitable biomarker for monitoring AAS exposure as a result of DNA breakage and oxidative DNA damage.

19.
Methods Mol Biol ; 2825: 247-262, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38913314

RESUMO

Hodgkin lymphoma (HL) is one of the most common lymphomas, with an incidence of 3 per 100,000 persons. Current treatment uses a cocktail of genotoxic agents, including adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD), along with or without radiotherapy. This treatment regimen has proved to be efficient in killing cancer cells, resulting in HL patients having a survival rate of >90% cancer-free survival at five years. However, this therapy does not have a specific cell target, and it can induce damage in the genome of non-cancerous cells. Previous studies have shown that HL survivors often exhibit karyotypes characterized by complex chromosomal abnormalities that are difficult to analyze by conventional banding. Multicolor fluorescence in situ hybridization (M-FISH) is a powerful tool to analyze complex karyotypes; we used M-FISH to investigate the presence of chromosomal damage in peripheral blood lymphocytes from five healthy individuals and five HL patients before, during, and one year after anti-cancer treatment. Our results show that this anti-cancer treatment-induced genomic chaos that persists in the hematopoietic stem cells from HL patients one year after finishing therapy. This chromosomal instability may play a role in the occurrence of second primary cancers that are observed in 10% of HL survivors. This chapter will describe a protocol for utilizing M-FISH to study treatment-induced genome chaos in Hodgkin's lymphoma (HL) patients, following a brief discussion.


Assuntos
Doença de Hodgkin , Hibridização in Situ Fluorescente , Doença de Hodgkin/genética , Doença de Hodgkin/terapia , Humanos , Hibridização in Situ Fluorescente/métodos , Aberrações Cromossômicas/efeitos da radiação , Doxorrubicina/uso terapêutico , Genoma Humano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Instabilidade Cromossômica , Linfócitos/efeitos da radiação , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Bleomicina/uso terapêutico
20.
J Toxicol Environ Health A ; 87(17): 675-686, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38828979

RESUMO

The aviation sector is believed to be responsible for considerable environmental damage attributed to emission of a large number and amount of pollutants. Airports are often surrounded by forest fragments and humid areas that attract birds of prey and hence may potentially serve as useful bioindicators. The aim of the present study was to examine genotoxic potential in raptors exposed to airport pollution using the micronucleus (MN) test and morphological changes as evidenced by bilateral symmetry. This investigation was conducted at Salgado Filho International Airport of Porto Alegre - RS as well as in private and zoological breeding grounds. The presence of metals was measured in the blood cells of the collected birds. Seventeen birds (Caracara (Polyborus) plancus) were used in this study 11 from exposed and 6 from non-exposed group. The nuclear alterations clearly indicate that organisms exposed to airport pollution exhibited a significantly higher frequency of genetic damage compared to non-exposed birds. Further, manganese and chromium were detected exclusively in the blood of the exposed group. In contrast, the analysis of bilateral symmetry did not detect any significant morphologic differences between the two groups. Therefore, data indicate that blood genotoxic stress occurs in birds of prey living in civil aviation areas as evidenced by MN frequency increase and presence of manganese and chromium.


Assuntos
Aeroportos , Testes para Micronúcleos , Animais , Brasil , Monitoramento Ambiental , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Dano ao DNA , Núcleo Celular/efeitos dos fármacos , Aves Predatórias , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA