Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.890
Filtrar
1.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(4): 1049-1054, 2024 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-39170002

RESUMO

Polycystic ovary syndrome (PCOS) is one of the most common gynecological endocrine disorders. Most pathophysiological changes of PCOS begin in the peripubertal phase, and these pathophysiological changes will continuously affect women's health in the later stages of their lives. The pathogenic mechanisms of PCOS remain unclear, involving key aspects such as the regulation of hypothalamic-pituitary function, ovarian cellular functions, androgen levels, and insulin resistance. Herein, we summarized the latest findings on the pathogenesis of PCOS from the perspectives of the genetic background, intrauterine development, neuroendocrine function, inflammatory factors, gut microbiome, and environmental factors. This review will help provide new ideas for a deeper understanding of the disease, as well as its clinical diagnosis and treatment.


Assuntos
Resistência à Insulina , Síndrome do Ovário Policístico , Síndrome do Ovário Policístico/etiologia , Síndrome do Ovário Policístico/fisiopatologia , Síndrome do Ovário Policístico/metabolismo , Humanos , Feminino , Microbioma Gastrointestinal , Ovário , Sistema Hipotálamo-Hipofisário/fisiopatologia , Androgênios/metabolismo
2.
Front Med (Lausanne) ; 11: 1412709, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39170038

RESUMO

Background: Preclinical research has identified the mechanisms via which bacteria influence cancer treatment outcomes. Clinical studies have demonstrated the potential to modify the microbiome in cancer treatment. Herein, we systematically analyze how gut microorganisms interact with chemotherapy and immune checkpoint inhibitors, specifically focusing on how gut bacteria affect the pharmacokinetics and pharmacodynamics of cancer treatment. Method: This study searched Web of Science, Scopus, and PubMed until August 2023. Studies were screened by their title and abstract using the Rayyan intelligent tool for systematic reviews. Quality assessment of studies was done using the JBI critical appraisal tool. Result: Alterations in the gut microbiome are associated with gastric cancer and precancerous lesions. These alterations include reduced microbial alpha diversity, increased bacterial overgrowth, and decreased richness and evenness of gastric bacteria. Helicobacter pylori infection is associated with reduced richness and evenness of gastric bacteria, while eradication only partially restores microbial diversity. The gut microbiome also affects the response to cancer treatments, with higher abundances of Lactobacillus associated with better response to anti-PD-1/PD-L1 immunotherapy and more prolonged progression-free survival. Antibiotic-induced gut microbiota dysbiosis can reduce the anti-tumor efficacy of 5-Fluorouracil treatment, while probiotics did not significantly enhance it. A probiotic combination containing Bifidobacterium infantis, Lactobacillus acidophilus, Enterococcus faecalis, and Bacillus cereus can reduce inflammation, enhance immunity, and restore a healthier gut microbial balance in gastric cancer patients after partial gastrectomy. Conclusion: Probiotics and targeted interventions to modulate the gut microbiome have shown promising results in cancer prevention and treatment efficacy.Systematic review registration: https://osf.io/6vcjp.

3.
Heliyon ; 10(15): e35394, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170207

RESUMO

Polygonati Rhizoma (PR, Huangjing in Chinese) and its processed product (PRP), which are used in Traditional Chinese medicine (TCM) for cognitive enhancement and treatment of Alzheimer's disease (AD), have not been fully explored in terms of the different mechanisms underlying their anti-AD effects. Therefore, we used APP/PS1 mice as an AD model to assess the effects of PR and PRP on anxiety-like behaviors, cognitive function, memory performance, and pathological changes in the murine brain. UPLC-HRMS was applied to identify the components of PR and PRP that entered into the blood and brain. Network pharmacology was used to elucidate potential mechanisms underlying the improvement of AD. Differences in the intestinal flora composition between mice treated with PR and PRP were investigated using 16S rRNA sequencing, establishing a correlation between pharmacological components and distinct flora profiles. The results revealed that both PR and PRP interventions ameliorated cognitive deficits and attenuated Amyloid ß (Aß) plaque deposition in the brains of AD mice. Seven specific blood-entering components, namely glutamic acid, Phe-Phe, and uridine, etc., were associated with PR intervention, whereas ten specific blood-entering components including (2R,3S)-3-isopropylmalate, 3-methylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione, and 3-methoxytyrosine were related to PRP intervention. Uridine was identified as a common brain-penetrating component in both PR and PRP interventions. Network pharmacology analysis suggested that the NOD-like receptor signaling pathway, Calcium signaling pathway and Alzheimer's disease were specific pathways targeted in AD treatment using PR intervention. Moreover, the apoptosis pathway was specifically linked to AD treatment during PRP intervention. Furthermore, the administration of both PR and PRP enhanced the abundance and diversity of the intestinal flora in APP/PS1 mice. Western blotting confirmed that PR excels in regulates inflammation, whereas PRP balances autophagy and apoptosis to alleviate the progression of AD. This study offers valuable insights and establishes a robust foundation for further comprehensive exploration of the intrinsic correlation between TCM and AD.

4.
Heliyon ; 10(15): e35609, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170211

RESUMO

Purpose: Sleep disorders are common globally. Probiotics may improve human microbial diversity, offering potential benefits for sleep disturbances by enhancing sleep quality and reducing disorders. We aimed to use a population-based study to investigate the association between yogurt (a probiotic food) and probiotic consumption with sleep disturbances in US adults. Methods: A total of 49,693 adults from the 2009-2018 National Health and Nutrition Examination Survey (NHANES) were included in the analyses. Sleep disorders and sleep duration were assessed according to the Sleep Disorders Questionnaire. The Dietary Questionnaire evaluated yogurt and dietary supplements containing probiotic consumption. After adjusting for confounding factors, weighted multivariable logistic regression and subgroup analyses were used to assess the association between yogurt and probiotic consumption and sleep status. Results: Of the study cohort, 3535 (14.24 %) participants consumed yogurt and/or dietary supplements containing probiotics. The prevalence of sleep disorders was 16.22 %. Only 53.51 % of the participants achieved the recommended amount of sleep (7-9 h), with 6.10 % and 33.48 % having excessive and insufficient sleep duration, respectively. Weighted Logistic regression models indicated a significant association of probiotic intake with a decreased risk of sleep disturbances compared with those without yogurt or probiotic consumption after adjustments. (For sleep disorders: OR: 0.96, 95 % CI 0.94-0.98, P < 0.001; for sleep duration: OR: 0.98, 95 % CI 0.96-1.00, P = 0.081) Moreover, the effect size of the probiotic intake on sleep was especially significant in sex, race, and BMI subgroups. Conclusion: The present study first indicated that yogurt and probiotic consumption were associated with a reduced risk of sleep disturbances in US adults, particularly among males, whites, and those with a normal BMI. Incorporating yogurt or probiotics into the diet could serve as a public health strategy for improving sleep disturbances, though further investigation into the underlying mechanisms is needed.

5.
Heliyon ; 10(15): e35516, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170439

RESUMO

Glaucoma, a leading cause of irreversible blindness worldwide, is characterized by progressive loss of retinal ganglion cells (RGCs) and optic nerve damage. While elevated intraocular pressure (IOP) is the only known modifiable risk factor, normal-tension glaucoma (NTG) challenges this notion, suggesting other mechanisms beyond IOP may contribute to its development. Emerging evidence support the hypothesis that glaucoma may be an autoimmune disease. This review summarizes evidence for this hypothesis, focusing on the gut-retina axis. We discuss how antigens of gut bacterial prime peripheral T cells to breach the blood-retina barrier (BRB) and initiate cross-reactivity with ocular tissues via molecular mimicry, resulting in autoimmune RGC damage. Understanding these mechanisms may uncover new diagnostic biomarkers and therapeutic strategies targeting immune pathways alongside conventional IOP-lowering treatments.

6.
Heliyon ; 10(15): e35461, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170478

RESUMO

Background: Trimethylamine-N-oxide (TMAO) is a harmful metabolite dependent on the intestinal microbiota and excreted through the kidneys. According to numerous investigations, rich circulation concentrations of TMAO have been linked to kidney and gastrointestinal disorders. Through the "gut-kidney axis" mediated by TMAO, this research attempted to clarify the microbiological causes of kidney-yang deficiency syndrome diarrhea. Methods: Adenine and Folium Sennae were used to create a mouse model of kidney-yang deficiency syndrome diarrhea. 16S rRNA sequencing was used to identify the traits of the intestinal mucosal microbiota. ELISA was used to assess TMAO, transforming growth factor-ß1 (TGF-ß1), interleukin-1ß (IL-1ß), and NOD-like receptor thermal protein domain associated protein 3 (NLRP3). Kidney tissue fibrosis was evaluated using Masson's trichrome staining, and immunohistochemical labeling was used to investigate the protein expression of occludin and Zonula Occludens-1(ZO-1) in small intestine tissue. Microbial activity was determined by using fluorescein diacetate (FDA) hydrolysis spectrophotometry. Results: TMAO showed a positive correlation with NLRP3, IL-1ß and TGF-ß1, all of which exhibited substantial increases (P < 0.05). Significant renal fibrosis and decreased ZO-1 and occludin expression in small intestine tissues were detected in the model group. The sequencing results revealed alterations in both α and ß diversities of small intestinal mucosal microbiota. Elevated TMAO concentrations were potentially associated with increasing Firmicutes/Bacteroidota (F/B) ratios, Streptococcus, Pseudomonas and unclassified Clostridia UCG 014, but with decreasing Rothia and RB41 abundances. Conclusion: This study establishes a link between intestinal microbiota dysbiosis and elevated TMAO concentrations. TMAO can activate inflammatory responses and cytokines, contributing to kidney-yang deficiency syndrome diarrhea via the "gut-kidney axis". Moreover, TMAO may coincide with disruptions in the intestinal barrier and renal fibrosis. Dysfunction of the "gut-kidney axis" further elevates TMAO levels, perpetuating a vicious cycle.

7.
Front Vet Sci ; 11: 1411520, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39170628

RESUMO

Introduction: Despite the absence of definitive evidence indicating that the cp4-epsps gene and its resultant recombinant proteins have significant harmful effects on either human or animal health, the safety assessment of genetically modified (GM) crops expressing the CP4-EPSPS proteins has been controversial. This study endeavor was aimed at evaluating the potential risks posed by the CP4-EPSPS protein in transgenic crops, thereby contributing to the advancement of risk assessment methodologies in the context of genetically engineered crops. Methods: To ascertain the appropriate daily dosages for oral gavage administration, the expression levels of the CP4-EPSPS protein in a recombinant yeast were quantified. Subsequently, physiological and biochemical analysis, metabolomics, and metagenomic analysis were conducted based on a 90-day Sprague-Dawley (SD) rats feeding experiment, respectively, thereby enhancing the depth and precision of our risk assessment framework. Results: The results from the physiological and biochemical analysis, organ pathological, blood metabolism, gut microbiota, and correlation analysis of metabolites and gut microbiota revealed several biomarkers for further risk assessment. These biomarkers include clinical biochemical indexes such as total bilirubin (TBIL), direct bilirubin (DBIL), creatine kinase (CK), and lactate dehydrogenase (LDH); metabolites like Methionine, 2-Oxovaleric acid, and LysoPC (16:0); and gut microbiota including Blautia wexlerae, Holdemanella biformis, Dorea sp. CAG 317, Coriobacteriaceae and Erysipelotrichaceae. Conclusion: In conclusion, the risk can be significantly reduced by directly consuming inactivated recombinant CP4-EPSPS. Therefore, in everyday life, the risk associated with consuming GM foods containing recombinant CP4-EPSPS is substantially reduced after heat treatment.

8.
Front Genet ; 15: 1406230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39170693

RESUMO

Background: Iron status has been implicated in gastrointestinal diseases and gut microbiota, however, confounding factors may influence these associations. Objective: We performed Mendelian randomization (MR) to investigate the associations of iron status, including blood iron content, visceral iron content, and iron deficiency anemia with the incidence of 24 gastrointestinal diseases and alterations in gut microbiota. Methods: Independent genetic instruments linked with iron status were selected using a genome-wide threshold of p = 5 × 10-6 from corresponding genome-wide association studies. Genetic associations related to gastrointestinal diseases and gut microbiota were derived from the UK Biobank, the FinnGen study, and other consortia. Results: Genetically predicted higher levels of iron and ferritin were associated with a higher risk of liver cancer. Higher levels of transferrin saturation were linked to a decreased risk of celiac disease, but a higher risk of non-alcoholic fatty liver disease (NAFLD) and liver cancer. Higher spleen iron content was linked to a lower risk of pancreatic cancer. Additionally, higher levels of liver iron content were linked to a higher risk of NAFLD and liver cancer. However, certain associations lost their statistical significance upon accounting for the genetically predicted usage of cigarettes and alcohol. Then, higher levels of iron and ferritin were associated with 11 gut microbiota abundance, respectively. In a secondary analysis, higher iron levels were associated with lower diverticular disease risk and higher ferritin levels with increased liver cancer risk. Higher levels of transferrin saturation were proven to increase the risk of NAFLD, alcoholic liver disease, and liver cancer, but decrease the risk of esophageal cancer. MR analysis showed no mediating relationship among iron status, gut microbiota, and gastrointestinal diseases. Conclusion: This study provides evidence suggesting potential causal associations of iron status with gastrointestinal diseases and gut microbiota, especially liver disease.

9.
Front Aging Neurosci ; 16: 1423707, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39170894

RESUMO

Objective: This study aimed to investigate the causal relationship between gut microbiota characteristics (207 taxa and 205 pathways) and Alzheimer's disease and determine and quantify the role of immune cells as potential mediators. Methods: Gut microbiota characteristics (207 taxa and 205 pathways) were obtained from the NHGRI-EBI GWAS Catalog project, while Alzheimer's disease data and 731 immune cell characteristics were obtained from the IEU Open GWAS project. Two-sample Mendelian randomization (MR) was conducted to determine whether gut microbiota characteristics (207 taxa and 205 pathways) were causally related to Alzheimer's disease. Furthermore, two-step MR was employed to quantify the proportion of the effect of immune cell characteristics mediated by gut microbiota characteristics (207 taxa and 205 pathways) on Alzheimer's disease. Results: A total of 17 immune cell characteristics were identified as potential mediators for 13 gut microbiota influencing Alzheimer's disease, with Effector Memory CD4+ T-cell Absolute Count accounted for 8.99% of the causal relationship between genus Oscillibacter and Alzheimer's disease. Conclusion: In summary, our research confirms a causal relationship between gut microbiota and Alzheimer's disease, with immune cells contributing to a significant portion of the effect. However, the full mediators of gut microbiota's impact on Alzheimer's disease remain unclear. Further investigation is warranted to explore additional potential risk factors acting as mediators.

10.
Clin Kidney J ; 17(8): sfae214, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39170931

RESUMO

Kidney transplantation is an effective way to improve the condition of patients with end-stage renal disease. However, maintaining long-term graft function and improving patient survival remain a key challenge after kidney transplantation. Dysbiosis of intestinal flora has been reported to be associated with complications in renal transplant recipients. The commensal microbiota plays an important role in the immunomodulation of the transplant recipient responses. However, several processes, such as the use of perioperative antibiotics and high-dose immunosuppressants in renal transplant recipients, can lead to gut dysbiosis and disrupt the interaction between the microbiota and the host immune responses, which in turn can lead to complications such as infection and rejection in organ recipients. In this review, we summarize and discuss the changes in intestinal flora and their influencing factors in patients after renal transplantation as well as the evidence related to the impact of intestinal dysbiosis on the prognosis of renal transplantation from in vivo and clinical studies, and conclude with a discussion of the use of microbial therapy in the transplant population. Hopefully, a deeper understanding of the function and composition of the microbiota in patients after renal transplantation may assist in the development of clinical strategies to restore a normal microbiota and facilitate the clinical management of grafts in the future.

11.
Front Cell Infect Microbiol ; 14: 1430586, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39170985

RESUMO

Background: Psoriasis is one of the most common autoimmune skin diseases. Increasing evidence shows that alterations in the diversity and function of microbiota can participate in the pathogenesis of psoriasis through various pathways and mechanisms. Objective: To review the connection between microbial changes and psoriasis, how microbial-targeted therapy can be used to treat psoriasis, as well as the potential of prebiotics, probiotics, synbiotics, fecal microbiota transplantation, diet, and Traditional Chinese Medicine as supplementary and adjunctive therapies. Methods: Literature related to the relationship between psoriasis and gut microbiota was searched in PubMed and CNKI. Results: Adjunct therapies such as dietary interventions, traditional Chinese medicine, and probiotics can enhance gut microbiota abundance and diversity in patients with psoriasis. These therapies stimulate immune mediators including IL-23, IL-17, IL-22, and modulate gamma interferon (IFN-γ) along with the NF-kB pathway, thereby suppressing the release of pro-inflammatory cytokines and ameliorating systemic inflammatory conditions. Conclusion: This article discusses the direction of future research and clinical treatment of psoriasis from the perspective of intestinal microbiota and the mechanism of traditional Chinese medicine, so as to provide clinicians with more comprehensive diagnosis and treatment options and bring greater hope to patients with psoriasis.


Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Medicina Tradicional Chinesa , Probióticos , Psoríase , Psoríase/terapia , Psoríase/microbiologia , Psoríase/tratamento farmacológico , Humanos , Probióticos/uso terapêutico , Prebióticos , Citocinas/metabolismo , Interleucina-17/metabolismo
12.
Cureus ; 16(7): e65136, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39170992

RESUMO

Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is a chronic inflammatory condition of the gastrointestinal tract. Recent research indicates a significant link between IBD and cardiovascular disease (CVD), the leading cause of global morbidity and mortality. This review examines the association between IBD and CVD, emphasizing the role of the gut microbiome in this relationship. IBD patients have a higher risk of cardiovascular events, such as coronary artery disease, heart failure, and cerebrovascular incidents, primarily due to chronic systemic inflammation, genetic factors, and gut microbiota imbalance (dysbiosis). Dysbiosis in IBD increases intestinal permeability, allowing bacterial products to enter the bloodstream, which promotes inflammation and endothelial dysfunction, contributing to CVD. Understanding the gut microbiome's role in IBD and CVD suggests new therapeutic interventions. Modulating the microbiome through diet, probiotics, and fecal microbiota transplantation (FMT) are promising research avenues. These interventions aim to restore a healthy gut microbiota balance, potentially reducing inflammation and improving cardiovascular outcomes. Additionally, the review emphasizes the importance of regular cardiovascular risk assessments and personalized preventive measures in managing IBD patients. Such measures include routine monitoring of cardiovascular health, tailored lifestyle modifications, and early intervention strategies to mitigate cardiovascular risk. By integrating current knowledge, this review aims to improve understanding and management of the interconnected pathophysiology of IBD and CVD. This approach will ultimately enhance patient outcomes and provide a foundation for future research and clinical practice guidelines in this area.

13.
Front Psychiatry ; 15: 1414291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39171074

RESUMO

Background: Perinatal depression and anxiety (PDA) is prevalent in new and expectant mothers, affecting millions of women worldwide. Those with a history of mood and anxiety disorders are at the greatest risk of experiencing PDA in a subsequent pregnancy. Current safety concerns with pharmacological treatments have led to a greater need for adjunctive treatment options for PDA. Changes in the composition of the microbiome have been associated with various diseases during pregnancy, and these changes are thought to play some role in perinatal mood disorders. While the relationship between PDA and the microbiome has not been explored, evidence suggests that nutritional interventions with fiber, fish oils, and probiotics may play a favorable role in neuropsychiatric outcomes during and after pregnancy. The primary objective of the present study is to assess the feasibility and acceptability of a combination of nonpharmacological interventions to maintain stability in pregnant women who have a history of depression and/or anxiety. This study will also aim to understand ease of recruitment and protocol adherence in this cohort. Methods: This is a single-centered, partially randomized, placebo-controlled, double-blind feasibility trial. One hundred pregnant women with a history of depression and/or anxiety/PDA will be recruited and randomized into one of four arms, which could include the following: receiving a daily dose of both investigational products and dietary counseling on increasing dietary fiber, receiving a daily dose of both investigational drugs only, receiving fish oil investigational product and placebo, and a control arm with no intervention. The study involves six study visits, all of which can be conducted virtually every 3 months from the time of enrollment. At all study visits, information on diet, mental health, physical activity, and sleep quality will be collected. Additionally, all participants will provide a stool sample at each visit. Discussion: It is anticipated that pregnant women with a history of depression and anxiety will be particularly interested in partaking in this trial, resulting in favorable recruitment rates. Given the positive findings of omega-3 fatty acids (O3FAs) and probiotic supplements on mental health symptoms in nonpregnant adults, we expect a similar trend in PDA symptoms, with a low likelihood of adverse events. This study will build the foundation for larger powered studies to further contribute evidence for the efficacy of this potential preventative treatment option. Trial registration: This trial was registered at ClinicalTrials/gov on October 6, 2023; NCT06074250. Trial Sponsor: The Canadian College of Naturopathic Medicine, 1255 Sheppard Ave E, Toronto, ON M2K 1E2, 416-498-1255.

14.
Front Nutr ; 11: 1411374, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39171106

RESUMO

Childhood obesity presents a serious health concern associated with gut microbiota alterations. Dietary interventions targeting the gut microbiota have emerged as promising strategies for managing obesity in children. This study aimed to elucidate the impact of stachyose (STS) supplementation on the gut microbiota composition and metabolic processes in obese children. Fecal samples were collected from 40 obese children (20 boys and 20 girls) aged between 6 and 15 and in vitro fermentation was conducted with or without the addition of STS, respectively, followed by 16S rRNA amplicon sequencing and analysis of short-chain fatty acids (SCFAs) and gases. Notably, our results revealed that STS supplementation led to significant alterations in gut microbiota composition, including an increase in the abundance of beneficial bacteria such as Bifidobacterium and Faecalibacterium, and a decrease in harmful bacteria including Escherichia-Shigella, Parabacteroides, Eggerthella, and Flavonifractor. Moreover, STS supplementation resulted in changes in SCFAs production, with significant increases in acetate levels and reductions in propionate and propionate, while simultaneously reducing the generation of gases such as H2S, H2, and NH3. The Area Under the Curve (AUC)-Random Forest algorithm and PICRUSt 2 were employed to identify valuable biomarkers and predict associations between the gut microbiota, metabolites, and metabolic pathways. The results not only contribute to the elucidation of STS's modulatory effects on gut microbiota but also underscore its potential in shaping metabolic activities within the gastrointestinal environment. Furthermore, our study underscores the significance of personalized nutrition interventions, particularly utilizing STS supplementation, in the management of childhood obesity through targeted modulation of gut microbial ecology and metabolic function.

15.
Front Microbiol ; 15: 1426911, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39171254

RESUMO

Immune thrombocytopenia (ITP) is an autoimmune disease characterized by increased platelet destruction and impaired production, leading to an elevated bleeding tendency. Recent studies have demonstrated an important link between the gut microbiota and the onset and progression of several immune diseases in humans, emphasizing that gut microbiota-derived metabolites play a non-negligible role in autoimmune diseases. The gut microbiota and its metabolites, such as short-chain fatty acids, oxidized trimethylamine, tryptophan metabolites, secondary bile acids and lipopolysaccharides, can alter intestinal barrier permeability by modulating immune cell differentiation and cytokine secretion, which in turn affects the systemic immune function of the host. It is therefore reasonable to hypothesize that ecological dysregulation of the gut microbiota may be an entirely new factor in the triggering of ITP. This article reviews the potential immune-related mechanisms of the gut microbiota and representative metabolites in ITP, as well as the important influence of leaky gut on the development of ITP, with a view to enriching the theoretical system of ITP-related gut microecology and providing new ideas for the study of ITP.

16.
Microbiol Spectr ; : e0360823, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172626

RESUMO

To investigate the association between the microbiota in mothers and gut microbiota in infants from 0 to 6 months, the microbiotas in infant feces, maternal feces, and breast milk were determined by 16S rRNA gene sequencing. The contribution of each maternal microbiome to the infant was assessed using fast expectation-maximization for microbial source tracking calculations. The levels of short-chain fatty acids (SCFAs) and secretory immunoglobulin A (sIgA) in the feces of infants were also determined using gas chromatography and IDK-sIgA ELISA to gain a more comprehensive understanding of the infant gut microbiome. The results of this study showed that in addition to Firmicutes (E1) and Bifidobacterium (E2), the dominant microorganisms of the intestinal microbiota of infants aged 0-6 months include Proteobacteria, which is different from previous findings. Acetic acid, the most abundant SCFA in the infant gut, was positively correlated with Megasphaera (P < 0.01), whereas sIgA was positively correlated with Bacteroides (P < 0.05) and negatively correlated with Klebsiella and Clostridium_XVIII (P < 0.05). The maternal gut microbiota contributed more to the infant gut microbiota (43.58% ± 11.13%) than the breast milk microbiota, and significant differences were observed in the contribution of the maternal microbiota to the infant gut microbiota based on the delivery mode and feeding practices. In summary, we emphasize the key role of maternal gut health in the establishment and succession of infant gut microbiota.IMPORTANCEThis study aims to delineate the microbial connections between mothers and infants, leveraging the fast expectation-maximization for microbial source tracking methodology to quantify the contribution of maternal microbiota to the constitution of the infant's gut microbiome. Concurrently, it examines the correlations between the infant gut microbiota and two distinctive biomolecules, namely short-chain fatty acids (SCFAs) and secretory immunoglobulin A (sIgA). The findings indicate that the maternal gut microbiota exerts a greater influence on the infant's gut microbial composition than does the microbiota present in breast milk. Infants born via vaginal delivery and receiving mixed feeding display gut microbiota profiles more similar to their mothers'. Notably, the SCFA acetate displays positive associations with beneficial bacteria and inverse relationships with potentially harmful ones within the infant's gut. Meanwhile, sIgA positively correlates with Bacteroides species and negatively with potentially pathogenic bacteria. By delving into the transmission dynamics of maternal-infant microbiota, exploring the impacts of metabolic byproducts within the infant's gut, and scrutinizing how contextual factors such as birthing method and feeding practices affect the correlation between maternal and infant microbiota, this research endeavors to establish practical strategies for optimizing early-life gut health management in infants. Such insights promise to inform targeted interventions that foster healthier microbial development during the critical first 6 months of life.

17.
Environ Sci Technol ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39173114

RESUMO

The role of the gut microbiota in human health calls for a better understanding of its determinants. In particular, the possible effects of chemicals with widespread exposure other than pharmaceuticals are little known. Our aim was to characterize the sensitivity of the early-life gut microbiota to specific chemicals with possible antimicrobial action. Within the SEPAGES French couple-child cohort, we assessed 12 phenols in repeated urine samples from 356 pregnant women and their offspring and 19 poly- and perfluoroalkyl substances (PFASs) in serum from the pregnant women. We collected stool samples from the children at one year of age, in which the V3-V4 region of the 16S rRNA gene was sequenced, allowing for gut bacterial profiling. Associations of each chemical with α- and ß-diversity indices of the gut microbiota and with the relative abundance of the most abundant taxa were assessed using single-pollutant and mixture (BKMR) models. Perinatal exposure to certain parabens was associated with gut microbiota α- and ß-diversity and with Firmicutes and Proteobacteria. Suggestive associations of certain phenols with genera of the Lachnospiraceae and Enterobacteriaceae families were observed, but these were not maintained after correction for multiple testing. Parabens, which have known antimicrobial properties, might disrupt the child gut microbiota, but larger studies are required to confirm these findings.

18.
Poult Sci ; 103(11): 104156, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39173215

RESUMO

This study investigated the best oral delivery strategy (gavage or feed) for the B. subtilis expressing the chicken anti-microbial peptide cNK-2 (B. subtilis-cNK-2) in comparison to monensin, in chickens challenged with Eimeria acervulina (E. acervulina). A total of 120 broiler chickens were randomly allocated into 5 treatment groups in a completely randomized design: 1) uninfected chickens fed with basal diet (NC), 2) E. acervulina-infected chickens fed a basal diet (PC), 3) E. acervulina-infected chickens fed a basal diet supplemented with 90 mg monensin/kg feed (MO), 4) E. acervulina-infected chickens fed a basal diet and orally gavaged with B. subtilis-cNK-2 at 1 × 1010 cfu/d (CNK-O), and 5) E. acervulina-infected chickens fed a basal diet mixed with B. subtilis-cNK-2 at 1 × 1010 cfu/kg feed (CNK-F). The challenge consisted of 5,000 sporulated E. acervulina oocysts through oral gavage on d 15. Body weights were measured on d 7, 14, 21, and 23. Duodenal tissue and digesta samples were collected at 6 d postinfection (dpi) to assess the gut integrity, oxidative stress, mucosal immunity, and the gut microbiome. Fecal samples were collected from 6 to 8 dpi to enumerate the oocyst shedding. Chickens in the CNK-O group showed improved (P < 0.05) growth performance, gut integrity, and mucosal immunity compared to PC, comparable to chickens in the MO group. Chickens in the MO, CNK-F, and CNK-O treatment groups all showed lower (P < 0.05) oocyst shedding compared to PC chickens. Moreover, distinct cytokine profile, oxidative stress measures, tight junction proteins, and shifts in the gut microbiome with associated functional changes were observed in all challenge groups. In conclusion, we showed that the oral administration of B. subtilis-cNK-2 improved growth performance, enhanced local protective immunity, and reduced fecal oocyst shedding in broiler chickens infected with E. acervulina, demonstrating potential use of B. subtilis-cNK-2 as an alternative to antibiotics to protect chickens against coccidiosis.

19.
Food Chem ; 461: 140864, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39173255

RESUMO

The frequent intake of ultra-processed, heat-processed, and fat-enriched foods rich in dietary advanced lipoxidation end-products (ALEs) has been correlated with cognitive decline; however, the underlying mechanisms of action remain unexplored. This study investigated the impact of a 12-month dietary exposure to ALEs on learning, memory, and Aß1-42 accumulation in mice, with a focus on the AMPK/SIRT1 signaling pathway and ADAM10 expression. The gut microbiota and metabolomic profiles revealed ALEs-induced gut dysbiosis and cognitive impairment, highlighting modulation through the microbiota-gut-brain axis. Key findings include increased pathogenic bacteria and decreased beneficial bacteria, linked to metabolite profile changes that affect neurotoxic Aß1-42 peptide accumulation. This long-term comprehensive study underscores the need for dietary guidelines to reduce ALE intake and mitigate neurodegenerative disease risk, highlighting the intricate interplay between diet, gut microbiota, and cognitive health.

20.
Phytomedicine ; 133: 155942, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39173279

RESUMO

BACKGROUND: Lingguizhugan (LGZG) decoction, an ancient Chinese herbal remedy originating from the Eastern Han Dynasty, consists of Poria cocos, Cinnamomi ramulus, Atractylodes macrocephala, and Glycyrrhiza, as described in the Golden Chamber Synopsis. It has a history spanning over 1600 years, in which it has been primarily used for the treatment of inflammation, injuries, and fluid retention; however, the potential of LGZG decoction to ameliorate Alzheimer's disease (AD) progression by modulating the gut-brain axis through attenuation of gut microbiota and their metabolites remains unknown. PURPOSE: To examine the in vivo anti-AD effects and mechanism of LGZG decoction in alleviating AD cognitive impairment. STUDY DESIGN: Two-part experiments in vivo were designed, one for behavior tests, intestinal and brain histopathology, intestinal microbiome and quantitative determination, and another one for metabolite supplementation study. METHODS: AlCl3/D-gal was used to establish an AD-like mouse model. Behavioral tests, such as the Morris water maze test, were used to assess the effect of LGZG decoction on cognitive dysfunction. The concentration of proinflammatory mediators was measured by ELISA. The protein content was detected by western blot analysis and immunohistochemistry. The content of short-chain fatty acids was measured by LC-MS/MS. Evaluation of 16S rRNA gene sequencing for species and strain-level gut microbiome analysis was performed. RESULTS: LGZG decoction mitigated cognitive impairment in an AD-like mouse model, and decreased the deposition of amyloid-ß and the production of proinflammatory cytokines in the brain. LGZG decoction remodeled the intestinal microecology, enhanced the integrity of the intestinal and brain tissue barriers, and modulated Aß transportation through gut microbiota metabolite SCFAs. The neuroprotective effect of SCFAs on the AD-like model mice may be manifested through the inhibition of pP38 of the MAPK signaling pathway. CONCLUSION: Our results suggest that LGZG decoction reshapes the gut microbiota. SCFAs derived from the gut microbiota ameliorate the cognitive decline induced by AlCl3/D-gal through the gut-brain axis and reduce brain Aß aggregation. We propose LGZG decoction as a potential therapeutic option for AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA