Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1079-1087, 2024 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-38977337

RESUMO

OBJECTIVE: To investigate the protective effect of exogenous leptin against focal cerebral ischemia-reperfusion (I/R) injury in mice and explore the underlying mechanism. METHODS: A total of 100 C57BL/6 mice were randomly divided into 5 groups, including a sham-operated group, cerebral I/R model group, and 3 leptin treatment groups with intraperitoneal injections of 0.5, 1.0 or 2.0 leptin immediately after occlusion of the internal carotid artery. At 24 h after reperfusion, neurological function scores of the mice were assessed, and TTC staining was used to determine the area of cerebral infarction. The pathological changes in the cortical brain tissue of the mice were observed using HE staining, and degenerative damage of the cortical neurons were assessed with Fluoro-Jade C staining. The expression of glial fibrillary acidic protein in cortical brain tissues was detected using immunohistochemistry and Western blotting. In another 45 C57BL/6 mice with sham operation, I/R modeling, or leptin (1 mg/kg) treatment, glutamic acid in the cortical brain tissue was detected using glutamate assay, and cortical glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) protein expressions were detected using immunohistochemistry. RESULTS: Compared with the I/R model mice, the leptin-treated mice had significantly lower neurological deficit scores, smaller cerebral infarct area, milder pathologies in the cortical brain tissue, and lessened cortical neuronal damage with normal morphology and less excessive proliferation of the astrocytes. Leptin treatment significantly up-regulated the expressions of GLT-1 and GLAST and lowered the content of glutamic acid in the brain tissue of the I/R mice. CONCLUSION: Exogenous leptin has obvious neuroprotective effect against cerebral I/R injury in mice, mediated probably by controlling excessive astrocyte proliferation and up-regulating cortical GLT-1 and GLAST expressions to reduce glutamate-mediated excitotoxic injury of the astrocytes.


Assuntos
Astrócitos , Isquemia Encefálica , Transportador 1 de Aminoácido Excitatório , Transportador 2 de Aminoácido Excitatório , Ácido Glutâmico , Leptina , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão , Animais , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Leptina/metabolismo , Camundongos , Traumatismo por Reperfusão/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Isquemia Encefálica/metabolismo , Transportador 1 de Aminoácido Excitatório/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Regulação para Cima , Masculino , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Neurônios/metabolismo
2.
Front Netw Physiol ; 3: 1190240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383546

RESUMO

The low-density lipoprotein related protein receptor 1 (LRP1), also known as CD91 or α-Macroglobulin-receptor, is a transmembrane receptor that interacts with more than 40 known ligands. It plays an important biological role as receptor of morphogens, extracellular matrix molecules, cytokines, proteases, protease inhibitors and pathogens. In the CNS, it has primarily been studied as a receptor and clearance agent of pathogenic factors such as Aß-peptide and, lately, Tau protein that is relevant for tissue homeostasis and protection against neurodegenerative processes. Recently, it was found that LRP1 expresses the Lewis-X (Lex) carbohydrate motif and is expressed in the neural stem cell compartment. The removal of Lrp1 from the cortical radial glia compartment generates a strong phenotype with severe motor deficits, seizures and a reduced life span. The present review discusses approaches that have been taken to address the neurodevelopmental significance of LRP1 by creating novel, lineage-specific constitutive or conditional knockout mouse lines. Deficits in the stem cell compartment may be at the root of severe CNS pathologies.

3.
Front Neurosci ; 16: 885107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389227

RESUMO

Objective: Glial cells are involved in the analgesic effect of electroacupuncture (EA) in rats with chronic neurological pain. The objective of this study was to observe the role of neuronal-glial interaction and glutamate (Glu) transporters in EA-induced acute neck pain relief in rats. Materials and methods: Male rats were placed into the following five groups: control, model, EA Futu (LI18), EA Hegu (LI4)-Neiguan (PC6), and EA Zusanli (ST36)-Yanglingquan (GB34). The incisional neck pain model was established by making a longitudinal incision along the midline of the neck. The thermal pain threshold (TPT) was measured using a radiation heat detector. The immunoactivities of glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule 1 (Iba-1), neurokinin-1 receptor (NK-1R), Glu aspartate transporter (GLAST), and Glu transporter-1 (GLT-1) in the dorsal horns (DHs) of the cervico-spinal cord (C2-C5) were detected using immunofluorescence histochemistry. The expression levels of GFAP, Iba-1, GLAST, and GLT-1 mRNAs were determined using quantitative real-time polymerase chain reaction (PCR). Results: The TPT and levels of mRNAs expression and immunoactivity of GLT-1 and GLAST were significantly decreased, and those of Iba-1 and GFAP were significantly increased in the model group than those of the control group (P < 0.05). The activated microgliacytes were gathered around the NK-1R positive neurons, and co-expression of NK-1R and astrocytes was observed in the model group. EA LI18 significantly increased the TPT and expression of GLAST and GLT-1 mRNAs (P < 0.05) and notably decreased the number of Iba-1 positive cells and Iba-l mRNA expression (P < 0.05), whereas GLAST and GLT-1 antagonists inhibited the analgesic effect of EA LI18. However, these effects, except for the downregulation of Iba-1 mRNA, were not observed in the EA ST36-GB34 group. Fewer NK-1R-positive neurons were visible in the spinal DHs in the EA LI18 group, and the co-expression of NK-1R and astrocytes was also lower than that in the three EA groups. Conclusion: Electroacupuncture of LI18 had an analgesic effect in rats with neck incisions, which may be related to its functions in suppressing the neuronal-glial cell interaction through NK-1R and upregulating the expression of GLAST and GLT-1 in the spinal DHs.

4.
J Cell Physiol ; 237(7): 3044-3056, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35551669

RESUMO

Ischemic stroke is a common cerebral disease. However, the treatment for the disease is limited. Daurian ground squirrel (GS; Spermophilus dauricus), a hibernating mammalian species, is highly tolerant to ischemia. In the present study, GS neurons in a non-hibernating state were found to be more resistant to oxygen-glucose deprivation (OGD), an ischemic model in vitro. We leveraged the differences in the endurance capacity of GS and rats to investigate the mechanisms of resistance to ischemia in GS neurons. We first identified glutamate-aspartate transporter 1 (GLAST) as a cytoprotective factor that contributed to tolerance against OGD injury of GS neurons. The expression of GLAST in GS neurons was much higher than that in rat neurons. Overexpression of GLAST rescued viability in rat neurons, and GS neurons exhibited decreased viability following GLAST knockdown under OGD conditions. Mechanistically, more glutamate was transported into neurons after GLAST overexpression and served as substrates for ATP production. Furthermore, eukaryotic transcription initiation factor 4E binding protein 1 was downregulated by GLAST to rescue neuronal viability. Our findings not only revealed an important molecular mechanism underlying the survival of hibernating mammals but also suggested that neuronal GLAST may be a potential target for ischemic stroke therapy.


Assuntos
Transportador 1 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Animais , Células Cultivadas , Glucose/metabolismo , AVC Isquêmico/metabolismo , Oxigênio/metabolismo , Ratos , Sciuridae/fisiologia
5.
Biochem Biophys Rep ; 29: 101197, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35028438

RESUMO

Lighting conditions may affect the development of retinal degenerative diseases such as macular degeneration. In this study, to determine whether the lighting environment affects the progression of degeneration of retinal ganglion cells (RGCs), we examined glutamate/aspartate transporter (GLAST) heterozygous (GLAST+/-) mice, a mouse model of normal tension glaucoma. GLAST+/- mice were reared under a 12-h light-dark cycle (Light/Dark) or complete darkness (Dark/Dark) condition after birth. The total RGC number in the Dark/Dark group was significantly decreased compared with the Light/Dark group at 3 weeks old, while the number of osteopontin-positive αRGCs were similar in both groups. At 6 and 12 weeks old, the total RGC number were not significantly different in both conditions. In addition, the retinal function examined by multifocal electroretinogram were similar at 12 weeks old. These results suggest that lighting conditions may regulate the progression of RGC degeneration in some types of glaucoma.

6.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(5): 491-496, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37088758

RESUMO

OBJECTIVE: To investigate the effects of glutamate aspartate transporter (GLAST)deletion on the normal auditory function of mice. METHODS: We hybridized GLAST+/- mice with C57BL/6J background and identified the genotypes of their offspring by agarose gel electrophoresis. 9-10-week-old mice were selected to detect the expression of GLAST protein in the cochlea by immunofluorescence staining and to verify the knockout results(n=3). The changes in weight from 7 days to 30 days after birth and the 30-day body length of male and female mice were compared(n=8). The auditory brainstem response(ABR) was used to detect the auditory threshold and the amplitude of wave I in 9-10-week-old male and female mice(n=5). RESULTS: Male GLAST-/- mice had shown significantly lower weight and body length compared to male GLAST+/+ and GLAST+/- mice(P<0.01), and male GLAST-/- mice showed significant differences compared to GLAST+/+ from P7 to P30 statistical time. Male GLAST-/- mice exhibited a significant reduction in weight after P15 compared to male GLAST+/- mice. In contrast, no significant differences in weight and body length were observed in female GLAST-/- mice compared with female GLAST+/+ and GLAST+/- mice. There was no difference in the hearing threshold detected by ABR between the three genotypes in both male and female mice, but the amplitude of wave I in GLAST-/- mice was significantly lower than that in male GLAST+/+ mice(P<0.01). In contrast, the amplitude of wave I in females was reduced throughout the stimulus intensity but was most significant only at high-intensity stimulation (e.g.80 dB, 90 dB) (P<0.05). CONCLUSION: GLAST knockout affects the normal growth and development of male mice, and decreases the amplitude of wave I, but do not change the threshold, suggesting that GLAST knockout may lead to synaptic pathological changes, and there are gender differences in this effect.


Assuntos
Transportador 1 de Aminoácido Excitatório , Audição , Animais , Feminino , Masculino , Camundongos , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Transportador 1 de Aminoácido Excitatório/genética , Audição/genética , Audição/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo
7.
Biochem Biophys Rep ; 17: 10-16, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30456316

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) is an emerging therapy for the treatment of psychiatric disorders. However, the mechanisms underlying the therapeutic effects of rTMS are still unclear, limiting its optimisation. Lasting effects suggest changes in disease-related genes, so we conducted gene chip and qRT-PCR analyses of genes associated with psychiatric diseases in the mouse brain at various times following 1, 20, 30 or 40 days of rTMS. Many genes were differentially expressed in the rTMS-treated mouse brain compared to sham controls, including genes encoding neurotransmitter transporters (upregulation of EAAT4, GLAST, GLT-1, GAT2, GAT4, GLYT1 and GLYT2), and endoplasmic reticulum (ER)-stress proteins (downregulation of IRE1α, IRE1ß, and XBP1, upregulation of ATF6 and GRP78/Bip). Expression changes in many of these genes were also observed 10 days after the last rTMS treatment. In PC12 cells, rTMS upregulated GRP78/Bip mRNA and enhanced resistance against H2O2 stress. These results suggest that rTMS differentially modulates multiple genes associated with psychiatric and neurodegenerative disorders. Sustained changes in the expression of these genes may underlie the therapeutic efficacy of chronic rTMS.

8.
J Pharmacol Sci ; 138(3): 167-175, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30322800

RESUMO

Na+, K+-ATPase is a highly expressed membrane protein. Dysfunction of Na+, K+-ATPase has been implicated in the pathophysiology of several neurodegenerative and psychiatric disorders, however, the underlying mechanism of neuronal cell death resulting from Na+, K+-ATPase dysfunction is poorly understood. Here, we investigated the mechanism of neurotoxicity due to Na+, K+-ATPase inhibition using rat organotypic hippocampal slice cultures. Treatment with ouabain, a Na+, K+-ATPase inhibitor, increased the ratio of propidium iodide-positive cells among NeuN-positive cells in the hippocampal CA1 region, which was prevented by MK-801 and d-AP5, specific blockers of the N-methyl-d-aspartate (NMDA) receptor. EGTA, a Ca2+-chelating agent, also protected neurons from ouabain-induced injury. We observed that astrocytes expressed the glutamate aspartate transporter (GLAST), and ouabain changed the immunoreactive area of GFAP-positive astrocytes as well as GLAST. We also observed that ouabain increased the number of Iba1-positive microglial cells in a time-dependent manner. Furthermore, lithium carbonate, a mood-stabilizing drug, protected hippocampal neurons and reduced disturbances of astrocytes and microglia after ouabain treatment. Notably, lithium carbonate improved ouabain-induced decreases in GLAST intensity in astrocytes. These results suggest that glial cell abnormalities resulting in excessive extracellular concentrations of glutamate contribute to neurotoxicity due to Na+, K+-ATPase dysfunction in the hippocampal CA1 region.


Assuntos
Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/patologia , Morte Celular/efeitos dos fármacos , Transportador 1 de Aminoácido Excitatório/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Animais , Astrócitos/metabolismo , Contagem de Células , Células Cultivadas , Maleato de Dizocilpina/farmacologia , Ácido Egtázico/farmacologia , Técnicas In Vitro , Carbonato de Lítio/farmacologia , Ouabaína/antagonistas & inibidores , Ouabaína/farmacologia , Ratos , Valina/análogos & derivados , Valina/farmacologia
9.
J Clin Exp Hepatol ; 8(3): 262-271, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30302043

RESUMO

Hepatic encephalopathy (HE) is a complex neuropsychiatric syndrome that occurs during chronic liver disease (CLD). While ammonia and other precipitating factors in liver disease including inflammation, bile acids, oxidative stress, and lactate play a role in the pathogenesis of HE, the exact mechanism that leads to HE is not fully understood. Notably, accumulating evidence points toward a synergic effect rather than independent actions among precipitating factors that contributes to the development and severity of HE in CLD. Hence, this review is aimed to briefly discuss the single and synergic interplay of pathological factors in the progression and severity of HE.

10.
Cell Mol Neurobiol ; 37(6): 1029-1042, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27815657

RESUMO

Moderate to intense light is reported to damage the chick retina, which is cone dominated. Light damage alters neurotransmitter pools, such as those of glutamate. Glutamate level in the retina is regulated by glutamate-aspartate transporter (GLAST) and glutamine synthetase (GS). We examined immunolocalization patterns and the expression levels of both markers and of glial fibrillary acidic protein (GFAP, a marker of neuronal stress) in chick retina exposed to 2000 lux under 12-h light:12-h dark (12L:12D; normal photoperiod), 18L:6D (prolonged photoperiod), and 24L:0D (constant light) at post-hatch day 30. Retinal damage (increased death of photoreceptors and inner retinal neurons and Müller cell hypertrophy) and GFAP expression in Müller cells were maximal in 24L:0D condition compared to that seen in 12L:12D and 18L:6D conditions. GS was present in Müller cells and GLAST expressed in Müller cell processes and photoreceptor inner segments. GLAST expression was decreased in 24L:0D condition, and the expression levels between 12L:12D and 18L:6D, though increased marginally, were statistically insignificant. Similar was the case with GS expression that significantly decreased in 24L:0D condition. Our previous study with chicks exposed to 2000 lux reported increased retinal glutamate level in 24L:0D condition. The present results indicate that constant light induces decreased expressions of GLAST and GS, a condition that might aggravate glutamate-mediated neurotoxicity and delay neuroprotection in a cone-dominated retina.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Galinhas/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/metabolismo , Ácido Glutâmico/metabolismo , Fotoperíodo , Retina/metabolismo , Animais , Forma Celular/efeitos da radiação , Imuno-Histoquímica , Luz , Fibras Nervosas/metabolismo , Fibras Nervosas/efeitos da radiação , Fibras Nervosas/ultraestrutura , Retina/citologia , Retina/efeitos da radiação , Retina/ultraestrutura
11.
Exp Ther Med ; 11(2): 513-518, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26893639

RESUMO

The aim of the present study was to investigate whether erythropoietin (EPO) preconditioning affects the expression of glutamate transporter 1 (GLT-1) and glutamate aspartate transporter (GLAST) and protects against rat cerebral ischemia-reperfusion injury. A total of 140 Sprague Dawley rats were randomly assigned to one of the following four groups: Sham, EPO-sham, middle cerebral artery occlusion (MCAO) and EPO-MCAO. Neurological function scores were obtained 24, 36 and 72 h after reperfusion. Seventy-two hours after the induction of cerebral ischemia-reperfusion, the number of apoptotic neural cells and the cerebral infarct volume of each group were measured. The mRNA levels of GLT-1 and GLAST were determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, while the GLT-1 and GLAST protein levels were assessed using western blotting. The cerebral infarct volume was significantly increased in the MCAO group compared with that in the sham group (P<0.01); however, the infarct volume of the EPO-MCAO group was significantly lower than that of the MCAO group (P<0.01). In addition, the number of apoptotic cells found in the MCAO group was higher than that in the sham group (P<0.01), but the number of apoptotic cells in the EPO-MCAO group was significantly lower than that in the MCAO group (P<0.01). The GLT-1 and GLAST mRNA and protein levels were significantly decreased 72 h after the cerebral ischemia-reperfusion (P<0.01) compared with those in the sham group, whereas the same levels were increased significantly in the EPO-MCAO group relative to those in the MCAO group (P<0.01). In conclusion, EPO preconditioning protected against cerebral ischemia-reperfusion injury and upregulated the GLT-1 and GLAST expression.

12.
Front Cell Neurosci ; 9: 310, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26347607

RESUMO

During the last two decades numerous genetic approaches affecting cell function in vivo have been developed. Current state-of-the-art technology permits the selective switching of gene function in distinct cell populations within the complex organization of a given tissue parenchyma. The tamoxifen-inducible Cre/loxP gene recombination and the doxycycline-dependent modulation of gene expression are probably the most popular genetic paradigms. Here, we will review applications of these two strategies while focusing on the interactions of astrocytes and neurons in the central nervous system (CNS) and their impact for the whole organism. Abolishing glial sensing of neuronal activity by selective deletion of glial transmitter receptors demonstrated the impact of astrocytes for higher cognitive functions such as learning and memory, or the more basic body control of muscle coordination. Interestingly, also interfering with glial output, i.e., the release of gliotransmitters can drastically change animal's physiology like sleeping behavior. Furthermore, such genetic approaches have also been used to restore astrocyte function. In these studies two alternatives were employed to achieve proper genetic targeting of astrocytes: transgenes using the promoter of the human glial fibrillary acidic protein (GFAP) or homologous recombination into the glutamate-aspartate transporter (GLAST) locus. We will highlight their specific properties that could be relevant for their use.

13.
Epigenetics ; 10(2): 142-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25565250

RESUMO

In animal models, middle-aged females sustain greater ischemia-induced infarction as compared to adult females. This age difference in infarct severity is associated with reduced functional capacity of astrocytes, a critical neural support cell. The impaired response of astrocytes following stroke in middle-aged females may be related to epigenetic alterations, including histone acetylation or methylation. The present study measured the activity of enzymes that regulate histone acetylation and methylation in cerebral cortical astrocytes of adult (6 month) and middle-aged (11+ month) female rats 48 h following middle cerebral artery occlusion. H3K4 histone methyltransferase activity was decreased in astrocytes from middle-aged females. The next experiment therefore examined H3K4me3 (transcriptional enhancer) and H3K9me3 (transcriptional repressor) in astrocytes from adult and middle-aged females using ChIP-seq analysis. Adult females had more enriched H3K4me3 peaks (304 vs. 26) at transcriptional start sites and fewer H3K9me3 enriched peaks than middle-aged females (4 vs. 22), indicating a pattern of less active chromatin in astrocytes in the older group following ischemia. DAVID clustering analysis of H3K4me3 enriched genes found several functional categories, including cell motility, regulation of apoptosis and the vascular endothelial growth factor (VEGF) pathway. H3K4me3 was enriched at the miR-17-20 cluster and VEGFa, and analysis of a separate set of astrocytes confirmed that VEGF protein expression and miR-20 mRNA expression were significantly greater following ischemia in adult females compared to middle-aged females. These data indicate that astrocytes display less active chromatin with aging and provide new insight into possible mechanisms for differences in stroke severity observed during aging.


Assuntos
Envelhecimento/metabolismo , Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Córtex Cerebral/metabolismo , Histonas/metabolismo , Acetilação , Acetiltransferases/metabolismo , Animais , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/citologia , Feminino , Lisina/metabolismo , Metilação , Metiltransferases/metabolismo , Ratos Sprague-Dawley
14.
Neuropharmacology ; 77: 156-66, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23791559

RESUMO

Astrocytic glutamate transporter 1 (GLT-1) is responsible for the majority of extracellular glutamate clearance and is essential for preventing excitotoxicity in the brain. Up-regulation of GLT-1 shows benefit effect on ischemia-induced neuronal damage. In present study, we examined the effect of histamine, a neurotransmitter or neuromodulator, on GLT-1 expression and function. In acute hippocampal slices, histamine selectively increased GLT-1 expression independent of neuronal activities. Similar up-regulation of GLT-1 was also observed after histamine treatment in pure cultured astrocytes, which was abolished by H1 receptor antagonist or PKC inhibitor. Cell surface biotinylation and whole-cell patch recordings of glutamate transporter current confirmed the up-regulation of functional GLT-1 following histamine exposure. Histamine treatment decreased the extracellular glutamate content and alleviated neuronal cell death induced by exogenous glutamate challenge. Moreover, we found a significant neuroprotective effect of histamine in brain slices after oxygen-glucose deprivation (OGD). In addition, histidine, the precursor of histamine, also showed neuroprotection against ischemic injury, which was accompanied by reversion of declined expression of GLT-1 in adult rats subjected to middle cerebral artery occlusion (MCAO). These neuroprotective effects of histamine/histidine were blocked by GLT-1 specific inhibitor dihydrokainate or H1 receptor antagonist. In summary, our results suggest that histamine up-regulates GLT-1 expression and function via astrocytic H1 receptors, thus resulting in neuroprotection against excitotoxicity and ischemic injury.


Assuntos
Astrócitos/efeitos dos fármacos , Isquemia Encefálica/prevenção & controle , Transportador 2 de Aminoácido Excitatório/metabolismo , Histamina/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Regulação para Cima/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Morte Celular/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
15.
Neuroscience ; 258: 374-84, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24300109

RESUMO

Although the clearance of glutamate from the synapse under physiological conditions is performed by astrocytic glutamate transporters, their expression might be diminished under pathological conditions. Microglia glutamate transporters, however, might serve as a back-up system when astrocytic glutamate uptake is impaired, and could have a prominent neuroprotective function under pathological conditions. In the current study, the effect of nicotine, well known as a neuroprotective molecule, on the function of glutamate transporters in cultured rat cortical microglia was examined. Reverse transcription polymerase chain reaction and pharmacological approaches demonstrated that, glutamate/aspartate transporter (GLAST), not glutamate transporter 1 (GLT-1), is the major functional glutamate transporter in cultured cortical microglia. Furthermore, the α7 subunit was demonstrated to be the key subunit comprising nicotinic acetylcholine (nACh) receptors in these cells. Treatment of cortical microglia with nicotine led to a significant increase of GLAST mRNA expression and (14)C-glutamate uptake in a concentration- and time-dependent manner, which were markedly inhibited by pretreatment with methyllycaconitine, a selective α7 nACh receptor antagonist. The nicotine-induced expression of GLAST mRNA and protein is mediated through an inositol trisphosphate (IP3) and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) depend intracellular pathway, since pretreatment with either xestospongin C, an IP3 receptor antagonist, or KN-93, a CaMKII inhibitor, blocked GLAST expression. Together, these findings indicate that activation of nACh receptors, specifically those expressing the α7 subunit, on cortical microglia could be a key mechanism of the neuroprotective effect of nACh receptor ligands such as nicotine.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Transportador 1 de Aminoácido Excitatório/metabolismo , Microglia/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Córtex Cerebral/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inibidores , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Microglia/metabolismo , RNA Mensageiro/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores
16.
Behav Brain Res ; 258: 34-42, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24060653

RESUMO

Cumulative incidences of multiple risk factors are related to pathology of psychiatric disorders. The present study was designed to examine combinative effects of a neonatal immune challenge with adolescent abused substance treatment on the psychological behaviors and molecular expressions in the adult. C57BL/6J mice were neonatally treated, with polyriboinosinic-polyribocytidylic acid (PolyI:C: 5mg/kg) during postnatal days (PD) 2-6, then with phencyclidine (PCP: 10mg/kg) during adolescence (PD35-41). Locomotor activity was analyzed to evaluate sensitivity to PCP on PD35 and PD41. Emotional and cognitive tests were carried out on PD42-48. Neonatal PolyI:C treatment markedly enhanced sensitivity to PCP- and methamphetamine-induced hyperactivity in the adolescent. Mice treated with both neonatal PolyI:C and adolescent PCP (PolyI:C/PCP) showed social deficit and object recognition memory impairment. The expression of glutamate/aspartate transporter (GLAST) in the prefrontal cortex (PFC) was significantly increased in the (PolyI:C/PCP)-treated mice. Infusion of glutamate transporter inhibitor (DL-TBOA: 1 nmol/bilaterally) into the PFC reversed the object recognition impairment in the (PolyI:C/PCP)-treated mice. These results indicate that the combined treatment of neonatal PolyI:C with adolescent PCP leads to behavioral abnormalities, which were associated with increase of GLAST expression in the adult PFC.


Assuntos
Comportamento Animal/efeitos dos fármacos , Transportador 1 de Aminoácido Excitatório/metabolismo , Fenciclidina/farmacologia , Poli I-C/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Comportamento Animal/fisiologia , Cognição/efeitos dos fármacos , Emoções/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Atividade Motora/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Comportamento Social
17.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1033898

RESUMO

Objective To explore whether resveratrol (Res) could effectively suppress infarct size or improve neurological deficits in rat models after acute ischemia or ischemia/reperfusion.Methods One hundred and thirty-five rats were divided randomly into nine groups (n=15):sham-operated group,ischemia groups,including 0.04% propylene glycol solution treatment group (10-6 g/kg,B1 group),low dose of Res intervention group (10-8 g/kg,C1 group),middle dose of Res intervention group (10-7 g/kg,C2 group) and high dose of Res intervention group (10-6 g/kg,C3 group),and ischemia/reperfusion groups,including 0.04% propylene glycol solution intervention group (10-6 g/kg,B2 group),low dose of Res intervention group (10-8 g/kg,D1 group),middle dose of Res intervention group (10-7 g/kg,D2 group) and high dose of Res intervention group (10-6 g/kg,D3 group).Rats in the sham-operated group only performed separation of right common carotid artery and internal carotid artery;ischemia was induced by middle cerebral artery occlusion; reperfusion was performed 2 h after ischemia; Res intervention was given for 3 days 2 h after reperfusion.Neurological scale scores of all groups were evaluated,infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining,content of water in brain tissue was measured by wet and dry weight method,and the expressions of glutamate/aspartate transporter (GLAST) and glutamate transport-1 (GLT-1) were observed by immunohistochemical method.Results As compared with B groups,the neurological scale scores in the C2,C3,D2 and D3 group were significantly ameliorated with D3 group having the lowest scores (1.30±0.48),infarct volume and brain water content were statistically reduced with D3 group having the smallest infart volume (16.00% ±6.20%) and lowest water content (52.30%±8.25%),and the expressions of GLAST and GLT-1 were significantly increased with D3 group having the highest levels (39.98±0.77 and 171.76±7.22,P<0.05).Conclusions Res shows protective effect on cerebral ischemia/reperfusion injury on rats.The mechanism of neuroprotective effect of Res on focal cerebral ischemia/reperfusion injury may be through increasing the expressions of GLAST and GLT-1 in the brain tissue and inhibiting the expression of glutamate,therefore,reducing infarction size and brain edema.

18.
Prog Neurobiol ; 109: 42-63, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23981535

RESUMO

The glial cells of the cerebellum, and particularly astrocytes and oligodendrocytes, are characterized by a remarkable phenotypic variety, in which highly peculiar morphological features are associated with specific functional features, unique among the glial cells of the entire CNS. Here, we provide a critical report about the present knowledge of the development of cerebellar glia, including lineage relationships between cerebellar neurons, astrocytes and oligodendrocytes, the origins and the genesis of the repertoire of glial types, and the processes underlying their acquisition of mature morphological and functional traits. In parallel, we describe and discuss some fundamental roles played by specific categories of glial cells during cerebellar development. In particular, we propose that Bergmann glia exerts a crucial scaffolding activity that, together with the organizing function of Purkinje cells, is necessary to achieve the normal pattern of foliation and layering of the cerebellar cortex. Moreover, we discuss some of the functional tasks of cerebellar astrocytes and oligodendrocytes that are distinctive of cerebellar glia throughout the CNS. Notably, we report about the regulation of synaptic signalling in the molecular and granular layer mediated by Bergmann glia and parenchymal astrocytes, and the functional interaction between oligodendrocyte precursor cells and neurons. On the whole, this review provides an extensive overview of the available literature and some novel insights about the origin and differentiation of the variety of cerebellar glial cells and their function in the developing and mature cerebellum.


Assuntos
Linhagem da Célula/fisiologia , Cerebelo/citologia , Cerebelo/fisiologia , Neuroglia/fisiologia , Animais , Diferenciação Celular/fisiologia , Humanos , Células de Purkinje/fisiologia
19.
CNS Neurosci Ther ; 19(12): 945-53, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23870489

RESUMO

AIMS: Dysfunction of glutamate uptake, largely mediated by the glutamate-aspartate transporter (GLAST), may lead to retinal cell apoptosis in diabetic retinopathy. The aim of this study is to examine how cell apoptosis and the expression level of GLAST in neural retina of a diabetic rat model are changed and whether the neuroretinal apoptosis could be ameliorated by the administration of glial cell line-derived neurotrophic factor (GDNF). METHODS: Diabetes was induced by intraperitoneal injection of streptozotocin (STZ) in Sprague-Dawley rats. GLAST protein expression levels were determined by Western blotting, whereas apoptosis of retinal neurons was evaluated by TUNEL staining. To assess the role of GDNF in ameliorating the STZ-induced retinal changes, GDNF/GDNF with siRNA directed against GLAST was injected into the vitreous after STZ injection. RESULTS: In rat retinas 4 weeks after the onset of STZ-induced diabetes, TUNEL-positive cells were significantly increased, whereas GLAST levels were significantly reduced. Intraocular administration of GDNF at the early stage of diabetes remarkably increased the GLAST levels and decreased TUNEL-positive signals in the retinas. These effects of GDNF were largely abolished by coadministration of GLAST siRNA. CONCLUSIONS: GDNF, administrated at the early stage of diabetes, could rescue retinal cells from neurodegeneration by upregulating the expression of GLAST.


Assuntos
Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Transportador 1 de Aminoácido Excitatório/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/uso terapêutico , Neurônios/efeitos dos fármacos , Retina/patologia , Regulação para Cima/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Marcação In Situ das Extremidades Cortadas , Masculino , Neurônios/metabolismo , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley
20.
Brain Res ; 1529: 134-42, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23850643

RESUMO

Glutamate plays an important role in the central nervous system as an excitatory neurotransmitter. However, its abundance can lead to excitotoxicity which necessitates the proper function of active glutamate transporters. The glutamate-aspartate transporter (GLAST) has been shown to exist and function within non-human cochlear specimens regulating the inner ear glutamate concentration. In this study, we examined human cochleas from formalin-fixed celloidin-embedded temporal bone specimens of three different types of patients (Meniere's disease, normal controls, and other otopathologic conditions) and examined the differential expression of GLAST in the spiral ligament of the basal, middle, and apical turns of the cochlea. Immunohistochemical staining was performed with polyclonal antibodies against GLAST and image analysis was carried out with the Image J analysis software. In contrast to other studies with non-human specimens, GLAST was expressed in the spiral ligament fibrocytes but was not detected in the satellite cells of the spiral ganglia or supporting cells of the Organ of Corti in the human cochlea. Our data also showed that GLAST expression significantly differs in the basal and apical turns of the cochlea. Lastly, post-hoc analysis showed a difference in the GLAST immunoreactive area of patients with Meniere's disease when compared to that of patients with other otopathologic conditions-such as presbycusis or ototoxicity. These results may potentially lead to further understanding of different disease states that affect hearing.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Cóclea/metabolismo , Regulação da Expressão Gênica , Doença de Meniere/patologia , Idoso , Análise de Variância , Biópsia , Feminino , Humanos , Masculino , Gânglio Espiral da Cóclea/metabolismo , Gânglio Espiral da Cóclea/patologia , Osso Temporal/metabolismo , Osso Temporal/patologia , Nervo Vestibular/metabolismo , Nervo Vestibular/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA