Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Acta Parasitol ; 69(1): 929-950, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38489009

RESUMO

PURPOSE: Resistance and adverse consequences of albendazole (ABZ) in treating trichinellosis urged demand for secure and effective new drugs. The current study aimed to assess the effect of chitosan-coated lipid nano-combination with albendazole and miltefosine (MFS) in treating experimental murine trichinellosis and evaluating pathological and immunological changes of trichinellosis. MATERIALS AND METHODS: One hundred twenty Swiss albino mice were divided into six groups. Each group was subdivided into a and b subgroups based on the scarification time, which was 7- and 40-days post-infection (PI), respectively. The treatment efficacy was evaluated using parasitological, histopathological, serological (interleukin (IL)-12 and IL-4 serum levels), immunohistochemical (GATA3, glutathione peroxidase1 (GPX1) and caspase-3), and scanning electron microscopy (SEM) methods. RESULTS: The most effective drug was nanostructured lipid carriers (NLCs) loaded with ABZ (G5), which showed the most significant reduction in adults and larval count (100% and 92.39%, respectively). The greatest amelioration in histopathological changes was reported in G4 treated with MFS. GATA3 and caspase-3 were significantly reduced in all treated groups. GPX1 was significantly increased in G6 treated with MFS + NLCs. The highest degenerative effects on adults and larvae by SEM were documented in G6. CONCLUSION: Loading ABZ or MFS on chitosan-coated NLCs enhanced their efficacy against trichinellosis. Although ABZ was better than MFS, their combination should be considered as MFS caused a significant reduction in the intensity of infection. Furthermore, MFS showed anti-inflammatory (↓GATA3) and antiapoptotic effects (↓caspase-3), especially in the muscular phase. Also, when loaded with NLCS, it showed an antioxidant effect (↑GPX1).


Assuntos
Albendazol , Quitosana , Fosforilcolina , Fosforilcolina/análogos & derivados , Triquinelose , Animais , Camundongos , Quitosana/química , Albendazol/administração & dosagem , Albendazol/farmacologia , Triquinelose/tratamento farmacológico , Fosforilcolina/administração & dosagem , Fosforilcolina/farmacologia , Anti-Helmínticos/administração & dosagem , Lipídeos/sangue , Portadores de Fármacos/química , Nanopartículas/química , Imuno-Histoquímica , Masculino
2.
Wei Sheng Yan Jiu ; 53(1): 77-87, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38443176

RESUMO

OBJECTIVE: To observe the effect of high selenium on insulin signaling pathway PI3K-AKT-mTOR in L02 cells. METHODS: One group of L02 cell was treated with different concentrations of selenomethionine(SeMet, 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05, 0.075 and 0.1µmol/L) for 48 h, then cultured with serum-free medium for 4 h and stimulated with 1 µmol/L insulin for 15 min. The insulin signaling pathway(PI3K-AKT-mTOR) was detected by WB. Another group of L02 cell was treated with the same concentrations of SeMet as above for 48 h. The cell supernatant and lysates were collected for the analysis of SELENOP and GPX1, respectively by WB. RESULTS: The expressions of P-AKT-(Ser-473), P-AKT-(Thr-308), PI3K and mTOR in L02 cells under high-Se were decreased with the increase of SeMet concentration. The expressions of GPX1 and SELENOP were enhanced with the increase of SeMet. CONCLUSION: The insulin signaling pathway, PI3K-AKT-mTOR, was damaged in L02 cell under high-Se stress.


Assuntos
Selênio , Selênio/farmacologia , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Insulina , Serina-Treonina Quinases TOR , Transdução de Sinais
3.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1032235

RESUMO

Objective @#To evaluate the effect of melatonin on nocturnal exacerbation of neuropathic pain and to ex plore its mechanism through the specific silencing information regulator 1 ( SIRT1)-brain and muscle ARNT-like protein 1 ( BMAL1 ) pathway .@*Methods @# 96 SPF grade male C57/B6 mice were randomly divided into three groups : the sham operation (S) group , the neuropathic pain model (NP) group and the NP model + melatonin treatment (10 mg/kg) ( NP + M) group; preoperative experimental mice were placed in the environment of the specified light pattern; the environment of alternating 12 h light and 12 h darkness was used for at least two weeks , and natural time was converted into the time of the award (ZT) , and the starting point of the light was ZT0; only the sciatic nerve was isolated in the S group , and the mouse NP model was prepared using chronic constriction injury (CCI) of the sciatic nerve in the NP group and the NP + M group , and the NP + M group was inj ected with me latonin after the operation; the expression levels of SIRT1, BMAL1, and glutathione peroxidase 1 (Gpx1) were de tected in the spinal cord at each time point at 14 d postoperatively by Western blot. Postoperative co-staining of SIRT1 in the dorsal horn of the spinal cord with the spinal cord neuronal marker neuron specific nuclear protein (NeuN) , the microglial cell activation marker ion calcium binding adapter molecule 1 (iba-1) , and the astrocyte marker glial fibrillary acidic protein ( GFAP) was carried out by immunofluorescence and iba-1 was detected at each time point to determine the activation status of microglia.@*Results @#SIRT1 , BMAL1 and Gpx1 decreased in NP group mice at 14 d ZT22 postoperatively compared to ZT10 time point in NP group ( P < 0.05) ; SIRT1 and BMAL1 were elevated in NP + M group at ZT14 time point compared to ZT14 time point in NP group (P < 0.05) , whereas Gpx1 was elevated at ZT18 time point (P < 0.05) . SIRT1 was co expressed in the dorsal horn of the spinal cord and in microglia. C ompared with ZT10 time point , microglia expression decreased in NP group mice at ZT22 time point 14 d after surgery (P < 0.05) ; compared with ZT10 time point , there was no statistically significant difference in microglia expression in NP + M group mice at ZT22 time point 14 d after surgery .@*Conclusion@#Melatonin attenuates nocturnal exacerbation of neuropathic pain by a mechanism that may be related to activation of microglia SIRT1-BMAL1 pathway protein expression .

4.
Mater Today Bio ; 23: 100864, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38024839

RESUMO

Reactive oxygen burst in articular chondrocytes is a major contributor to osteoarthritis progression. Although selenium is indispensable role in the antioxidant process, the narrow therapeutic window, delicate toxicity margins, and lack of an efficient delivery system have hindered its translation to clinical applications. Herein, transcriptomic and biochemical analyses revealed that osteoarthritis was associated with selenium metabolic abnormality. A novel injectable hydrogel to deliver selenium nanoparticles (SeNPs) was proposed to intervene selenoprotein expression for osteoarthritis treatment. The hydrogels based on oxidized hyaluronic acid (OHA) cross-linked with hyaluronic acid-adipic acid dihydrazide (HA-ADH) was formulated to load SeNPs through a Schiff base reaction. The hydrogels were further incorporated with SeNPs, which exhibited minimal toxicity, mechanical properties, self-healing capability, and sustained drug release. Encapsulated with SeNPs, the hydrogels facilitated cartilage repair through synergetic effects of scavenging reactive oxygen species (ROS) and depressing apoptosis. Mechanistically, the hydrogel restored redox homeostasis by targeting glutathione peroxidase-1 (GPX1). Therapeutic outcomes of the SeNPs-laden hydrogel were demonstrated in an osteoarthritis rat model created by destabilization of the medial meniscus, including cartilage protection, subchondral bone sclerosis improvement, inflammation attenuation, and pain relief were demonstrated. These results highlight therapeutic potential of OHA/HA-ADH@SeNPs hydrogels, providing fundamental insights into remedying selenium imbalance for osteoarthritis biomaterial development.

5.
Biomedicines ; 11(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37893028

RESUMO

Indoxyl sulfate (IS) is a metabolic byproduct of indole metabolism. IS readily interacts with the mitochondrial redox metabolism, leading to altered renal function. The ß-carotene oxygenase-2 (BCO2) enzyme converts carotenoids to intermediate products. However, the role of ß-carotene (BC) in IS-induced renal dysfunction in zebrafish and their modulatory action on BCO2 and mitochondrial inflammations have not been explored yet. Hence, the present study is designed to investigate the role of BC in the attenuation of IS-induced renal dysfunction via regulations of mitochondrial redox balance by BCO2 actions. Renal dysfunction was induced by exposure to IS (10 mg/L/hour/day) for 4 weeks. BC (50 and 100 mg/L/hour/day) and coenzyme Q10 (CoQ10; 20 mg/L/hour/day) were added before IS exposure. BC attenuated the IS-induced increase in blood urea nitrogen (BUN) and creatinine concentrations, adenosine triphosphate (ATP), and complex I activity levels, and the reduction of renal mitochondrial biomarkers, i.e., BCO2, superoxide dismutase-2 (SOD2), glutathione peroxidase-1 (GPX1), reduced and oxidized glutathione (GSH/GSSG) ratio, and carbonylated proteins. Moreover, renal histopathological changes were analyzed by the eosin and hematoxylin staining method. As a result, the administration of BC attenuated the IS-induced renal damage via the regulation of mitochondrial function.

6.
Free Radic Biol Med ; 208: 708-717, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37726091

RESUMO

We have previously shown dysregulated lipid metabolism in tissues of glutathione peroxidase 1 (GPX1) overexpressing (OE) or deficient (KO) mice. This study explored underlying mechanisms of GPX1 in regulating tissue fatty acid (FA) biosynthesis. GPX1 OE, KO, and wild-type (WT) mice (n = 5, male, 3-6 months old) were fed a Se-adequate diet (0.3 mg/kg) and assayed for liver and adipose tissue FA profiles and mRNA levels of key enzymes of FA biosynthesis and redox-responsive transcriptional factors (TFs). These three genotypes of mice (n = 5) were injected intraperitoneally with diquat, ebselen, and N-acetylcysteine (NAC) at 10, 50, and 50 mg/kg of body weight, respectively, and killed at 0 and 12 h after the injections to detect mRNA levels of FA elongases and desaturases and the TFs in the liver and adipose tissue. A luciferase reporter assay with targeted deletions of mouse Elovl3 promoter was performed to determine transcriptional regulations of the gene by GPX1 mimic ebselen in HEK293T cells. Compared with WT, GPX1 OE and KO mice had 9-42% lower (p < 0.05) and 36-161% higher (p < 0.05) concentrations of C20:0, C22:0, and C24:0 in these two tissues, respectively, along with reciprocal increases and decreases (p < 0.05) of Elovl3 transcripts. Ebselen and NAC decreased (p < 0.05), whereas diquat decreased (p < 0.05), Elovl3 transcripts in the two tissues. Overexpression and knockout of GPX1 decreased (p < 0.05) and increased (p < 0.05) ELOVL3 levels in the two tissues, respectively. Three TFs (GABP, SP1, and DBP) were identified to bind the Elovl3 promoter (-1164/+33 base pairs). Deletion of DBP (-98/-86 base pairs) binding domain in the promoter attenuated (13%, p < 0.05) inhibition of ebselen on Elovl3 promoter activation. In summary, GPX1 overexpression down-regulated very long-chain FA biosynthesis via transcriptional inhibition of the Elovl3 promoter activation.


Assuntos
Glutationa Peroxidase GPX1 , Selênio , Humanos , Masculino , Camundongos , Animais , Lactente , Selênio/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Diquat/metabolismo , Células HEK293 , Camundongos Knockout , RNA Mensageiro/metabolismo , Fígado/metabolismo
7.
Rep Biochem Mol Biol ; 12(1): 185-194, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37724151

RESUMO

Background: This study aimed to investigate the GPx-1 gene polymorphism (rs1050450), the level of oxidative stress and antioxidant parameters, and the lipid profile in an obese Kurdish population in Sulaimani, Iraq. Methods: In a case-control study,134 obese subjects and 131 normal BMI healthy individuals participated. The GPx-1 gene polymorphism was assessed by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) method. The levels of biochemical and oxidative parameters were determined using photometric methods. Results: The results showed that the fasting blood sugar (FBS), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) levels were significantly higher in obese subjects compared to the control group. Obese individuals had significantly lower levels of high-density lipoprotein cholesterol (HDL-C) than the controls. The GPx-1 activity and total antioxidant capacity (TAC) levels were significantly elevated in the obese group compared to the control group (P=0.006, and P<0.001, respectively). No significant difference was detected in genotype and allele frequencies of GPx-1 (rs1050450) between obese and normal BMI groups. However, the presence of the GPx-1 TT genotype enhanced the risk of obesity in females by 1.93-fold (95% CI 1.04-3.58, P=0.036). In the total population, the GPx activity increased in the presence of TT compared to CC+CT and CT genotypes. Conclusion: The study indicated that obesity is linked to significantly higher levels of FBS, TG, LDL-C, TAC, and GPx activity and lower level of HDL-C. Also, we found the GPx-1 gene polymorphism was associated with the risk of obesity in females and increased the GPx activity.

8.
BMC Oral Health ; 23(1): 582, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605193

RESUMO

BACKGROUND: During the last decades, in patients with periodontitis, periodontal treatment has been shown to reduce the potential release of local and systemic biomarkers linked to an early risk of systemic inflammatory disorders. This study evaluated the efficacy of non-surgical-periodontal treatment (NSPT) on growth differentiation factor 15 (GDF-15) and related circulating biomarkers such as glutathione peroxidase 1 (GPx-1), c-reactive protein (hs-CRP), and surfactant protein D (SP-D) in periodontal patients and explored whether subjects who had high GDF-15 levels at baseline showed increased clinical benefits following NSPT at 6-months follow-up. METHODS: For this two-arm, parallel randomized clinical trial, patients with periodontitis were randomly allocated to receive quadrant scaling and root-planing (Q-SRP, n = 23, median age 51 years old) or full-mouth disinfection (FMD, n = 23, median age 50 years old) treatment. Clinical and periodontal parameters were recorded in all enrolled patients. The primary outcome was to analyse serum concentrations changes of GDF-15 and of GPx-1, hs-CRP, and SP-D at baseline and at 30, 90, and 180-days follow-up after NSPT through enzyme-linked immunosorbent assay (ELISA) and nephelometric assay techniques. RESULTS: In comparison with FMD, patients of the Q-SRP group showed a significant improvement in clinical periodontal parameters (p < 0.05) and a reduction in the mean levels of GDF-15 (p = 0.005), hs-CRP (p < 0.001), and SP-D (p = 0.042) and an increase of GPx-1 (p = 0.025) concentrations after 6 months of treatment. At 6 months of treatment, there was a significant association between several periodontal parameters and the mean concentrations of GDF-15, GPx-1, hs-CRP, and SP-D (p < 0.05 for all parameters). Finally, the ANOVA analysis revealed that, at 6 months after treatment, the Q-SRP treatment significantly impacted the reduction of GDF-15 (p = 0.015), SP-D (p = 0.026) and the upregulation of GPx-1 (p = 0.045). CONCLUSION: The results evidenced that, after 6 months of treatment, both NSPT protocols improved the periodontal parameters and analyzed biomarkers, but Q-SRP was more efficacious than the FMD approach. Moreover, patients who presented high baseline GDF-15 and SP-D levels benefited more from NSPT at 6-month follow-up. TRIAL REGISTRATION: NCT05720481.


Assuntos
Proteína C-Reativa , Periodontite , Humanos , Pessoa de Meia-Idade , Fator 15 de Diferenciação de Crescimento , Proteína D Associada a Surfactante Pulmonar , Biomarcadores , Periodontite/terapia , Glutationa Peroxidase GPX1
9.
Free Radic Biol Med ; 208: 252-259, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37549755

RESUMO

Oxidative stress and the resulting lipid peroxidation are associated with various pathological states, including neurodegenerative diseases and cancer. The end products of lipid peroxidation, such as 4-oxo-2(E)-nonenal (ONE), 4-hydroxy-2(E)-nonenal (HNE), and methylglyoxal (MG), exert several biological effects through modification of various cellular components, including DNA and proteins. Glutathione peroxidase 1 (GPx1) is an intracellular antioxidant enzyme that uses glutathione (GSH) to reduce a variety of peroxides, thereby modulating cellular oxidative stress and redox-mediated responses. GPx1 contains nucleophilic amino acids at its active (one Sec) and GSH-binding (four Arg and one Lys) sites. We found that lipid peroxidation-derived reactive aldehydes (ONE, HNE, and MG) modified the GSH-binding site, resulting in the inhibition of GPx1 activity. Mass spectrometry-based proteomic analysis identified the sites modified by each aldehyde (ONE, 14 sites; HNE, 7 sites; MG, 9 sites). The GSH-binding sites modified were as follows: ONE, Arg57, 103, 184, and 185; HNE, Lys91; MG, Arg103. Upon incubation of GPx1 with each aldehyde, ONE reduced GPx1 activity more significantly than did HNE or MG in a dose- and time-dependent manner. The addition of GSH to GPx1 3 h after incubation with ONE prevented further inhibition by trapping ONE as a ONE-GSH adduct. However, the activity of GPx1 was not restored to the initial level, indicating that ONE modified GPx1 irreversibly. This study suggests that oxidative damage to lipids, resulting in the formation of reactive aldehydes, can amplify cellular oxidative stress via direct inactivation of GPx1, which increases the production of intracellular peroxides.


Assuntos
Glutationa Peroxidase GPX1 , Proteômica , Peroxidação de Lipídeos , Aldeídos/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Peróxidos
10.
Redox Biol ; 65: 102831, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37572455

RESUMO

Tumor hypoxia promotes malignant progression and therapeutic resistance in glioblastoma partly by increasing the production of hydrogen peroxide (H2O2), a type of reactive oxygen species critical for cell metabolic responses due to its additional role as a second messenger. However, the catabolic pathways that prevent H2O2 overload and subsequent tumor cell damage in hypoxic glioblastoma remain unclear. Herein, we present a hypoxia-coordinated H2O2 regulatory mechanism whereby excess H2O2 in glioblastoma induced by hypoxia is diminished by glutathione peroxidase 1 (GPx1), an antioxidant enzyme detoxifying H2O2, via the binding of hypoxia-inducible factor-1α (HIF-1α) to GPx1 promoter. Depletion of GPx1 results in H2O2 overload and apoptosis in glioblastoma cells, as well as growth inhibition in glioblastoma xenografts. Moreover, tumor hypoxia increases exosomal GPx1 expression, which assists glioblastoma and endothelial cells in countering H2O2 or radiation-induced apoptosis in vitro and in vivo. Clinical data explorations further demonstrate that GPx1 expression was positively correlated with tumor grade and expression of HIF-1α, HIF-1α target genes, and exosomal marker genes; by contrast, it was inversely correlated with the overall survival outcome in human glioblastoma specimens. Our analyses validate that the redox balance of H2O2 within hypoxic glioblastoma is clinically relevant and could be maintained by HIF-1α-promoted or exosome-related GPx1.


Assuntos
Glioblastoma , Glutationa Peroxidase GPX1 , Humanos , Hipóxia Celular , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Glioblastoma/metabolismo , Peróxido de Hidrogênio/metabolismo , Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Estresse Oxidativo
11.
Wei Sheng Yan Jiu ; 52(1): 115-118, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36750338

RESUMO

OBJECTIVE: To investigate the effects of high selenium environment on the expression of selenoproteins and enzymes related to glucose and one-carbon metabolism in normal human hepatocytes. METHODS: Ten different concentrations of selenomethionine(SeMet, 0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5 and 10 µmol/L) was added into the normal human hepatocyts and incubated for 48 hours. The expressions of selenoprotein(GPX1 and SELENOP1) and metabolic enzymes(PHGDH, SHMT1, MTHFR and MS) were analyzed by Western blot. RESULTS: When the concentration of SeMet was 0-10 µmol/L, the expression trend of selenoprotein(GPX1 and SELENOP1) is similar, which first increases and then decreases. There is a slight difference between the inflection points of GPX1 and SELENOP1, which are respectively 0.5 µmol/L and 0.1 µmol/L. The expression trend of serine de novo synthesis pathway key enzymes(PHGDH) and folate cycle metabolizing enzymes(SHMT1, MTHFR and MS) is similar to that of selenoproteins, which also increases first and then decreases, but the inflection points are different, which are respectively 0.1 µmol/L(PHGDH and SHMT1) and 0.01 µmol/L(MTHFR and MS). CONCLUSION: Under the high selenium environment, the glycolytic bypass-serine de novo synthesis pathway is activated to synthesize endogenous serine due to the insufficient intracellular serine supply, causing abnormal glucose metabolism, which is an important extension to the hypothesis of the molecular mechanism of high selenium causing IR.


Assuntos
Selênio , Humanos , Selênio/farmacologia , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase GPX1 , Selenoproteínas/metabolismo , Hepatócitos/metabolismo , Carbono
12.
Food Chem Toxicol ; 173: 113627, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682417

RESUMO

Ginsenoside Re (GRe) upregulates anti-aging klotho by mainly upregulating glutathione peroxidase-1 (GPx-1). However, the anti-aging mechanism of GPx-1 remains elusive. Here we investigated whether the GRe-mediated upregulation of GPx-1 modulates oxidative and proinflammatory insults. GPx-1 gene depletion altered redox homeostasis and platelet-activating factor receptor (PAFR) and nuclear factor kappa B (NFκB) expression, whereas the genetic overexpression of GPx-1 or GRe mitigated this phenomenon in aged mice. Importantly, the NFκB inhibitor pyrrolidine dithiocarbamate (PDTC) did not affect PAFR expression, while PAFR inhibition (i.e., PAFR knockout or ginkgolide B) significantly attenuated NFκB nuclear translocation, suggesting that PAFR could be an upstream molecule for NFκB activation. Iba-1-labeled microgliosis was more underlined in aged GPx-1 KO than in aged WT mice. Triple-labeling immunocytochemistry showed that PAFR and NFκB immunoreactivities were co-localized in Iba-1-positive populations in aged mice, indicating that microglia released these proteins. GRe inhibited triple-labeled immunoreactivity. The microglial inhibitor minocycline attenuated aging-related reduction in phospho-ERK. The effect of minocycline was comparable with that of GRe. GRe, ginkgolide B, PDTC, or minocycline also attenuated aging-evoked memory impairments. Therefore, GRe ameliorated aging-associated memory impairments in the absence of GPx-1 by inactivating oxidative insult, PAFR, NFkB, and microgliosis.


Assuntos
Glutationa Peroxidase GPX1 , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Minociclina/metabolismo , Minociclina/farmacologia , Camundongos Knockout , Hipocampo
13.
Antioxidants (Basel) ; 13(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275638

RESUMO

Fish possess numerous enzymatic antioxidant systems as part of their innate immunity. These systems have been poorly studied in Labeo rohita (rohu). The present study characterized and investigated the role of antioxidant genes in the defence mechanisms against two types of stressors, including infection and ammonia stress. Four key genes associated with antioxidant activity-catalase, glutathione peroxidase, glutathione S-transferase, and CuZn superoxide dismutase were successfully cloned and sequenced. These genes were found to be expressed in different tissues and developmental stages of rohu. The expression levels of these antioxidant genes in the liver and anterior kidney tissues of rohu juveniles were modulated in response to bacterial infection (Aeromonas hydrophila), parasite infection (Argulus siamensis), poly I:C stimulation and ammonia stress. Additionally, the recombinant proteins derived from these genes exhibited significant antioxidant and antibacterial activities. These proteins also demonstrated a protective effect against A. hydrophila infection in rohu and had an immunomodulatory role. Furthermore, indirect ELISA assay systems were developed to measure these protein levels in healthy as well as A. hydrophila and ammonia-induced rohu serum. Overall, this study characterized and emphasised the importance of the antioxidant mechanism in rohu's defence against oxidative damage and microbial diseases.

14.
J Med Life ; 16(12): 1796-1801, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38585534

RESUMO

Glutathione (GSH) is a potent antioxidant and anti-inflammatory, proven effective in reducing treatment duration, prescribed doses, and hospitalization for several diseases. This study assessed the therapeutic response of chronic obstructive pulmonary disease (COPD) patients by measuring oxidative superoxide dismutase (SOD3), glutathione peroxidase 1 (GPX1), and inflammatory biomarkers such as tumor necrosis factor-alpha (TNF-α) and Interleukin-8 (IL-8) after sublingual administration of glutathione supplements. A cohort of 50 COPD individuals was involved and divided into two groups of 25 each. The first group received conventional therapy involving the administration of formoterol fumarate (12 µg inhaler) twice daily. The second group received the conventional treatment alongside sublingual glutathione (300 mg twice daily) for two months. The levels of serum IL-8, TNF-α, SOD3, and GPX1 were assessed before therapy, as well as at one and two months after treatment, in both cohorts. Both groups exhibited a notable reduction in the inflammatory mediators IL-8 and TNF-α when compared to their respective pre-treatment levels (P value <0.05). However, it is worth noting that the observed difference between the groups was not statistically significant (P value >0.05). The levels of SOD3 and GPX1 exhibited a substantial rise in both groups; however, they were found to be greater in group 2 compared to group 1 (P value >0.05). The administration of glutathione resulted in enhanced levels of antioxidant biomarkers among individuals diagnosed with COPD, accompanied by a minor and statistically insignificant decrease in the levels of the anti-inflammatory mediators IL-8 and TNF-alpha.


Assuntos
Antioxidantes , Doença Pulmonar Obstrutiva Crônica , Humanos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Interleucina-8/uso terapêutico , Fator de Necrose Tumoral alfa , Administração Sublingual , Doença Pulmonar Obstrutiva Crônica/patologia , Glutationa , Anti-Inflamatórios/uso terapêutico , Biomarcadores , Superóxido Dismutase
15.
Cancers (Basel) ; 14(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36230727

RESUMO

Hemoglobin from either red meat or bowel bleeding may promote oxidative stress and increase the risk of colorectal cancer (CRC). Additionally, solid cancers or their metastases may be present with localized bruising. Escape from therapy-induced senescence (TIS) might be one of the mechanisms of tumor re-growth. Therefore, we sought to study whether hemin can cause escape from TIS in CRC. To induce senescence, human colon cancer cells were exposed to a chemotherapeutic agent irinotecan (IRINO). Cells treated with IRINO exhibited common hallmarks of TIS. To mimic bleeding, colon cancer cells were additionally treated with hemin. High hemin concentration activated heme oxygenase-1 (HO-1), induced escape from TIS and epithelial-to-mesenchymal transition, and augmented progeny production. The effect was even stronger in hypoxic conditions. Similar results were obtained when TIS cells were treated with another prooxidant agent, H2O2. Silencing of antioxidative enzymes such as catalase (CAT) or glutathione peroxidase-1 (GPx-1) maintained colon cancer cells in a senescent state. Our study demonstrates that a high hemin concentration combined with an increased activity of antioxidative enzymes, especially HO-1, leads to escape from the senescence of colon cancer cells. Therefore, our observations could be used in targeted anti-cancer therapy.

16.
Horm Mol Biol Clin Investig ; 43(4): 405-414, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35796227

RESUMO

OBJECTIVES: Endometriosis is a gynecological disease associated with an imbalance between oxidative species production and anti-oxidative defenses. In women, endometriosis has been reported to associate with increased incidence of cardiovascular events. As such, this study aimed to analyze the oxidation-responsive AMPK/SIRT1/PGC-1α/SIRT3 pathway in the heart of a mouse model of endometriosis. The effect of metformin, an insulin-sensitizing and anti-oxidative drug with already shown positive results in endometriotic tissue was studied. METHODS: Thirty-six female B6CBA/F1 mice were divided into 4 groups (Control-C, Surgery-induced Endometriosis and Metformin-EM (50 mg/kg/day orally administrated for 3 months), Endometriosis-E and Metformin-M). Immunofluorescent labelling of SIRT1 and SIRT3 was performed in the heart tissue. Assessment of expression of AMPKα, SIRT1, PGC-1α, SIRT3, SOD2, and GPx1 was performed by Western Blotting. The quantification of microRNA(miR)-34a, miR-195, miR-217, miR-155 and miR-421, involved in the regulation of expression of SIRT1 and SIRT3, was performed by Real-Time PCR. RESULTS: Data showed an increase in phospho-AMPKα and in GPx1 expression in the EM group when compared to the C group, but not in the total AMPK, SIRT1, PGC-1α, SIRT3 and SOD2, suggesting a GPx1 expression increase independently of the AMPK/SIRT1/PGC-1α/SIRT3 pathway. MicroRNAs, excepting miR-217, showed a consistent trend of increase in the M group. CONCLUSIONS: Our study showed that endometriosis does not significantly affect the expression of the components of the AMPK/SIRT1/PGC-1α/SIRT3 pathway in the heart. However, it indicates that an oxidative condition underlying endometriosis is required for metformin to evidence an increment in the expression of the anti-oxidative enzyme GPx1.


Assuntos
Endometriose , Metformina , MicroRNAs , Sirtuína 3 , Humanos , Camundongos , Feminino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Metformina/farmacologia , Sirtuína 3/genética , Sirtuína 3/metabolismo , Sirtuína 3/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Endometriose/genética , MicroRNAs/metabolismo , Estresse Oxidativo
17.
Theranostics ; 12(8): 3882-3895, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664065

RESUMO

Rationale: Acute kidney injury (AKI) is a common critical illness in the clinic and currently lacks effective treatment options. Ischemia reperfusion injury (IRI) is a major pathogenic factor for AKI. Due to the deficiency of selenium (Se) in AKI patients, we intended to treat IRI-induced AKI using a Se rebalancing strategy in the present study. Methods: Sodium selenate, ascorbic acid, and bovine serum albumin (BSA) were employed to prepare nanomaterials termed Se@BSA nanoparticles (NPs) using a simple method. Experiments with human renal tubular epithelial HK-2 cells exposed to hypoxia/reoxygenation (H/R) and IRI-AKI mice were used to evaluate the therapeutic efficiency of Se@BSA NPs. Transcriptome sequencing, further molecular biology experiments, and pathologic analysis were performed to investigate the underlying mechanisms. Results: Se@BSA NPs accumulated in mouse kidneys and could be endocytosed by renal tubular epithelial cells after intravenous administration. In vitro studies showed that Se@BSA NP treatment markedly increased the levels of glutathione peroxidase (GPx)-1 and suppressed NLRP3 inflammasome activation in H/R cells, which resulted in reductions in the proteolytic cleavage of pro-Caspase-1 into active Caspase-1 and the maturation of inflammatory factors. Mouse experiments confirmed these findings and demonstrated an inspiring mitigative effect of Se@BSA NPs on IRI-induced AKI. Owing to modulation of the GPx-1/NLRP3/Caspase-1 pathway, Se@BSA NPs dramatically inhibited fibrosis formation after AKI. Conclusion: This study provides an effective therapeutic option by applying easy-to-produce Se-containing nanomaterials to remedy Se imbalance and impede inflammatory responses in the kidney, which is a promising candidate for AKI treatment.


Assuntos
Injúria Renal Aguda , Nanopartículas , Traumatismo por Reperfusão , Selênio , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Animais , Apoptose , Caspases/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Rim/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Traumatismo por Reperfusão/metabolismo , Selênio/farmacologia , Selênio/uso terapêutico
18.
Free Radic Biol Med ; 188: 146-161, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35691509

RESUMO

Glutathione peroxidase 1 (GPx1) is an important cellular antioxidant enzyme that is found in the cytoplasm and mitochondria of mammalian cells. Like most selenoenzymes, it has a single redox-sensitive selenocysteine amino acid that is important for the enzymatic reduction of hydrogen peroxide and soluble lipid hydroperoxides. Glutathione provides the source of reducing equivalents for its function. As an antioxidant enzyme, GPx1 modulates the balance between necessary and harmful levels of reactive oxygen species. In this review, we discuss how selenium availability and modifiers of selenocysteine incorporation alter GPx1 expression to promote disease states. We review the role of GPx1 in cardiovascular and metabolic health, provide examples of how GPx1 modulates stroke and provides neuroprotection, and consider how GPx1 may contribute to cancer risk. Overall, GPx1 is protective against the development and progression of many chronic diseases; however, there are some situations in which increased expression of GPx1 may promote cellular dysfunction and disease owing to its removal of essential reactive oxygen species.


Assuntos
Selênio , Selenocisteína , Animais , Antioxidantes/metabolismo , Glutationa Peroxidase/química , Glutationa Peroxidase/genética , Mamíferos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Selênio/metabolismo , Selenocisteína/química , Glutationa Peroxidase GPX1
19.
Cancers (Basel) ; 14(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35626163

RESUMO

As the first identified selenoprotein, glutathione peroxidase 1 (GPX1) is a widely and abundantly expressed antioxidant enzyme. GPX1 utilizes glutathione as a substrate to catalyze hydrogen peroxide, lipid peroxide, and peroxynitrite, thereby reducing intracellular oxidative stress. The GPX1 gene is regulated at transcriptional, post-transcriptional, and translational levels. Numerous case-control studies and meta-analyses have assessed the association between a functional genetic polymorphism of the GPX1 gene, named Pro198Leu (rs1050450 C>T), and cancer susceptibility in different populations. GPX1 polymorphism has type-specific effects as a candidate marker for cancer risk, but the association between GPX1 variants and cancer susceptibility remains controversial in different studies. GPX1 is abnormally elevated in most types of cancer but has complex dichotomous roles as tumor suppressor and promoter in different cancers. GPX1 can participate in various signaling pathways to regulate tumor biological behaviors, including cell proliferation, apoptosis, invasion, immune response, and chemoresistance. In this review, we comprehensively summarize the controversial associations between GPX1 polymorphism and cancer risks and further discuss the relationships between the aberrant expressions of GPX1 and tumorigenesis. Further studies are needed to elucidate the clinical significance of GPX1 as a potential prognostic biomarker and novel therapeutic target in various malignancies.

20.
Front Cell Neurosci ; 16: 841731, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401119

RESUMO

Glutathione peroxidase 1 (GPX1) is a crucial antioxidant enzyme that prevented the harmful accumulation of intra-cellular hydrogen peroxide. GPX1 might contribute in limiting cochlear damages associated with aging or acoustic overexposure, but the function of GPX1 in the inner ear remains unclear. The present study was designed to investigate the effect of GPX1 on cochlear spiral ganglion neurons (SGNs) against oxidative stress induced by peroxynitrite, a versatile oxidant generated by the reaction of superoxide anion and nitric oxide. Here, we first found that the expression of GPX1 in cultured SGNs was downregulated after peroxynitrite exposure. Then, the GPX1 mimic ebselen and the gpx1 knockout (gpx1 -/-) mice were used to investigate the role of GPX1 in SGNs treated with peroxynitrite. The pretreatment with ebselen significantly increased the survived SGN numbers, inhibited the apoptosis, and enhanced the expression of 4-HNE in the cultured SGNs of peroxynitrite + ebselen group compared with the peroxynitrite-only group. On the contrary, remarkably less survived SGNs, more apoptotic SGNs, and the higher expression level of 4-HNE were detected in the peroxynitrite + gpx1 -/- group compared with the peroxynitrite-only group. Furthermore, rescue experiments with antioxidant N-acetylcysteine (NAC) showed that the expression of 4-HNE and the apoptosis in SGNs were significantly decreased, while the number of surviving SGNs was increased in peroxynitrite + NAC group compared the peroxynitrite-only group and in peroxynitrite + gpx1 -/- + NAC group vs. peroxynitrite + gpx1 -/- group. Finally, mechanistic studies showed that the activation of nuclear factor-kappa B (NF-κB) was involved in the SGNs damage caused by peroxynitrite and that GPX1 protected SGNs against peroxynitrite-induced damage, at least in part, via blocking the NF-κB pathway activation. Collectively, our findings suggest that GPX1 might serve as a new target for the prevention of nitrogen radical-induced SGNs damage and hearing loss.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA