Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 336: 111858, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37673219

RESUMO

The Sirex noctilio's climatic adaption and rapid proliferation have caused Pinus mortality worldwide. The infestation combines the early effect of female S. noctilio gland secretion and the spreading symbiotic fungus Amylostereum areolatum. 'Lipidomics' is the study of all non-water-soluble components of the metabolome. Most of these non-water-soluble compounds correspond to lipids which can provide information about a biological activity, an organelle, an organism, or a disease. Using HPLC-MS/MS based lipidomics, 122 lipids were identified in P. radiata needles during S. noctilio infestation. Phosphatidic acids, N-acylethanolamines, and phosphatidylinositol-ceramides accumulated in infested trees could suggest a high level of phospholipases activities. The phosphatidylcholines were the most down-regulated species during infection, which could also suggest that they may be used as a substrate for up-regulated lipids. The accumulation of very long-chain fatty acids and long-chain fatty acids during the infestation could imply the tree defense response to create a barrier in the drilled zone to avoid larvae development and fungus proliferation. Also, the growth arrest phase of the trees during the prolonged infestation suggests a resistance response, regulated by the accumulation of NAE, which potentially shifts the tree energy to respond to the infestation.


Assuntos
Himenópteros , Pinus , Animais , Metabolismo dos Lipídeos , Lipidômica , Espectrometria de Massas em Tandem , Himenópteros/fisiologia , Fungos , Árvores , Ácidos Graxos , Lipídeos
2.
J Toxicol Environ Health A ; 86(9): 283-295, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36895096

RESUMO

Due to the high prevalence and clinical relevance, scorpionism is a critical public health issue in several Brazilian regions. Tityus serrulatus, commonly known as the Brazilian yellow scorpion, is the most venomous genus found in Brazilian fauna and associated with severe clinical manifestations such as localized pain, hypertension, sweating, tachycardia and complex hyperinflammatory responses. In general, T. serrulatus venom contains a complex mixture of active compounds, including proteins, peptides, and amino acids. Although knowledge of the protein fractions of scorpion venom is available, venom lipid components are not yet comprehensively known. The aim of the present study was to determine and characterize the lipid constituents/profile of the T. serratus venom utilizing liquid chromatography coupled with high-resolution mass spectrometry. Lipid species (164 in total) belonging to 3 different lipid categories, glycerophospholipids, sphingolipids, and glycerolipids, were identified. A further search on MetaCore/MetaDrug platform, which is based upon a manually curated database of molecular interactions, molecular pathways, gene-disease associations, chemical metabolism, and toxicity information, exhibited several metabolic pathways for 24 of previously identified lipid species, including activation of nuclear factor kappa B and oxidative stress pathways. Further several bioactive compounds, such as plasmalogens, lyso-platelet-activating factors, and sphingomyelins, associated with systemic responses triggered by T. serrulatus envenomation were detected. Finally, lipidomic data presented provide advanced and valuable information to better comprehend the mechanisms underlying the complex pathophysiology induced by T. serrulatus envenomation.


Assuntos
Venenos de Escorpião , Animais , Venenos de Escorpião/toxicidade , Venenos de Escorpião/química , Escorpiões , Brasil , Lipidômica , Lipídeos
3.
Insects ; 13(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36135499

RESUMO

Insects rely on lipids as an energy source to perform various activities, such as growth, flight, diapause, and metamorphosis. This study evaluated the role of lipids in phosphine resistance by stored-grain insects. Phosphine resistant and susceptible strains of the two main stored-grain insects, Tribolium castaneum and Rhyzopertha dominica, were analyzed using liquid chromatography-mass spectroscopy (LC-MS) to determine their lipid contents. Phosphine resistant strains of both species had a higher amount of lipids than susceptible stains. Significant variance ratios between the resistant and susceptible strains of T. castaneum were observed for glycerolipids (1.13- to 53.10-fold) and phospholipids (1.05- to 20.00-fold). Significant variance ratios between the resistant and susceptible strains of R. dominica for glycerolipids were 1.04- to 31.50-fold and for phospholipids were 1.04- to 10.10-fold. Glycerolipids are reservoirs to face the long-term energy shortage. Phospholipids act as a barrier to isolate the cells from the surrounding environment and allow each cell to perform its specific function. Thus, lipids offer a consistent energy source for the resistant insect to survive under the stress of phosphine fumigation and provide a suitable environment to protect the mitochondria from phosphine. Hence, it was proposed through this study that the lipid content of phosphine-resistant and phosphine-susceptible strains of T. castaneum and R. dominica could play an important role in the resistance of phosphine.

4.
Front Plant Sci ; 13: 839326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592561

RESUMO

Lipids in avocados have been widely studied due to their nutritional value and several reported bioactivities. Aliphatic acetogenins are a relevant component of the avocado lipidome and have been tested for several potential food and pharma industries applications. This work followed the evolution of avocado fatty acids (FAs) and aliphatic acetogenins during seed germination and leaf growth. Oil extracts of embryonic axes, cotyledons, and leaves from seedlings and trees were divided to analyze free acetylated acetogenins (AcO-acetogenins), and free FAs. Embryonic axes from germinating seeds contained the highest amount of AcO-acetogenins and FAs; this tissue also accumulated the most diverse FA profile with up to 22 detected moieties. Leaves presented the highest variations in AcO-acetogenin profiles during development, although leaves from seedlings accumulated the simplest FA profile with only 10 different FAs. Remarkably, AcO-acetogenins represented half of the carbons allocated to lipids in grown leaves, while embryonic axes and cotyledons always contained more carbons within FAs during germination. Thus, we hypothesized the use of the AcO-acetogenin acyl chain for energy production toward ß-oxidation. Also, α-linolenic and docosahexaenoic acids (DHAs) were proposed as close AcO-acetogenin intermediaries based on a correlation network generated using all these data. Another part of the oil extract was fractionated into different lipid classes before transesterification to profile FAs and acetogenins bound to lipids. Acetogenin backbones were identified for the first time in triglycerides from cotyledons and mainly in polar lipids (which include phospholipids) in all developing avocado tissues analyzed. Seed tissues accumulated preferentially polar lipids during germination, while triglycerides were consumed in cotyledons. Seedling leaves contained minute amounts of triglycerides, and polar lipids increased as they developed. Results from this work suggest acetogenins might be part of the energy and signaling metabolisms, and possibly of membrane structures, underlining the yet to establish role(s) of these unusual lipids in the avocado plant physiology.

5.
Atherosclerosis ; 316: 1-7, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33260006

RESUMO

BACKGROUND AND AIMS: The transition of macrophage to foam cells is a major hallmark of early stage atherosclerotic lesions. This process is characterized by the accumulation of large cytoplasmic lipid droplets containing large quantities of cholesterol esters (CE), triacylglycerol (TAG) and phospholipid (PL). Although cholesterol and CE metabolism during foam cell formation has been broadly studied, little is known about the role of the glycerolipids (TAG and PL) in this context. Here we studied the contribution of glycerolipid synthesis to lipid accumulation, focusing specifically on the first and rate-limiting enzyme of the pathway: glycerol-3-phosphate acyltransferase (GPAT). METHODS: We used RAW 264.7 cells and bone marrow derived macrophages (BMDM) treated with oxidized LDL (oxLDL). RESULTS: We showed that TAG synthesis is induced during the macrophage to foam cell transition. The expression and activity of GPAT3 and GPAT4 also increased during this process, and these two isoforms were required for the accumulation of cell TAG and PL. Compared to cells from wildtype mice after macrophage to foam cell transition, Gpat4-/- BMDM released more pro-inflammatory cytokines and chemokines, suggesting that the activity of GPAT4 could be associated with a decrease in the inflammatory response, probably by sequestering signaling precursors into lipid droplets. CONCLUSIONS: Our results provide evidence that TAG synthesis directed by GPAT3 and GPAT4 is required for lipid droplet formation and the modulation of the inflammatory response during the macrophage-foam cell transition.


Assuntos
Células Espumosas , Gotículas Lipídicas , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Animais , Glicerol , Glicerol-3-Fosfato O-Aciltransferase/genética , Lipoproteínas LDL , Macrófagos , Camundongos , Fosfatos , Triglicerídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA