Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 955
Filtrar
1.
Sci Rep ; 14(1): 17845, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090173

RESUMO

The core of clinic treatment of Parkinson's disease (PD) is to enhance dopamine (DA) signaling within the brain. The regulation of dopamine transporter (DAT) is integral to this process. This study aims to explore the regulatory mechanism of glial cell line-derived neurotrophic factor (GDNF) on DAT, thereby gaining a profound understanding its potential value in treating PD. In this study, we investigated the effects of GDNF on both cellular and mouse models of PD, including the glycosylation and membrane transport of DAT detected by immunofluorescence and immunoblotting, DA signal measured by neurotransmitter fiber imaging technology, Golgi morphology observed by electron microscopic, as well as cognitive ability assessed by behavior tests. This study revealed that in animal trials, MPTP-induced Parkinson's Disease (PD) mice exhibited a marked decline in cognitive function. Utilizing ELISA and neurotransmitter fiber imaging techniques, we observed a decrease in dopamine levels and a significant reduction in the intensity of dopamine signal release in the Prefrontal Cortex (PFC) of PD mice induced by MPTP. Intriguingly, these alterations were reversed by Glial Cell Line-Derived Neurotrophic Factor (GDNF). In cellular experiments, following MPP + intervention, there was a decrease in Gly-DAT modification in both the cell membrane and cytoplasm, coupled with an increase in Nongly-DAT expression and aggregation of DAT within the cytoplasm. Conversely, GDNF augmented DAT glycosylation and facilitated its membrane transport in damaged dopaminergic neurons, concurrently reversing the effects of GRASP65 depletion and Golgi fragmentation, thereby reducing the accumulation of DAT in the Golgi apparatus. Furthermore, overexpression of GRASP65 enhanced DAT transport in PD cells and mice, while suppression of GRASP65 attenuated the efficacy of GDNF on DAT. Additionally, GDNF potentiated the reutilization of neurotransmitters by the PFC presynaptic membrane, boosting the effective release of dopamine following a single electrical stimulation, ultimately ameliorating the cognitive impairments in PD mice.Therefore, we propose that GDNF enhances the glycosylation and membrane trafficking of DAT by facilitating the re-aggregation of the Golgi apparatus, thereby amplifying the utilization of DA signals. This ultimately leads to the improvement of cognitive abilities in PD mouse models. Our study illuminates, from a novel angle, the beneficial role of GDNF in augmenting DA utilization and cognitive function in PD, providing fresh insights into its therapeutic potential.


Assuntos
Cognição , Proteínas da Membrana Plasmática de Transporte de Dopamina , Dopamina , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Glicosilação , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Camundongos , Cognição/efeitos dos fármacos , Dopamina/metabolismo , Masculino , Doença de Parkinson/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Membrana Celular/metabolismo , Córtex Pré-Frontal/metabolismo
2.
Poult Sci ; 103(10): 104070, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39094494

RESUMO

Enteric glial cell (EGC) is involved in neuroimmune regulation within the enteric nervous system (ENS); however, limited information exists on the distribution and ultrastructure of EGC in the poultry gut. We aim to investigate the morphological features and distribution of EGC in the chicken cecum. Here, we investigated the distribution and ultrastructural features of chicken cecum EGC using immunohistochemistry (IHC) and transmission electron microscopy (TEM). IHC showed that EGC was widely distributed throughout the chicken cecum. In the mucosal layer, EGC was morphologically irregular, with occasionally interconnecting protrusions that outlined signal-negative neurons. The morphology of EGC in the submucosal layer was also irregular. In the inner circular muscle layer and between the inner circular and outer longitudinal muscle layers, EGC aligned parallel to the circular muscle cells. A small number of EGC with an irregular morphology were found in the outer longitudinal muscle layer. In addition, in the submucosal and myenteric plexus, EGC were aggregated, and the protrusions of the immunoreactive cells interconnected to outline the bodies of nonreactive neurons. TEM-guided ultrastructural characterization confirmed the IHC findings that EGC were morphologically irregular and revealed they developed either a star, bipolar, or fibrous shape. The nucleus was also irregular, with electron-dense heterochromatin distributed in the center of the nucleus or on the nuclear membrane. The cytoplasm contained many glial filaments and vesicle-containing protrusions from neuronal cells; organelles were rare. EGC was in close contact with other cells in their vicinity. These findings suggest that EGC is well-situated to exert influence on intestinal motility and immune functions through mechanical contraction and chemical secretion.

3.
Inflamm Res ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095656

RESUMO

BACKGROUND AND OBJECTIVE: Neuropathic pain is a chronic condition characterized by aberrant signaling within the somatosensory system, affecting millions of people worldwide with limited treatment options. Herein, we aim at investigating the potential of a sigma-1 receptor (σ1R) antagonist in managing neuropathic pain. METHODS: A Chronic Constriction Injury (CCI) model was used to induce neuropathic pain. The potential of (+)-MR200 was evaluated following daily subcutaneous injections of the compound. Its mechanism of action was confirmed by administration of a well-known σ1R agonist, PRE084. RESULTS: (+)-MR200 demonstrated efficacy in protecting neurons from damage and alleviating pain hypersensitivity in CCI model. Our results suggest that (+)-MR200 reduced the activation of astrocytes and microglia, cells known to contribute to the neuroinflammatory process, suggesting that (+)-MR200 may not only address pain symptoms but also tackle the underlying cellular mechanism involved. Furthermore, (+)-MR200 treatment normalized levels of the gap junction (GJ)-forming protein connexin 43 (Cx43), suggesting a reduction in harmful intercellular communication that could fuel the chronicity of pain. CONCLUSIONS: This approach could offer a neuroprotective strategy for managing neuropathic pain, addressing both pain symptoms and cellular processes driving the condition. Understanding the dynamics of σ1R expression and function in neuropathic pain is crucial for clinical intervention.

4.
J Transl Med ; 22(1): 770, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143617

RESUMO

BACKGROUND: Satellite glial cells (SGCs) in the dorsal root ganglia (DRG) play a pivotal role in the formation of neuropathic pain (NP). Sciatic nerve stimulation (SNS) neuromodulation was reported to alleviate NP and reduce neuroinflammation. However, the mechanisms underlying SNS in the DRG remain unclear. This study aimed to elucidate the mechanism of electric stimulation in reducing NP, focusing on the DRG. METHODS: L5 nerve root ligation (NRL) NP rat model was studied. Ipsilateral SNS performed 1 day after NRL. Behavioral tests were performed to assess pain phenotypes. NanoString Ncounter technology was used to explore the differentially expressed genes and cellular pathways. Activated SGCs were characterized in vivo and in vitro. The histochemical alterations of SGCs, macrophages, and neurons in DRG were examined in vivo on post-injury day 8. RESULTS: NRL induced NP behaviors including decreased pain threshold and latency on von Frey and Hargreaves tests. We found that following nerve injury, SGCs were hyperactivated, neurotoxic and had increased expression of NP-related ion channels including TRPA1, Cx43, and SGC-neuron gap junctions. Mechanistically, nerve injury induced reciprocal activation of SGCs and M1 macrophages via cytokines including IL-6, CCL3, and TNF-α mediated by the HIF-1α-NF-κB pathways. SNS suppressed SGC hyperactivation, reduced the expression of NP-related ion channels, and induced M2 macrophage polarization, thereby alleviating NP and associated neuroinflammation in the DRG. CONCLUSIONS: NRL induced hyperactivation of SGCs, which had increased expression of NP-related ion channels. Reciprocal activation of SGCs and M1 macrophages surrounding the primary sensory neurons was mediated by the HIF-1α and NF-κB pathways. SNS suppressed SGC hyperactivation and skewed M1 macrophage towards M2. Our findings establish SGC activation as a crucial pathomechanism in the gliopathic alterations in NP, which can be modulated by SNS neuromodulation.


Assuntos
Modelos Animais de Doenças , Gânglios Espinais , Neuralgia , Doenças Neuroinflamatórias , Ratos Sprague-Dawley , Nervo Isquiático , Animais , Gânglios Espinais/metabolismo , Neuralgia/terapia , Neuralgia/metabolismo , Masculino , Doenças Neuroinflamatórias/metabolismo , Nervo Isquiático/patologia , Macrófagos/metabolismo , Neuroglia/metabolismo , Ratos , Comportamento Animal
5.
Cancer Sci ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992968

RESUMO

Cancer brain metastasis has a poor prognosis, is commonly observed in clinical practice, and the number of cases is increasing as overall cancer survival improves. However, experiments in mouse models have shown that brain metastasis itself is an inefficient process. One reason for this inefficiency is the brain microenvironment, which differs significantly from that of other organs, making it difficult for cancer cells to adapt. The brain microenvironment consists of unique resident cell types such as neurons, oligodendrocytes, astrocytes, and microglia. Accumulating evidence over the past decades suggests that the interactions between cancer cells and glial cells can positively or negatively influence the development of brain metastasis. Nevertheless, elucidating the complex interactions between cancer cells and glial cells remains challenging, in part due to the limitations of existing experimental models for glial cell culture. In this review, we first provide an overview of glial cell culture methods and then examine recent discoveries regarding the interactions between brain metastatic cancer cells and the surrounding glial cells, with a special focus on astrocytes and microglia. Finally, we discuss future perspectives for understanding the multifaceted interactions between cancer cells and glial cells for the treatment of metastatic brain tumors.

6.
Cells ; 13(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38995011

RESUMO

Unsuccessful axonal regeneration in transected spinal cord injury (SCI) is mainly attributed to shortage of growth factors, inhibitory glial scar, and low intrinsic regenerating capacity of severely injured neurons. Previously, we constructed an axonal growth permissive pathway in a thoracic hemisected injury by transplantation of Schwann cells overexpressing glial-cell-derived neurotrophic factor (SCs-GDNF) into the lesion gap as well as the caudal cord and proved that this novel permissive bridge promoted the regeneration of descending propriospinal tract (dPST) axons across and beyond the lesion. In the current study, we subjected rats to complete thoracic (T11) spinal cord transections and examined whether these combinatorial treatments can support dPST axons' regeneration beyond the transected injury. The results indicated that GDNF significantly improved graft-host interface by promoting integration between SCs and astrocytes, especially the migration of reactive astrocyte into SCs-GDNF territory. The glial response in the caudal graft area has been significantly attenuated. The astrocytes inside the grafted area were morphologically characterized by elongated and slim process and bipolar orientation accompanied by dramatically reduced expression of glial fibrillary acidic protein. Tremendous dPST axons have been found to regenerate across the lesion and back to the caudal spinal cord which were otherwise difficult to see in control groups. The caudal synaptic connections were formed, and regenerated axons were remyelinated. The hindlimb locomotor function has been improved.


Assuntos
Axônios , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Regeneração Nervosa , Células de Schwann , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Células de Schwann/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Axônios/metabolismo , Ratos , Ratos Sprague-Dawley , Feminino , Astrócitos/metabolismo
7.
Glia ; 72(10): 1840-1861, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38961612

RESUMO

The peripheral nervous system is a key regulator of cancer progression. In pancreatic ductal adenocarcinoma (PDAC), the sympathetic branch of the autonomic nervous system inhibits cancer development. This inhibition is associated with extensive sympathetic nerve sprouting in early pancreatic cancer precursor lesions. However, the underlying mechanisms behind this process remain unclear. This study aimed to investigate the roles of pancreatic Schwann cells in the structural plasticity of sympathetic neurons. We examined the changes in the number and distribution of Schwann cells in a transgenic mouse model of PDAC and in a model of metaplastic pancreatic lesions induced by chronic inflammation. Schwann cells proliferated and expanded simultaneously with new sympathetic nerve sprouts in metaplastic/neoplastic pancreatic lesions. Sparse genetic labeling showed that individual Schwann cells in these lesions had a more elongated and branched structure than those under physiological conditions. Schwann cells overexpressed neurotrophic factors, including glial cell-derived neurotrophic factor (GDNF). Sympathetic neurons upregulated the GDNF receptors and exhibited enhanced neurite growth in response to GDNF in vitro. Selective genetic deletion of Gdnf in Schwann cells completely blocked sympathetic nerve sprouting in metaplastic pancreatic lesions in vivo. This study demonstrated that pancreatic Schwann cells underwent adaptive reprogramming during early cancer development, supporting a protective antitumor neuronal response. These finding could help to develop new strategies to modulate cancer associated neural plasticity.


Assuntos
Camundongos Transgênicos , Neoplasias Pancreáticas , Células de Schwann , Animais , Células de Schwann/metabolismo , Células de Schwann/patologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Camundongos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Reprogramação Celular/fisiologia , Pâncreas/patologia , Pâncreas/inervação , Pâncreas/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Neurônios/patologia , Camundongos Endogâmicos C57BL
8.
J Neuroinflammation ; 21(1): 169, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961424

RESUMO

BACKGROUND: Understanding the mechanism behind sepsis-associated encephalopathy (SAE) remains a formidable task. This study endeavors to shed light on the complex cellular and molecular alterations that occur in the brains of a mouse model with SAE, ultimately unraveling the underlying mechanisms of this condition. METHODS: We established a murine model using intraperitoneal injection of lipopolysaccharide (LPS) in wild type and Anxa1-/- mice and collected brain tissues for analysis at 0-hour, 12-hour, 24-hour, and 72-hour post-injection. Utilizing advanced techniques such as single-nucleus RNA sequencing (snRNA-seq) and Stereo-seq, we conducted a comprehensive characterization of the cellular responses and molecular patterns within the brain. RESULTS: Our study uncovered notable temporal differences in the response to LPS challenge between Anxa1-/- (annexin A1 knockout) and wild type mice, specifically at the 12-hour and 24-hour time points following injection. We observed a significant increase in the proportion of Astro-2 and Micro-2 cells in these mice. These cells exhibited a colocalization pattern with the vascular subtype Vas-1, forming a distinct region known as V1A2M2, where Astro-2 and Micro-2 cells surrounded Vas-1. Moreover, through further analysis, we discovered significant upregulation of ligands and receptors such as Timp1-Cd63, Timp1-Itgb1, Timp1-Lrp1, as well as Ccl2-Ackr1 and Cxcl2-Ackr1 within this region. In addition, we observed a notable increase in the expression of Cd14-Itgb1, Cd14-Tlr2, and Cd14-C3ar1 in regions enriched with Micro-2 cells. Additionally, Cxcl10-Sdc4 showed broad upregulation in brain regions containing both Micro-2 and Astro-2 cells. Notably, upon LPS challenge, there was an observed increase in Anxa1 expression in the mouse brain. Furthermore, our study revealed a noteworthy increase in mortality rates following Anxa1 knockdown. However, we did not observe substantial differences in the types, numbers, or distribution of other brain cells between Anxa1-/- and wildtype mice over time. Nevertheless, when comparing the 24-hour post LPS injection time point, we observed a significant decrease in the proportion and distribution of Micro-2 and Astro-2 cells in the vicinity of blood vessels in Anxa1-/- mice. Additionally, we noted reduced expression levels of several ligand-receptor pairs including Cd14-Tlr2, Cd14-C3ar1, Cd14-Itgb1, Cxcl10-Sdc4, Ccl2-Ackr1, and Cxcl2-Ackr1. CONCLUSIONS: By combining snRNA-seq and Stereo-seq techniques, our study successfully identified a distinctive cellular colocalization, referred to as a special pathological niche, comprising Astro-2, Micro-2, and Vas-1 cells. Furthermore, we observed an upregulation of ligand-receptor pairs within this niche. These findings suggest a potential association between this cellular arrangement and the underlying mechanisms contributing to SAE or the increased mortality observed in Anxa1 knockdown mice.


Assuntos
Astrócitos , Encéfalo , Modelos Animais de Doenças , Lipopolissacarídeos , Camundongos Knockout , Microglia , Encefalopatia Associada a Sepse , Animais , Camundongos , Lipopolissacarídeos/toxicidade , Encefalopatia Associada a Sepse/patologia , Encefalopatia Associada a Sepse/genética , Encefalopatia Associada a Sepse/metabolismo , Microglia/metabolismo , Microglia/patologia , Encéfalo/patologia , Encéfalo/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Análise de Sequência de RNA/métodos , Camundongos Endogâmicos C57BL , Transcriptoma , Masculino
9.
Neuron ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39019043

RESUMO

Here, we establish that plasticity exists within the postnatal enteric nervous system by demonstrating the reinnervation potential of post-mitotic enteric neurons (ENs). Employing BAF53b-Cre mice for selective neuronal tracing, the reinnervation capabilities of mature postnatal ENs are shown across multiple model systems. Isolated ENs regenerate neurites in vitro, with neurite complexity and direction influenced by contact with enteric glial cells (EGCs). Nerve fibers from transplanted ENs exclusively interface and travel along EGCs within the muscularis propria. Resident EGCs persist after Cre-dependent ablation of ENs and govern the architecture of the myenteric plexus for reinnervating ENs, as shown by nerve fiber projection tracing. Transplantation and optogenetic experiments in vivo highlight the rapid reinnervation potential of post-mitotic neurons, leading to restored gut muscle contractile activity within 2 weeks. These studies illustrate the structural and functional reinnervation capacity of post-mitotic ENs and the critical role of EGCs in guiding and patterning their trajectories.

10.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928162

RESUMO

Polyamine (PA) spermidine (SPD) plays a crucial role in aging. Since SPD accumulates in glial cells, particularly in Müller retinal cells (MCs), the expression of the SPD-synthesizing enzyme spermidine synthase (SpdS) in Müller glia and age-dependent SpdS activity are not known. We used immunocytochemistry, Western blot (WB), and image analysis on rat retinae at postnatal days 3, 21, and 120. The anti-glutamine synthetase (GS) antibody was used to identify glial cells. In the neonatal retina (postnatal day 3 (P3)), SpdS was expressed in almost all progenitor cells in the neuroblast. However, by day 21 (P21), the SpdS label was pronouncedly expressed in multiple neurons, while GS labels were observed only in radial Müller glial cells. During early cell adulthood, at postnatal day 120 (P120), SpdS was observed solely in ganglion cells and a few other neurons. Western blot and semi-quantitative analyses of SpdS labeling showed a dramatic decrease in SpdS at P21 and P120 compared to P3. In conclusion, the redistribution of SpdS with aging indicates that SPD is first synthesized in all progenitor cells and then later in neurons, but not in glia. However, MCs take up and accumulate SPD, regardless of the age-associated decrease in SPD synthesis in neurons.


Assuntos
Células Ependimogliais , Retina , Espermidina Sintase , Animais , Ratos , Espermidina Sintase/metabolismo , Espermidina Sintase/genética , Retina/metabolismo , Células Ependimogliais/metabolismo , Envelhecimento/metabolismo , Espermidina/metabolismo , Neuroglia/metabolismo , Animais Recém-Nascidos
11.
J Biol Chem ; 300(7): 107477, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38879014

RESUMO

Thyroid hormone (TH) is a critical regulator of cellular function and cell fate. The circulating TH level is relatively stable, while tissue TH action fluctuates according to cell type-specific mechanisms. Here, we focused on identifying mechanisms that regulate TH action through the type 2 deiodinase (D2) in glial cells. Dio2 mRNA has an unusually long 3'UTR where we identified multiple putative MSI1 binding sites for Musashi-1 (MSI1), a highly conserved RNA-binding cell cycle regulator. Binding to these sites was confirmed through electrophoretic mobility shift assay. In H4 glioma cells, shRNA-mediated MSI1 knockdown increased endogenous D2 activity, whereas MSI1 overexpression in HEK293T cells decreased D2 expression. This latter effect could be prevented by the deletion of a 3.6 kb region of the 3'UTR of Dio2 mRNA containing MSI1 binding sites. MSI1 immunoreactivity was observed in 2 mouse Dio2-expressing cell types, that is, cortical astrocytes and hypothalamic tanycytes, establishing the anatomical basis for a potential in vivo interaction of Dio2 mRNA and MSl1. Indeed, increased D2 expression was observed in the cortex of mice lacking MSI1 protein. Furthermore, MSI1 knockdown-induced D2 expression slowed down cell proliferation by 56% in primary cultures of mouse cortical astrocytes, establishing the functionality of the MSI1-D2-T3 pathway. In summary, Dio2 mRNA is a target of MSI1 and the MSI1-D2-T3 pathway is a novel regulatory mechanism of astrocyte proliferation with the potential to regulate the pathogenesis of human glioblastoma.


Assuntos
Astrócitos , Proliferação de Células , Iodotironina Desiodinase Tipo II , Proteínas do Tecido Nervoso , Proteínas de Ligação a RNA , Animais , Humanos , Camundongos , Regiões 3' não Traduzidas , Astrócitos/metabolismo , Astrócitos/citologia , Linhagem Celular Tumoral , Células HEK293 , Iodeto Peroxidase/metabolismo , Iodeto Peroxidase/genética , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/genética
12.
Environ Pollut ; 356: 124359, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38866317

RESUMO

Aflatoxin B1 (AFB1) and T-2 toxin are commonly found in animal feed and stored grain, posing a serious threat to human and animal health. Mycotoxins can penetrate brain tissue by compromising the blood-brain barrier, triggering oxidative stress and neuroinflammation, and leading to oxidative damage and apoptosis of brain cells. The potential neurotoxic mechanisms of AFB1 and T-2 toxin were discussed by summarizing the relevant research reports from the past ten years. AFB1 and T-2 toxin cause neuronal damage in the cerebral cortex and hippocampus, leading to synaptic transmission dysfunction, ultimately impairing the nervous system function of the body. The toxic mechanism is related to excessive reactive oxygen species (ROS), oxidative stress, mitochondrial dysfunction, apoptosis, autophagy, and an exaggerated inflammatory response. After passing through the blood-brain barrier, toxins can directly affect glial cells, alter the activation state of microglia and astrocytes, thereby promoting brain inflammation, disrupting the blood-brain barrier, and influencing the synaptic transmission process. We discussed the diverse effects of various concentrations of toxins and different modes of exposure on neurotoxicity. In addition, toxins can also cross the placental barrier, causing neurotoxic symptoms in offspring, as demonstrated in various species. Our goal is to uncover the underlying mechanisms of the neurotoxicity of AFB1 and T-2 toxin and to provide insights for future research, including investigating the impact of mycotoxins on interactions between microglia and astrocytes.


Assuntos
Aflatoxina B1 , Barreira Hematoencefálica , Toxina T-2 , Aflatoxina B1/toxicidade , Toxina T-2/toxicidade , Humanos , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Micotoxinas/toxicidade , Espécies Reativas de Oxigênio/metabolismo
13.
Genes (Basel) ; 15(5)2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38790254

RESUMO

Pathogenic variants in the Crumbs homolog 1 (CRB1) gene lead to severe, childhood-onset retinal degeneration leading to blindness in early adulthood. There are no approved therapies, and traditional adeno-associated viral vector-based gene therapy approaches are challenged by the existence of multiple CRB1 isoforms. Here, we describe three CRB1 variants, including a novel, previously unreported variant that led to retinal degeneration. We offer a CRISPR-Cas-mediated DNA base editing strategy as a potential future therapeutic approach. This study is a retrospective case series. Clinical and genetic assessments were performed, including deep phenotyping by retinal imaging. In silico analyses were used to predict the pathogenicity of the novel variant and to determine whether the variants are amenable to DNA base editing strategies. Case 1 was a 24-year-old male with cone-rod dystrophy and retinal thickening typical of CRB1 retinopathy. He had a relatively preserved central outer retinal structure and a best corrected visual acuity (BCVA) of 60 ETDRS letters in both eyes. Genetic testing revealed compound heterozygous variants in exon 9: c.2843G>A, p.(Cys948Tyr) and a novel variant, c.2833G>A, p.(Gly945Arg), which was predicted to likely be pathogenic by an in silico analysis. Cases 2 and 3 were two brothers, aged 20 and 24, who presented with severe cone-rod dystrophy and a significant disruption of the outer nuclear layers. The BCVA was reduced to hand movements in both eyes in Case 2 and to 42 ETDRS letters in both eyes in Case 3. Case 2 was also affected with marked cystoid macular lesions, which are common in CRB1 retinopathy, but responded well to treatment with oral acetazolamide. Genetic testing revealed two c.2234C>T, p.(Thr745Met) variants in both brothers. As G-to-A and C-to-T variants, all three variants are amenable to adenine base editors (ABEs) targeting the forward strand in the Case 1 variants and the reverse strand in Cases 2 and 3. Available PAM sites were detected for KKH-nSaCas9-ABE8e for the c.2843G>A variant, nSaCas9-ABE8e and KKH-nSaCas9-ABE8e for the c.2833G>A variant, and nSpCas9-ABE8e for the c.2234C>T variant. In this case series, we report three pathogenic CRB1 variants, including a novel c.2833G>A variant associated with early-onset cone-rod dystrophy. We highlight the severity and rapid progression of the disease and offer ABEs as a potential future therapeutic approach for this devastating blinding condition.


Assuntos
Sistemas CRISPR-Cas , Proteínas do Olho , Edição de Genes , Proteínas de Membrana , Proteínas do Tecido Nervoso , Humanos , Masculino , Edição de Genes/métodos , Proteínas de Membrana/genética , Adulto Jovem , Proteínas do Olho/genética , Proteínas do Tecido Nervoso/genética , Adulto , Distrofias de Cones e Bastonetes/genética , Distrofias de Cones e Bastonetes/patologia , Feminino , Simulação por Computador , Terapia Genética/métodos , Estudos Retrospectivos
14.
Neurotherapeutics ; 21(4): e00370, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38704311

RESUMO

Hemorrhage-induced injury of the corticospinal tract (CST) in the internal capsule (IC) causes severe neurological dysfunction in both human patients and rodent models of intracerebral hemorrhage (ICH). A nuclear receptor Nurr1 (NR4A2) is known to exert anti-inflammatory and neuroprotective effects in several neurological disorders. Previously we showed that Nurr1 ligands prevented CST injury and alleviated neurological deficits after ICH in mice. To prove direct effect of Nurr1 on CST integrity, we examined the effect of Nurr1 overexpression in neurons of the primary motor cortex on pathological consequences of ICH in mice. ICH was induced by intrastriatal injection of collagenase type VII, where hematoma invaded into IC. Neuron-specific overexpression of Nurr1 was induced by microinjection of synapsin I promoter-driven adeno-associated virus (AAV) vector into the primary motor cortex. Nurr1 overexpression significantly alleviated motor dysfunction but showed only modest effect on sensorimotor dysfunction after ICH. Nurr1 overexpression also preserved axonal structures in IC, while having no effect on hematoma-associated inflammatory events, oxidative stress, and neuronal death in the striatum after ICH. Immunostaining revealed that Nurr1 overexpression increased the expression of Ret tyrosine kinase and phosphorylation of Akt and ERK1/2 in neurons in the motor cortex. Moreover, administration of Nurr1 ligands 1,1-bis(3'-indolyl)-1-(p-chlorophenyl)methane or amodiaquine increased phosphorylation levels of Akt and ERK1/2 as well as expression of glial cell line-derived neurotrophic factor and Ret genes in the cerebral cortex. These results suggest that the therapeutic effect of Nurr1 on striatal ICH is attributable to the preservation of CST by acting on cortical neurons.

15.
J Autoimmun ; 147: 103256, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788538

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with the loss of dopaminergic neurons and neuroinflammation. Recent studies have identified a role of T cells in the pathogenesis of PD. Additionally, these studies suggested that α-synuclein (α-Syn) is related to abnormal T-cell responses and may act as an epitope and trigger autoimmune T-cell responses. However, it is unclear whether the α-Syn-mediated autoimmune response occurs and whether it is related to neuronal cell death and glial cell activation. In this study, we investigated the autoimmune T-cell response induced by α-Syn peptides and evaluated the neurotoxic effect of the α-Syn peptide-mediated autoimmune response. The immunization of mice with α-Syn peptides resulted in enhanced autoimmune responses, such as the peptide recall response, polarization toward Th1/Th17 cells, and regulatory T cell imbalance. Furthermore, the α-Syn autoimmune response led to the death of primary neurons cocultured with splenocytes. Treatment with conditioned media from α-Syn peptide-immunized splenocytes induced microglia and toxic A1-type astrocyte activation. Taken together, our results provide evidence of the potential role of the α-Syn-initiated autoimmune response and its contribution to neuronal cell death and glial cell activation.


Assuntos
Autoimunidade , Morte Celular , Neurônios , alfa-Sinucleína , Animais , alfa-Sinucleína/imunologia , alfa-Sinucleína/metabolismo , Camundongos , Morte Celular/efeitos dos fármacos , Neurônios/imunologia , Neurônios/metabolismo , Neurônios/patologia , Neuroglia/imunologia , Neuroglia/metabolismo , Neuroglia/efeitos dos fármacos , Doença de Parkinson/imunologia , Doença de Parkinson/patologia , Doença de Parkinson/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Ativação Linfocitária/imunologia , Ativação Linfocitária/efeitos dos fármacos , Peptídeos/imunologia , Células Cultivadas , Feminino , Linfócitos T Reguladores/imunologia
16.
Neurol Sci ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795270

RESUMO

Parkinson's disease (PD) is a chronic neurological disorder that is identified by a characteristic combination of symptoms such as bradykinesia, resting tremor, rigidity, and postural instability. It is the second most common neurodegenerative disease after Alzheimer's disease and is characterized by the progressive loss of dopamine-producing neurons in the brain. Currently, available treatments for PD are symptomatic and do not prevent the disease pathology. There is growing interest in developing disease-modifying therapy that can reduce disease progression and improve patients' quality of life. One of the promising therapeutic approaches under evaluation is gene therapy utilizing a viral vector, adeno-associated virus (AAV), to deliver transgene of interest into the central nervous system (CNS). Preclinical studies in small animals and nonhuman primates model of PD have shown promising results utilizing the gene therapy that express glial cell line-derived neurotrophic factor (GDNF), cerebral dopamine neurotrophic factor (CDNF), aromatic L-amino acid decarboxylase (AADC), and glutamic acid decarboxylase (GAD). This study provides a comprehensive review of the current state of the above-mentioned gene therapies in various phases of clinical trials for PD treatment. We have highlighted the rationale for the gene-therapy approach and the findings from the preclinical and nonhuman primates studies, evaluating the therapeutic effect, dose safety, and tolerability. The challenges associated with gene therapy for heterogeneous neurodegenerative diseases, such as PD, have also been described. In conclusion, the review identifies the ongoing promising gene therapy approaches in clinical trials and provides hope for patients with PD.

17.
Reumatologia ; 62(2): 94-100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799779

RESUMO

Introduction: Glial cell derived neurotrophic factor (GDNF) has an important role in the pathogenetic mechanisms and clinical manifestations of rheumatoid arthritis (RA). Alexithymia is associated with a severe clinical course and worse prognosis, while the relationship between alexithymia and GDNF in RA patients has not been investigated before. The aims of the study were to investigate the GDNF level in blood plasma in RA patients depending on the presence of alexithymia and to evaluate the relationship of GDNF level with clinical manifestation and quality of life. Material and methods: Fifteen men and 73 women with RA were examined using the Disease Activity Score with 28-joint count (DAS28) with erythrocyte sedimentation rate (ESR) index, the Simple Disease Activity Index (SDAI), the Rheumatoid Arthritis Clinical Disease Activity Index (CDAI), the Visual Analogue Scale (according to the assessment of the patient - VAS-P and the assessment of the doctor - VAS-D), the Health Assessment Questionnaire (HAQ), the Toronto Alexithymia Scale (TAS-20), the Disability Rating Index (DRI) and SF-36 indexes. Glial cell derived neurotrophic factor level in the blood plasma was determined by enzyme-linked immunosorbent assay (ELISA). Results: Forty percent of RA patients had alexithymia. Glial cell derived neurotrophic factor level in the examined patients was 3.73 ±2.59 pg/ml, in patients with alexithymia 4.08 ±2.87 pg/ml, without alexithymia 3.48 ±2.37 pg/ml (p = 0.295). Patients with alexithymia had a higher erythrocyte sedimentation rate (ESR) and index scores than patients without alexithymia - ESR: 34.29 ±14.22 vs. 22.73 ±12.03 mm/h (p = 0.017), DAS28: 6.53 ±0.66 vs. 6.09 ±0.55 (p = 0.017), VAS-D: 7.19 ±0.81 vs. 6.53 ±0.83 (p = 0.020), HAQ: 1.78 ±0.58 vs. 1.51 ±0.54 (p = 0.040). Also they had worse SF-36 indicators - physical functioning: 39.52 ±13.78 vs. 51.00 ±14.90 (p = 0.019), role functioning due to physical condition: 30.95 ±20.77 vs. 46.67 ±24.76 (p = 0.041), physical component of health: 31.47 ±11.44 vs. 41.61 ±15.88 (p = 0.028). In patients with alexithymia, a correlation was found between the GDNF level and severity of pain according to VAS-P: rS = 0.338, p = 0.044, and VAS-D: rS = 0.446, p = 0.006. Conclusions: Alexithymia was found in 40% of RA patients. Rheumatoid arthritis patients with alexithymia had a nonsignificantly higher GDNF level compared to patients without alexithymia. In RA patients with alexithymia, an association of GDNF level in the blood plasma with RA activity, loss of functional capacity and reduced quality of life was established. Alexithymia in RA patients is an important factor in the clinical manifestation of RA and modification of the pathophysiological role of GDNF.

18.
Neurochem Int ; 177: 105765, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38750960

RESUMO

BACKGROUND: Perioperative neurocognitive disorders (PND) are common complications after surgery in older patients. However, the specific mechanism of this condition remains unclear. Glial cell line-derived neurotrophic factor (GDNF) is an important neurotrophin that abundantly expressed throughout the brain. It can enhance synaptic plasticity and alleviate learning and memory impairments. Thus, the purpose of this study was to investigate the role of GDNF in PND and the mechanisms involved. METHODS: The PND animal model was established by performing left tibial fracture surgery on 18-month-old C57BL/6 mice under sevoflurane anesthesia. Recombinant adeno-associated virus (rAAV)-GDNF or empty vectors were injected bilaterally into the hippocampal CA1 region of aged mice 3 weeks before anesthesia/surgery. The open field and fear conditioning test were used to assess the behavior changes. Golgi staining and electrophysiology were utilized to evaluate the morphological and functional alterations of neuronal synaptic plasticity. Western blot analysis was carried out to measure the proteins expression levels and immunofluorescence staining was performed to probe the cellular localization of GDNF. RESULTS: Mice with surgery and anesthesia showed a significant decrease in hippocampus-dependent learning and memory, accompanied by a decline in hippocampal synaptic plasticity. Anesthesia/surgery induced a reduction of GDNF, which was colocalized with astrocytes. Overexpression of GDNF in astrocytes could ameliorate the decline in cognitive function by improving hippocampal synaptic plasticity, meanwhile astrocytic GDNF rescued the anesthesia/surgery-induced decrease in GFRα1 and NCAM. CONCLUSION: The study concludes that astrocytic GDNF may improve anesthesia/surgery-induced cognitive impairment by promoting hippocampal synaptic plasticity in aged mice via the GFRα1/NCAM pathway.


Assuntos
Astrócitos , Disfunção Cognitiva , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Hipocampo , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Camundongos , Astrócitos/metabolismo , Masculino , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Disfunção Cognitiva/metabolismo , Envelhecimento , Anestesia
19.
Brain Res ; 1838: 148976, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705557

RESUMO

Central poststroke pain (CPSP) is a type of central neuropathic pain whose mechanisms remain unknown. Recently, we showed that activated astrocytes and microglial cells are present in the spinal cord of CPSP model mice. Activated glial cells exacerbate cerebral ischemic pathology by increasing the expression of inflammatory factors. However, the involvement of spinal glial cells in CPSP remains unknown. We hypothesized that spinal glial cell-derived molecules cause hyperexcitability or promoted the development of CPSP. In this study, we identified glial cell-derived factors involved in the development of CPSP using a bilateral common carotid occlusion (BCAO)-induced CPSP mouse model. Male ddY mice were subjected to BCAO for 30 min. The von Frey test assessed mechanical hypersensitivity in the right hind paw of mice. BCAO mice showed hypersensitivity to mechanical stimuli and astrocyte activation in the spinal cord 3 days after treatment. DNA microarray analysis revealed a significant increase in lipocalin 2 (LCN2), is known as neutrophil gelatinase-associated lipocalin, in the superficial dorsal horns of BCAO-induced CPSP model mice. LCN2 colocalized with GFAP, an astrocyte marker. Spinal GFAP-positive cells in BCAO mice co-expressed signal transducer and activator of transcription 3 (STAT3). The increase in the fluorescence intensity of LCN2 and GFAP in BCAO mice was suppressed by intrathecal injection of AG490, an inhibitor of JAK2 and downstream STAT3 activation, or anti-LCN2 antibody. Our findings indicated that LCN2 in spinal astrocytes may be a key molecule and may be partly involved in the development of CPSP.


Assuntos
Astrócitos , Modelos Animais de Doenças , Lipocalina-2 , Medula Espinal , Acidente Vascular Cerebral , Animais , Masculino , Lipocalina-2/metabolismo , Camundongos , Medula Espinal/metabolismo , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/complicações , Astrócitos/metabolismo , Fator de Transcrição STAT3/metabolismo , Neuralgia/metabolismo , Neuralgia/etiologia , Janus Quinase 2/metabolismo , Tirfostinas/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo
20.
Theriogenology ; 224: 1-8, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38714023

RESUMO

In mammals, glial cell derived neurotrophic factor (GDNF) plays a critical role in the self-renewal and maintenance of spermatogonial stem cells (SSCs) in testis and oogenesis in ovary, whilst retinoic acid (RA), the key factor of meiosis initiation, can downregulate its expression. Unlike mammals, two Gdnf replication genes are widely present in teleost fishes, however, our understanding of them is still poor. In the present study, two paralogous gdnf from Nile tilapia (Oreochromis niloticus), namely as Ongdnfa and Ongdnfb, were characterized, and then their cellular expression profiles in testis and ovary and responsiveness to RA treatment at the tissue and cellular levels were investigated. In phylogenetic tree, the Gdnfa and Gdnfb from teleost fishes were clustered into two different subclasses, respectively, and then clustered with the homologs from cartilaginous fish and tetrapods, suggesting that OnGdnfa and OnGdnfb are orthologous to GDNF and paralogous to each other. Ongdnfa is expressed in Sertoli cells and Leydig cells in testis and oocytes in ovary. The expression pattern of Ongdnfb is similar to Ongdnfa. In the ex vivo testicular organ culture, RA down-regulated the expression of Ongdnfa, whereas up-regulated the expression of Ongdnfb (P < 0.05), suggesting that they have differential responsiveness to RA signaling. RA treatment of the cultured cells derived from adult Nile tilapia testis which have the expression of RA receptors (RAR), Ongdnfa and Ongdnfb further confirmed the above result. Collectively, our study suggests that Ongdnfa and Ongdnfb have non-germline expression patterns in testis and germline expression patterns in ovary; furthermore, they have differential responsiveness to RA signaling, implying that they might have differential biological functions. This study broadens and enriches our understanding of fish GDNF homologs and lays foundation for the study of their biological functions in the future.


Assuntos
Ciclídeos , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Ovário , Testículo , Tretinoína , Animais , Tretinoína/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Masculino , Feminino , Ciclídeos/genética , Ciclídeos/metabolismo , Testículo/metabolismo , Testículo/efeitos dos fármacos , Ovário/metabolismo , Ovário/efeitos dos fármacos , Filogenia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA