Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proteomics Clin Appl ; 18(1): e2300008, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37329193

RESUMO

PURPOSE: Our main goal is to identify the alterations in the amniotic fluid (AF) metabolome in Zika virus (ZIKV)-infected patients and their relation to congenital Zika syndrome (CZS) progression. EXPERIMENTAL DESIGN: We applied an untargeted metabolomics strategy to analyze seven AF of pregnant women: healthy women and ZIKV-infected women bearing non-microcephalic and microcephalic fetuses. RESULTS: Infected patients were characterized by glycerophospholipid metabolism impairment, which is accentuated in microcephalic phenotypes. Glycerophospholipid decreased concentration in AF can be a consequence of intracellular transport of lipids to the placental or fetal tissues under development. The increased intracellular concentration of lipids can lead to mitochondrial dysfunction and neurodegeneration caused by lipid droplet accumulation. Furthermore, the dysregulation of amino acid metabolism was a molecular fingerprint of microcephalic phenotypes, specifically serine, and proline metabolisms. Both amino acid deficiencies were related to neurodegenerative disorders, intrauterine growth retardation, and placental abnormalities. CONCLUSIONS AND CLINICAL RELEVANCE: This study enhances our understanding of the development of CZS pathology and sheds light on dysregulated pathways that could be relevant for future studies.


Assuntos
Microcefalia , Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Feminino , Gravidez , Humanos , Infecção por Zika virus/complicações , Líquido Amniótico , Placenta , Aminoácidos , Lipídeos
2.
J Biol Chem ; 298(11): 102551, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36183836

RESUMO

Involved in triglyceride (TG) and glycerophospholipid metabolism, the liver plays a crucial physiological role in the human body both as a major metabolic integrator and a central hub for lipid and energy homeostasis. Metabolic disorders can be caused by various factors that promote abnormal lipid accumulation in storage organelles called lipid droplets (LDs), as in hepatic steatosis, a metabolic syndrome manifestation that can progress to a hepatocellular carcinoma, the most common primary liver malignancy worldwide. Modern life involves conditions that disrupt the biological clock, causing metabolic disorders and higher cancer risk. A circadian clock is present in the liver and in immortalized cell lines and temporally regulates physiological processes by driving transcriptional and metabolic rhythms. Here we investigated metabolic rhythms in HepG2 cells, a human hepatocellular carcinoma-derived cell line, and the link between these rhythms and the circadian clock in control (Bmal1-wildtype) and Bmal1-disrupted (B-D) cells having their molecular clock impaired. Rhythms in the expression of lipid-synthesizing enzymes ChoKα, Pcyt2, and Lipin1, in the metabolism of particular glycerophospholipids such as phosphatidylcholine (PC) and phosphatidylethanolamine, and in the phosphatidylcholine/phosphatidylethanolamine ratio and TG and LD content were observed in Bmal1-wildtype cells. By contrast, in the B-D model, the whole hepatic metabolism was severely altered with a significant reduction in the TG and LD content as well as in ChoKα and other related lipid enzymes. Together, our results suggest a very strong crosstalk between the molecular clock and lipid metabolism, which exhibits an exacerbated pathological condition in B-D cells.


Assuntos
Carcinoma Hepatocelular , Relógios Circadianos , Neoplasias Hepáticas , Humanos , Metabolismo dos Lipídeos/fisiologia , Fatores de Transcrição ARNTL/metabolismo , Fosfatidiletanolaminas/metabolismo , Carcinoma Hepatocelular/metabolismo , Ritmo Circadiano , Neoplasias Hepáticas/metabolismo , Relógios Circadianos/fisiologia , Fígado/metabolismo , Triglicerídeos/metabolismo , Fosfatidilcolinas/metabolismo , Linhagem Celular
3.
Plant Physiol Biochem ; 151: 411-420, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32283507

RESUMO

Glycerophospholipids (GPLs) from cell membranes (CM) are a proper source for the synthesis of lipid messengers able to activate signal pathways that will define the plant survival under changing and stressful environmental conditions. Little is known about how GPLs metabolism (GPLsM) is regulated and the effects of phenol treatment on GPLs composition. In this work, we studied the effects of phenol both on GPLs turnover and on the expression of GPLsM-related genes potentially regulated by the circadian clock, using tobacco hairy root cultures (HRC). Phenol decreased the total PC levels and increased PE, PG and CL levels in the dark phase. Different molecular species of PC and PE showed the same trend than the total PC and PE upon phenol treatment. Besides, significant differences in the expression of all studied genes related to GPLsM were found. NtCCT2 expression was affected at all analyzed times while NtPECT1 and NtAAPT1 showed similar expression patterns. NtCDS1, NtPGPS2 and NtCLS genes showed significant and differential expression profiles both in untreated and treated HRC. PECT1 and NtPGPS2 genes seem to conserve a circadian expression profile mainly in untreated HRC. However, phenol was able to modify the GPLs composition and the expression of genes related to GPLs synthesis. The GPLs modification could be explained by the up-regulation of NtPECT1, NtAAPT1 and NtCLS genes during the dark phase, suggesting for being a crucial moment for HRC to trigger an adaptive response against this organic pollutant.


Assuntos
Relógios Circadianos , Nicotiana , Fenol , Raízes de Plantas , Relógios Circadianos/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Glicerofosfolipídeos/metabolismo , Fenol/toxicidade , Raízes de Plantas/efeitos dos fármacos , Nicotiana/efeitos dos fármacos
4.
Mol Neurobiol ; 56(2): 1276-1292, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29881948

RESUMO

Even in immortalized cell lines, circadian clocks regulate physiological processes in a time-dependent manner, driving transcriptional and metabolic rhythms, the latter being able to persist without transcription. Circadian rhythm disruptions in modern life (shiftwork, jetlag, etc.) may lead to higher cancer risk. Here, we investigated whether the human glioblastoma T98G cells maintained quiescent or under proliferation keep a functional clock and whether cells display differential time responses to bortezomib chemotherapy. In arrested cultures, mRNAs for clock (Per1, Rev-erbα) and glycerophospholipid (GPL)-synthesizing enzyme genes, 32P-GPL labeling, and enzyme activities exhibited circadian rhythmicity; oscillations were also found in the redox state/peroxiredoxin oxidation. In proliferating cells, rhythms of gene expression were lost or their periodicity shortened whereas the redox and GPL metabolisms continued to fluctuate with a similar periodicity as under arrest. Cell viability significantly changed over time after bortezomib treatment; however, this rhythmicity and the redox cycles were altered after Bmal1 knock-down, indicating cross-talk between the transcriptional and the metabolic oscillators. An intrinsic metabolic clock continues to function in proliferating cells, controlling diverse metabolisms and highlighting differential states of tumor suitability for more efficient, time-dependent chemotherapy when the redox state is high and GPL metabolism low.


Assuntos
Antineoplásicos/farmacologia , Bortezomib/farmacologia , Proliferação de Células/efeitos dos fármacos , Relógios Circadianos/efeitos dos fármacos , Glioblastoma/metabolismo , Neurônios/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Relógios Circadianos/fisiologia , Glioblastoma/genética , Humanos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA