Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
1.
Gut Microbes ; 16(1): 2387857, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39171684

RESUMO

Imbalances in proteolytic activity have been linked to the development of inflammatory bowel diseases (IBD) and experimental colitis. Proteases in the intestine play important roles in maintaining homeostasis, but exposure of mucosal tissues to excess proteolytic activity can promote pathology through protease-activated receptors (PARs). Previous research implicates microbial proteases in IBD, but the underlying pathways and specific interactions between microbes and PARs remain unclear. In this study, we investigated the role of microbial proteolytic activation of the external domain of PAR2 in intestinal injury using mice expressing PAR2 with a mutated N-terminal external domain that is resistant to canonical activation by proteolytic cleavage. Our findings demonstrate the key role of proteolytic cleavage of the PAR2 external domain in promoting intestinal permeability and inflammation during colitis. In wild-type mice expressing protease-sensitive PAR2, excessive inflammation leads to the expansion of bacterial taxa that cleave the external domain of PAR2, exacerbating colitis severity. In contrast, mice expressing mutated protease-resistant PAR2 exhibit attenuated colitis severity and do not experience the same proteolytic bacterial expansion. Colonization of wild-type mice with proteolytic PAR2-activating Enterococcus and Staphylococcus worsens colitis severity. Our study identifies a previously unknown interaction between proteolytic bacterial communities, which are shaped by inflammation, and the external domain of PAR2 in colitis. The findings should encourage new therapeutic developments for IBD by targeting excessive PAR2 cleavage by bacterial proteases.


Assuntos
Colite , Proteólise , Receptor PAR-2 , Animais , Receptor PAR-2/metabolismo , Receptor PAR-2/genética , Colite/microbiologia , Colite/patologia , Colite/metabolismo , Camundongos , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Inflamação/microbiologia , Enterococcus/genética , Enterococcus/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Bactérias/enzimologia , Modelos Animais de Doenças , Humanos , Domínios Proteicos , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia
2.
J Med Microbiol ; 73(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39028257

RESUMO

Clostridioides difficile is the most common cause of nosocomial antibiotic-associated diarrhoea and is responsible for a spectrum of diseases characterized by high levels of recurrence and morbidity. In some cases, complications can lead to death. Currently, several types of animal models have been developed to study various aspects of C. difficile infection (CDI), such as colonization, virulence, transmission and recurrence. These models have also been used to test the role of environmental conditions, such as diet, age and microbiome that modulate infection outcome, and to evaluate several therapeutic strategies. Different rodent models have been used successfully, such as the hamster model and the gnotobiotic and conventional mouse models. These models can be applied to study either the initial CDI infectious process or recurrences. The applications of existing rodent models and their advantages and disadvantages are discussed here.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Modelos Animais de Doenças , Animais , Infecções por Clostridium/microbiologia , Clostridioides difficile/patogenicidade , Camundongos , Cricetinae , Humanos , Roedores/microbiologia , Vida Livre de Germes
3.
Methods Mol Biol ; 2820: 127-137, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38941020

RESUMO

Intestinal fungi are a fundamental component of the gut microbiome and play important roles in mammalian host biology. At the same time, the contribution of gut fungi to host health and disease remains understudied due to their low abundance. In that respect, gnotobiotic animals with defined microbial populations of reduced complexity represent a well-suited model system that highlights the effects of low abundant gut fungi on host physiology and other members of the microbial community. In this chapter, a label-free quantitative metaproteomic approach for the characterization of simplified microbial communities in gnotobiotic mice is presented. The model allows for exploring various research questions on the role of gut fungi in disease pathogenesis, microbial ecosystem maturation, or host-microbiome crosstalk.


Assuntos
Fungos , Microbioma Gastrointestinal , Vida Livre de Germes , Proteômica , Animais , Camundongos , Proteômica/métodos , Fungos/metabolismo
4.
Methods Mol Biol ; 2832: 257-279, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38869802

RESUMO

Various bacterial species are associated with plant roots. However, symbiotic and free-living plant growth-promoting bacteria (PGPB) can only help plants to grow and develop under normal and stressful conditions. Several biochemical and in vitro assays were previously designed to differentiate between the PGPB and other plant-associated bacterial strains. This chapter describes and summarizes some of these assays and proposes a strategy to screen for PGPB. To determine the involvement of the PGPB in abiotic stress tolerance, assays for the ability to produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, ammonium, gibberellic acid (GA), indole acetic acid (IAA), and microbial volatile organic compounds (mVOCs) are described in this chapter. Additionally, assays to show the capacity to solubilize micronutrients such as potassium, phosphorus, and zinc by bacteria were also summarized in this chapter. To determine the contribution of the PGPB in biotic stress tolerance in plants, Fe-siderophore, hydrogen cyanide, and antibiotic and antifungal metabolites production assays were described. Moreover, assays to investigate the growth-promotion activities of a bacterium strain on plants, using the gnotobiotic root elongation, in vitro, and pots assays, were explained. Finally, an assay for the localization of endophytic bacterium in plant tissues was also presented in this chapter. Although the assays described in this chapter can give evidence of the nature of the mechanism behind the PGPB actions, other unknown growth-promoting means are yet to decipher, and until then, new methodologies will be developed.


Assuntos
Bactérias , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas , Raízes de Plantas , Estresse Fisiológico , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Simbiose , Plantas/microbiologia , Plantas/metabolismo , Microbiologia do Solo , Giberelinas/metabolismo , Compostos Orgânicos Voláteis/metabolismo
5.
Cell Host Microbe ; 32(6): 820-836, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38870899

RESUMO

Microbial communities that colonize the human gastrointestinal (GI) tract defend against pathogens through a mechanism known as colonization resistance (CR). Advances in technologies such as next-generation sequencing, gnotobiotic mouse models, and bacterial cultivation have enhanced our understanding of the underlying mechanisms and the intricate microbial interactions involved in CR. Rather than being attributed to specific microbial clades, CR is now understood to arise from a dynamic interplay between microbes and the host and is shaped by metabolic, immune, and environmental factors. This evolving perspective underscores the significance of contextual factors, encompassing microbiome composition and host conditions, in determining CR. This review highlights recent research that has shifted its focus toward elucidating how these factors interact to either promote or impede enteric infections. It further discusses future research directions to unravel the complex relationship between host, microbiota, and environmental determinants in safeguarding against GI infections to promote human health.


Assuntos
Microbioma Gastrointestinal , Humanos , Animais , Camundongos , Interações entre Hospedeiro e Microrganismos , Trato Gastrointestinal/microbiologia , Bactérias/genética , Bactérias/classificação , Interações Hospedeiro-Patógeno , Vida Livre de Germes , Interações Microbianas
6.
Gut Microbes ; 16(1): 2363015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38845453

RESUMO

Gut microbiota is responsible for essential functions in human health. Several communication axes between gut microbiota and other organs via neural, endocrine, and immune pathways have been described, and perturbation of gut microbiota composition has been implicated in the onset and progression of an emerging number of diseases. Here, we analyzed peripheral nerves, dorsal root ganglia (DRG), and skeletal muscles of neonatal and young adult mice with the following gut microbiota status: a) germ-free (GF), b) gnotobiotic, selectively colonized with 12 specific gut bacterial strains (Oligo-Mouse-Microbiota, OMM12), or c) natural complex gut microbiota (CGM). Stereological and morphometric analyses revealed that the absence of gut microbiota impairs the development of somatic median nerves, resulting in smaller diameter and hypermyelinated axons, as well as in smaller unmyelinated fibers. Accordingly, DRG and sciatic nerve transcriptomic analyses highlighted a panel of differentially expressed developmental and myelination genes. Interestingly, the type III isoform of Neuregulin1 (NRG1), known to be a neuronal signal essential for Schwann cell myelination, was overexpressed in young adult GF mice, with consequent overexpression of the transcription factor Early Growth Response 2 (Egr2), a fundamental gene expressed by Schwann cells at the onset of myelination. Finally, GF status resulted in histologically atrophic skeletal muscles, impaired formation of neuromuscular junctions, and deregulated expression of related genes. In conclusion, we demonstrate for the first time a gut microbiota regulatory impact on proper development of the somatic peripheral nervous system and its functional connection to skeletal muscles, thus suggesting the existence of a novel 'Gut Microbiota-Peripheral Nervous System-axis.'


Assuntos
Gânglios Espinais , Microbioma Gastrointestinal , Junção Neuromuscular , Animais , Junção Neuromuscular/microbiologia , Camundongos , Gânglios Espinais/metabolismo , Gânglios Espinais/microbiologia , Vida Livre de Germes , Nervos Periféricos/microbiologia , Nervos Periféricos/crescimento & desenvolvimento , Músculo Esquelético/microbiologia , Camundongos Endogâmicos C57BL , Neuregulina-1/metabolismo , Neuregulina-1/genética , Masculino , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Células de Schwann/microbiologia , Células de Schwann/metabolismo
7.
Pharmacol Res ; 205: 107231, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815878

RESUMO

We previously demonstrated that mice carrying natural mtDNA variants of the FVB/NJ strain (m.7778 G>T in the mt-Atp8 gene in mitochondrial complex V), namely C57BL/6 J-mtFVB/NJ (B6-mtFVB), exhibited (i) partial protection from experimental skin inflammatory diseases in an anti-murine type VII collagen antibody-induced skin inflammation model and psoriasiform dermatitis model; (ii) significantly altered metabolites, including short-chain fatty acids, according to targeted metabolomics of liver, skin and lymph node samples; and (iii) a differential composition of the gut microbiota according to bacterial 16 S rRNA gene sequencing of stool samples compared to wild-type C57BL/6 J (B6) mice. To further dissect these disease-contributing factors, we induced an experimental antibody-induced skin inflammatory disease in gnotobiotic mice. We performed shotgun metagenomic sequencing of caecum contents and untargeted metabolomics of liver, CD4+ T cell, and caecum content samples from conventional B6-mtFVB and B6 mice. We identified D-glucosamine as a candidate mediator that ameliorated disease severity in experimental antibody-induced skin inflammation by modulating immune cell function in T cells, neutrophils and macrophages. Because mice carrying mtDNA variants of the FVB/NJ strain show differential disease susceptibility to a wide range of experimental diseases, including diet-induced atherosclerosis in low-density lipoprotein receptor knockout mice and collagen antibody-induced arthritis in DBA/1 J mice, this experimental approach is valuable for identifying novel therapeutic options for skin inflammatory conditions and other chronic inflammatory diseases to which mice carrying specific mtDNA variants show differential susceptibility.


Assuntos
DNA Mitocondrial , Camundongos Endogâmicos C57BL , Animais , DNA Mitocondrial/genética , Microbioma Gastrointestinal , Camundongos , Pele/metabolismo , Pele/microbiologia , Pele/patologia , Dermatite/imunologia , Dermatite/microbiologia , Dermatite/genética , Dermatite/tratamento farmacológico , Dermatite/metabolismo , Inflamação/genética , Inflamação/imunologia , Modelos Animais de Doenças , Masculino , Vida Livre de Germes , Psoríase/tratamento farmacológico , Psoríase/imunologia , Psoríase/genética , Ceco/microbiologia , Doença Crônica , Feminino
8.
Immunol Rev ; 325(1): 152-165, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38809041

RESUMO

Multiple sclerosis (MS) affects more than 2.8 million people worldwide but the distribution is not even. Although over 200 gene variants have been associated with susceptibility, studies of genetically identical monozygotic twin pairs suggest that the genetic make-up is responsible for only about 20%-30% of the risk to develop disease, while the rest is contributed by milieu factors. Recently, a new, unexpected player has entered the ranks of MS-triggering or facilitating elements: the human gut microbiota. In this review, we summarize the present knowledge of microbial effects on formation of a pathogenic autoreactive immune response targeting the distant central nervous system and delineate the approaches, both in people with MS and in MS animal models, which have led to this concept. Finally, we propose that a tight combination of investigations of human patients with studies of suitable animal models is the best strategy to functionally characterize disease-associated microbiota and thereby contribute to deciphering pathogenesis of a complex human disease.


Assuntos
Modelos Animais de Doenças , Microbioma Gastrointestinal , Esclerose Múltipla , Humanos , Esclerose Múltipla/imunologia , Esclerose Múltipla/etiologia , Esclerose Múltipla/microbiologia , Animais , Microbioma Gastrointestinal/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Autoimunidade
9.
Nutrients ; 16(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38613113

RESUMO

The implications of soy consumption on human health have been a subject of debate, largely due to the mixed evidence regarding its benefits and potential risks. The variability in responses to soy has been partly attributed to differences in the metabolism of soy isoflavones, compounds with structural similarities to estrogen. Approximately one-third of humans possess gut bacteria capable of converting soy isoflavone daidzein into equol, a metabolite produced exclusively by gut microbiota with significant estrogenic potency. In contrast, lab-raised rodents are efficient equol producers, except for those raised germ-free. This discrepancy raises concerns about the applicability of traditional rodent models to humans. Herein, we designed a gnotobiotic mouse model to differentiate between equol producers and non-producers by introducing synthetic bacterial communities with and without the equol-producing capacity into female and male germ-free mice. These gnotobiotic mice display equol-producing phenotypes consistent with the capacity of the gut microbiota received. Our findings confirm the model's efficacy in mimicking human equol production capacity, offering a promising tool for future studies to explore the relationship between endogenous equol production and health outcomes like cardiometabolic health and fertility. This approach aims to refine dietary guidelines by considering individual microbiome differences.


Assuntos
Equol , Isoflavonas , Humanos , Feminino , Masculino , Animais , Camundongos , Modelos Animais de Doenças , Cetonas , Fenótipo
10.
Microbiome ; 12(1): 71, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38589975

RESUMO

BACKGROUND: Childhood undernutrition is a major global health challenge with devastating lifelong consequences. Linear growth stunting due to undernutrition has been linked to poor health outcomes, and mothers who experience growth stunting in childhood are more likely to give birth to stunted children later in life. Based on these findings, we hypothesized that intergenerational colonization of mice with microbiota from human donors with undernutrition may recapitulate certain immune and growth changes observed in this disorder. RESULTS: To test this hypothesis, we developed a gnotobiotic murine model of undernutrition using microbiota from human infants with healthy or stunted growth trajectories. Intergenerational colonization with microbiota derived from children with growth stunting lead to less linear growth and the development of immune features of undernutrition and enteropathy, including intestinal villus blunting, lower liver IGF-1 and accumulation of intraepithelial lymphocytes and plasma cells in the small intestine. In contrast, colonization after weaning lead to fewer host phenotypic changes between these distinct microbial communities. CONCLUSIONS: These results are broadly consistent with previous findings demonstrating that exposure of the immune system to microbial products during the weaning phase is a critical determinant of later life immune function. Overall, our results suggest intergenerational colonization with human microbiota samples is a useful approach with which to investigate microbiota-dependent changes in growth and immunity in early life. Murine models that capture the intergenerational and multifactorial nature of undernutrition are critical to understanding the underlying biology of this disorder. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Desnutrição , Microbiota , Animais , Humanos , Lactente , Camundongos , Transtornos do Crescimento , Intestino Delgado
11.
Vaccines (Basel) ; 12(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38543894

RESUMO

Human rotavirus (HRV) is still a leading cause of severe dehydrating gastroenteritis globally, particularly in infants and children. Previously, we demonstrated the immunogenicity of mRNA-based HRV vaccine candidates expressing the viral spike protein VP8* in rodent models. In the present study, we assessed the immunogenicity and protective efficacy of two mRNA-based HRV trivalent vaccine candidates, encoding VP8* of the genotypes P[8], P[6], or P[4], in the gnotobiotic (Gn) pig model of Wa (G1P[8]) HRV infection and diarrhea. Vaccines either encoded VP8* alone fused to the universal T-cell epitope P2 (P2-VP8*) or expressed P2-VP8* as a fusion protein with lumazine synthase (LS-P2-VP8*) to allow the formation and secretion of protein particles that present VP8* on their surface. Gn pigs were randomly assigned into groups and immunized three times with either P2-VP8* (30 µg) or LS-P2-VP8* (30 µg or 12 µg). A trivalent alum-adjuvanted P2-VP8* protein vaccine or an LNP-formulated irrelevant mRNA vaccine served as the positive and negative control, respectively. Upon challenge with virulent Wa HRV, a significantly shortened duration and decreased severity of diarrhea and significant protection from virus shedding was induced by both mRNA vaccine candidates compared to the negative control. Both LS-P2-VP8* doses induced significantly higher VP8*-specific IgG antibody titers in the serum after immunizations than the negative as well as the protein control. The P[8] VP8*-specific IgG antibody-secreting cells in the ileum, spleen, and blood seven days post-challenge, as well as VP8*-specific IFN-γ-producing T-cell numbers increased in all three mRNA-vaccinated pig groups compared to the negative control. Overall, there was a clear tendency towards improved responses in LS-P2-VP8* compared to the P2-VP8*mRNA vaccine. The demonstrated strong humoral immune responses, priming for effector T cells, and the significant reduction of viral shedding and duration of diarrhea in Gn pigs provide a promising proof of concept and may provide guidance for the further development of mRNA-based rotavirus vaccines.

12.
FEBS J ; 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38523409

RESUMO

The intestinal microbiota has major influence on human physiology and modulates health and disease. Complex host-microbe interactions regulate various homeostatic processes, including metabolism and immune function, while disturbances in microbiota composition (dysbiosis) are associated with a plethora of human diseases and are believed to modulate disease initiation, progression and therapy response. The vast complexity of the human microbiota and its metabolic output represents a great challenge in unraveling the molecular basis of host-microbe interactions in specific physiological contexts. To increase our understanding of these interactions, functional microbiota research using animal models in a reductionistic setting are essential. In the dynamic landscape of gut microbiota research, the use of germ-free and gnotobiotic mouse technology, in which causal disease-driving mechanisms can be dissected, represents a pivotal investigative tool for functional microbiota research in health and disease, in which causal disease-driving mechanisms can be dissected. A better understanding of the health-modulating functions of the microbiota opens perspectives for improved therapies in many diseases. In this review, we discuss practical considerations for the design and execution of germ-free and gnotobiotic experiments, including considerations around germ-free rederivation and housing conditions, route and timing of microbial administration, and dosing protocols. This comprehensive overview aims to provide researchers with valuable insights for improved experimental design in the field of functional microbiota research.

13.
Acta Physiol (Oxf) ; 240(3): e14100, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38258357

RESUMO

AIM: Drastic diet interventions have been shown to promote rapid and significant compositional changes of the gut microbiota, but the impact of moderate diet variations is less clear. Here, we aimed to clarify the impact of moderate diet variations that remain within the spectrum of the habitual human diet on gut microbiota composition. METHODS: We performed a pilot diet intervention where five healthy volunteers consumed a vegetarian ready-made meal for three days to standardize dietary intake before switching to a meat-based ready-made western-style meal and high sugar drink for two days. We performed 16S rRNA sequencing from daily fecal sampling to assess gut microbiota changes caused by the intervention diet. Furthermore, we used the volunteers' fecal samples to colonize germ-free mice that were fed the same sterilized diets to study the effect of a moderate diet intervention on the gut microbiota in a setting of reduced interindividual variation. RESULTS: In the human intervention, we found that fecal microbiota composition varied between and within individuals regardless of diet. However, when we fed the same diets to mice colonized with the study participants' feces, we observed significant, often donor-specific, changes in the mouse microbiota following this moderate diet intervention. CONCLUSION: Moderate variations in the habitual human diet have the potential to alter the gut microbiota. Feeding humanized mice human diets may facilitate our understanding of individual human gut microbiota responses to moderate dietary changes and help improve individualized interventions.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Camundongos , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Dieta , Fezes
14.
Microbiol Spectr ; 12(1): e0345023, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38014984

RESUMO

IMPORTANCE: H. pylori infects half of the world population and is the leading cause of gastric cancer. We previously demonstrated that gastric cancer risk is associated with gastric microbiota. Specifically, gastric urease-positive Staphylococcus epidermidis and Streptococcus salivarius had contrasting effects on H. pylori-associated gastric pathology and immune responses in germ-free INS-GAS mice. As gastritis progresses to gastric cancer, the oncogenic transcription factor Foxm1 becomes increasingly expressed. In this study, we evaluated the gastric commensal C. acnes, certain strains of which produce thiopeptides that directly inhibit FOXM1. Thiopeptide-positive C. acnes was isolated from Nicaraguan patient gastric biopsies and inoculated into germ-free INS-GAS mice with H. pylori. We, therefore, asked whether coinfection with C. acnes expressing thiopeptide and H. pylori would decrease gastric Foxm1 expression and pro-inflammatory cytokine mRNA and protein levels. Our study supports the growing literature that specific non-H. pylori gastric bacteria affect inflammatory and cancer biomarkers in H. pylori pathogenesis.


Assuntos
Coinfecção , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Camundongos , Animais , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Modelos Animais de Doenças , Biomarcadores Tumorais , Infecções por Helicobacter/complicações , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Proteína Forkhead Box M1/genética
15.
Am J Obstet Gynecol ; 230(2): 251.e1-251.e17, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37598997

RESUMO

BACKGROUND: Zika virus congenital infection evades double-stranded RNA detection and may persist in the placenta for the duration of pregnancy without accompanying overt histopathologic inflammation. Understanding how viruses can persist and replicate in the placenta without causing overt cellular or tissue damage is fundamental to deciphering mechanisms of maternal-fetal vertical transmission. OBJECTIVE: Placenta-specific microRNAs are believed to be a tenet of viral resistance at the maternal-fetal interface. We aimed to test the hypothesis that the Zika virus functionally disrupts placental microRNAs, enabling viral persistence and fetal pathogenesis. STUDY DESIGN: To test this hypothesis, we used orthogonal approaches in human and murine experimental models. In primary human trophoblast cultures (n=5 donor placentae), we performed Argonaute high-throughput sequencing ultraviolet-crosslinking and immunoprecipitation to identify any significant alterations in the functional loading of microRNAs and their targets onto the RNA-induced silencing complex. Trophoblasts from same-donors were split and infected with a contemporary first-passage Zika virus strain HN16 (multiplicity of infection=1 plaque forming unit per cell) or mock infected. To functionally cross-validate microRNA-messenger RNA interactions, we compared our Argonaute high-throughput sequencing ultraviolet-crosslinking and immunoprecipitation results with an independent analysis of published bulk RNA-sequencing data from human placental disk specimens (n=3 subjects; Zika virus positive in first, second, or third trimester, CD45- cells sorted by flow cytometry) and compared it with uninfected controls (n=2 subjects). To investigate the importance of these microRNA and RNA interference networks in Zika virus pathogenesis, we used a gnotobiotic mouse model uniquely susceptible to the Zika virus. We evaluated if small-molecule enhancement of microRNA and RNA interference pathways with enoxacin influenced Zika virus pathogenesis (n=20 dams total yielding 187 fetal specimens). Lastly, placentae (n=14 total) from this mouse model were analyzed with Visium spatial transcriptomics (9743 spatial transcriptomes) to identify potential Zika virus-associated alterations in immune microenvironments. RESULTS: We found that Zika virus infection of primary human trophoblast cells led to an unexpected disruption of placental microRNA regulation networks. When compared with uninfected controls, Zika virus-infected placentae had significantly altered SLC12A8, SDK1, and VLDLR RNA-induced silencing complex loading and transcript levels (-22; adjusted P value <.05; Wald-test with false discovery rate correction q<0.05). In silico microRNA target analyses revealed that 26 of 119 transcripts (22%) in the transforming growth factor-ß signaling pathway were targeted by microRNAs that were found to be dysregulated following Zika virus infection in trophoblasts. In gnotobiotic mice, relative to mock controls, Zika virus-associated fetal pathogenesis included fetal growth restriction (P=.036) and viral persistence in placental tissue (P=.011). Moreover, spatial transcriptomics of murine placentae revealed that Zika virus-specific placental niches were defined by significant up-regulation of complement cascade components and coordinated changes in transforming growth factor-ß gene expression. Finally, treatment of Zika virus-infected mice with enoxacin abolished placental Zika virus persistence, rescued the associated fetal growth restriction, and the Zika virus-associated transcriptional changes in placental immune microenvironments were no longer observed. CONCLUSION: These results collectively suggest that (1) Zika virus infection and persistence is associated with functionally perturbed microRNA and RNA interference pathways specifically related to immune regulation in placental microenvironments and (2) enhancement of placental microRNA and RNA interference pathways in mice rescued Zika virus-associated pathogenesis, specifically persistence of viral transcripts in placental microenvironments and fetal growth restriction.


Assuntos
MicroRNAs , Infecção por Zika virus , Zika virus , Gravidez , Humanos , Feminino , Animais , Camundongos , Zika virus/genética , Infecção por Zika virus/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Retardo do Crescimento Fetal/metabolismo , Enoxacino/metabolismo , Placenta/metabolismo , Perfilação da Expressão Gênica , Complexo de Inativação Induzido por RNA/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Trofoblastos/metabolismo
16.
Microb Pathog ; 185: 106429, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37940062

RESUMO

Eco-friendly alternatives such as probiotics are needed to prevent economically relevant infectious diseases for a successful disease-free harvest in aquaculture. The use of antibiotics has been the favored practice, but its empirical and indiscriminate use has led to antibiotic resistance in the aquatic environment and residues in the food fish. With this rationale, a probiotic was isolated from tilapia, a commercially important cultured fish worldwide. The characteristics of the probiotic were checked against common bacterial pathogens affecting aquaculture. In vitro tests demonstrated the inhibitory effects of the isolated probiotic on the growth of Aeromonas hydrophila, Edwardsiella tarda, Vibrio anguillarum, and V. alginolyticus. The candidate probiotic, referred to as TLDK301120C24, was identified as Bacillus subtilis by a battery of biochemical tests and genotypic confirmation by 16S rDNA sequencing. The in vitro results revealed the ability of the probiotic to withstand the gut conditions that included pH range of 3-9, salt concentration of 0.5-6%, and bile salt concentration of up to 6%. The isolate could hydrolyze starch (12-14 mm clearance zone), protein (20-22 mm clearance zone), and cellulose (22-24 mm clearance zone). Further, the inhibitory ability of the probiotic against aquatic pathogens was determined in vivo using gnotobiotic zebrafish by employing a novel approach that involved tagging the probiotic with a red fluorescent protein and the pathogens with a green fluorescent protein, respectively. The colonizing ability of probiotics and its inhibitory effects against the pathogens were evaluated by fluorescence microscopy, PCR, and estimation of viable counts in LBA + Amp plates. Finally, the competitive inhibition and exclusion of fish pathogens A. hydrophila and E. tarda by B. subtilis was confirmed semi-quantitatively, through challenge experiments. This study shows the potential of B. subtilis as a probiotic and its excellent ability to inhibit major fish pathogens in vivo and in vitro. It also shows promise as a potent substitute for antibiotics.


Assuntos
Doenças dos Peixes , Probióticos , Tilápia , Animais , Bacillus subtilis/genética , Peixe-Zebra , Probióticos/farmacologia , Antibacterianos/farmacologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia
17.
Pathogens ; 12(11)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-38003758

RESUMO

Gnotobiotic (GN) animals with simple and defined microbiota can help to elucidate host-pathogen interferences. Hysterectomy-derived germ-free (GF) minipigs were associated at 4 and 24 h post-hysterectomy with porcine commensal mucinolytic Bifidobacterium boum RP36 (RP36) strain or non-mucinolytic strain RP37 (RP37) or at 4 h post-hysterectomy with Lactobacillus amylovorus (LA). One-week-old GN minipigs were infected with Salmonella Typhimurium LT2 strain (LT2). We monitored histological changes in the ileum, mRNA expression of Toll-like receptors (TLRs) 2, 4, and 9 and their related molecules lipopolysaccharide-binding protein (LBP), coreceptors MD-2 and CD14, adaptor proteins MyD88 and TRIF, and receptor for advanced glycation end products (RAGE) in the ileum and colon. LT2 significantly induced expression of TLR2, TLR4, MyD88, LBP, MD-2, and CD14 in the ileum and TLR4, MyD88, TRIF, LBP, and CD14 in the colon. The LT2 infection also significantly increased plasmatic levels of inflammatory markers interleukin (IL)-6 and IL-12/23p40. The previous colonization with RP37 alleviated damage of the ileum caused by the Salmonella infection, and RP37 and LA downregulated plasmatic levels of IL-6. A defined oligo-microbiota composed of bacterial species with selected properties should probably be more effective in downregulating inflammatory response than single bacteria.

18.
Viruses ; 15(9)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37766270

RESUMO

Human rotavirus (HRV) is a leading cause of viral gastroenteritis in children across the globe. The virus has long been established as a pathogen of the gastrointestinal tract, targeting small intestine epithelial cells and leading to diarrhea, nausea, and vomiting. Recently, this classical infection pathway was challenged by the findings that murine strains of rotavirus can infect the salivary glands of pups and dams and transmit via saliva from pups to dams during suckling. Here, we aimed to determine if HRV was also capable of infecting salivary glands and spreading in saliva using a gnotobiotic (Gn) pig model of HRV infection and disease. Gn pigs were orally inoculated with various strains of HRV, and virus shedding was monitored for several days post-inoculation. HRV was shed nasally and in feces in all inoculated pigs. Infectious HRV was detected in the saliva of four piglets. Structural and non-structural HRV proteins, as well as the HRV genome, were detected in the intestinal and facial tissues of inoculated pigs. The pigs developed high IgM antibody responses in serum and small intestinal contents at 10 days post-inoculation. Additionally, inoculated pigs had HRV-specific IgM antibody-secreting cells present in the ileum, tonsils, and facial lymphoid tissues. Taken together, these findings indicate that HRV can replicate in salivary tissues and prime immune responses in both intestinal and facial lymphoid tissues of Gn pigs.


Assuntos
Infecções por Rotavirus , Rotavirus , Criança , Animais , Humanos , Suínos , Camundongos , Tecido Linfoide , Proteínas , Imunoglobulina M , Imunidade , Vida Livre de Germes , Glândulas Salivares
19.
Biomedicines ; 11(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37760961

RESUMO

Exopolysaccharides (EPS) are exogenous microbial metabolites generated predominantly during the development of bacteria. They have several biological potentials, including antibacterial, antioxidant, and anticancer actions. Polysaccharide-coated nanoparticles have high biological activity and are used in treatments and diagnostics. In this research, selenium nanoparticles (SeNPs) are synthesized and conjugated with bacterial (Bacillus sp. MKUST-01) exopolysaccharide (EPS). Initially, the creation of SeNPs conjugates was verified through UV-Vis spectral examination, which exhibited a prominent peak at 264 nm. Additionally, X-ray diffraction (XRD) analysis further substantiated the existence of crystalline Se, as evidenced by a robust reflection at 29.78°. Another reflection observed at 23.76° indicated the presence of carbon originating from the EPS. Fourier transform infrared spectroscopy (FT-IR) analysis of the EPS capped with SeNPs displayed characteristic peaks at 3425 cm-1, 2926 cm-1, 1639 cm-1, and 1411 cm-1, corresponding to the presence of O-H, C-H, C=O, and COO-groups. The SeNPs themselves were found to possess elongated rod-shaped structures with lengths ranging from 250 to 550 nm and a diameter of less than 70 nm, as confirmed using scanning electron microscopy and particle size analysis. In contrast to the SeNPs, the SeNPs-EPS conjugates showed no hemolytic activity. The overall antioxidant activity of SeNPs-EPS conjugates outperformed 20% higher than SeNPs and EPS. Additionally, experimental observations involving gnotobiotic Artemia nauplii experiments were also recorded, such as the supplementation of EPS and SeNPs-EPS conjugates corresponding to enhanced growth and increased survival rates compared to Artemia nauplii fed with SeNPs and a microalgal diet.

20.
Proc Natl Acad Sci U S A ; 120(39): e2311422120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37733741

RESUMO

Understanding how members of the human gut microbiota prioritize nutrient resources is one component of a larger effort to decipher the mechanisms defining microbial community robustness and resiliency in health and disease. This knowledge is foundational for development of microbiota-directed therapeutics. To model how bacteria prioritize glycans in the gut, germfree mice were colonized with 13 human gut bacterial strains, including seven saccharolytic Bacteroidaceae species. Animals were fed a Western diet supplemented with pea fiber. After community assembly, an inducible CRISPR-based system was used to selectively and temporarily reduce the absolute abundance of Bacteroides thetaiotaomicron or B. cellulosilyticus by 10- to 60-fold. Each knockdown resulted in specific, reproducible increases in the abundances of other Bacteroidaceae and dynamic alterations in their expression of genes involved in glycan utilization. Emergence of these "alternate consumers" was associated with preservation of community saccharolytic activity. Using an inducible system for CRISPR base editing in vitro, we disrupted translation of transporters critical for utilizing dietary polysaccharides in Phocaeicola vulgatus, a B. cellulosilyticus knockdown-responsive taxon. In vitro and in vivo tests of the resulting P. vulgatus mutants allowed us to further characterize mechanisms associated with its increased fitness after knockdown. In principle, the approach described can be applied to study utilization of a range of nutrients and to preclinical efforts designed to develop therapeutic strategies for precision manipulation of microbial communities.


Assuntos
Bacteroides thetaiotaomicron , Bacteroides , Humanos , Animais , Camundongos , Bacteroides/genética , Polissacarídeos , Bacteroides thetaiotaomicron/genética , Bioensaio , Dieta Ocidental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA