Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 782
Filtrar
1.
Front Physiol ; 15: 1463420, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39355151

RESUMO

Necrotic enteritis (NE) is an enteric disease of poultry that alters the structure of the gut microbial community causing dysbiosis. This 28 day experiment investigated the effects of 125% and 135% arginine diets on the gut microbial diversity and composition of broilers during a subclinical NE challenge. One hundred and twenty one-day-old chicks were randomly allocated to 4 treatments with six replicates each- Uninfected + Basal, NE + Basal, NE + Arg 125%, and NE + Arg 135% diet groups. NE was induced by inoculating 1 × 104 E. maxima sporulated oocysts on day 14 and 1 × 108 CFU C. perfringens on days 19, 20, and 21 of age. The NE challenge significantly decreased the number of observed amplicon sequence variants (p = 0.03), the abundance of the phylum Firmicutes (p < 0.01), and the species Mediterraneibacter cottocaccae (p = 0.01) in the ceca of birds on day 21. The NE challenge significantly increased the Bray-Curtis index (p < 0.01), and the abundance of the phylum Bacteroidota (p < 0.01), family Odoribacteraceae (p < 0.01), genus Odoribacter (p < 0.01), and species O. splanchnicus (p = 0.01) on day 21. During NE, the 125% arginine diet restored the abundance of the phylum Bacteroidota (p = 0.03), family Odoribacteraceae (p = 0.03) and Oscillospiraceae (p = 0.03), genus Odoribacter (p = 0.03), and species O. splanchnicus (p = 0.03) and M. cottocaccae (p < 0.01) on day 21. The 135% arginine diet effectively restored the loss in alpha diversity (p = 0.01) caused by NE, the abundance of the phylum Firmicutes (p = 0.01) and Bacteroidota (p < 0.01), family Oscillospiraceae (p = 0.03) and Odoribacteraceae (p < 0.01), genus Odoribacter (p < 0.01), and species O. splanchnicus (p < 0.01) and M. cottocaccae (p < 0.01) on day 21. On day 28, the treatments had a significant effect on the cecal propionate (p = 0.01), butyrate (p = 0.04), and total SCFA (p = 0.04) concentrations. In conclusion, the 125% and 135% arginine diets restored gut microbial composition during a subclinical NE challenge, but not the cecal SCFA profile. Hence, arginine in combination with other feed additives could be used in restoring gut microbial homeostasis during NE in poultry.

3.
J Int Soc Sports Nutr ; 21(1): 2409682, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39352252

RESUMO

BACKGROUND: This study aimed to examine the effect of a commercially available multi-ingredient powder (AG1Ⓡ) on the gut microbiome and assess the impact of AG1Ⓡ on GI tolerability and other clinical safety markers in healthy men and women. METHODS: Using a double-blind, randomized, two-arm, placebo-controlled, parallel design, we examined a 4-week daily supplementation regimen of AG1Ⓡ vs. placebo (PL). Fifteen men and 15 women provided stool samples for microbiome analysis, questionnaires for digestive quality of life (DQLQ), and completed visual analog scales (VAS) and Bristol stool charts to assess stool consistency and bowel frequency before and after the 4-week intervention. Participant's blood work (CBC, CMP, and lipid panel) was also assessed before and after the 4-week intervention. Alpha diversity was determined by Shannon and Chao1 index scores and evaluated by a two-way ANOVA, beta diversity in taxonomic abundances and functional pathways was visualized using partial least squares-discriminant analyses and statistically evaluated by PERMANOVA. To identify key biomarkers, specific feature differences in taxonomic relative abundance and normalized functional pathway counts were analyzed by linear discriminant analysis (LDA) effect size (LEfSe). Questionnaires, clinical safety markers, and hemodynamics were evaluated by mixed factorial ANOVAs with repeated measures. This study was registered on clinicaltrials.gov (NCT06181214). RESULTS: AG1Ⓡ supplementation enriched two probiotic taxa (Lactobacillus acidophilus and Bifidobacterium bifidum) that likely stem from the probiotics species that exist in the product, as well as L. lactis CH_LC01 and Acetatifactor sp900066565 ASM1486575v1 while reducing Clostridium sp000435835. Regarding community function, AG1Ⓡ showed an enrichment of two functional pathways while diminishing none. Alternatively, the PL enriched six, but diminished five functional pathways. Neither treatment negatively impacted the digestive quality of life via DQLQ, bowel frequency via VAS, or stool consistency via VAS and Bristol. However, there may have been a greater improvement in the DQLQ score (+62.5%, p = 0.058, d = 0.73) after four weeks of AG1Ⓡ supplementation compared to a reduction (-50%) in PL. Furthermore, AG1Ⓡ did not significantly alter clinical safety markers following supplementation providing evidence for its safety profile. CONCLUSIONS: AG1Ⓡ can be consumed safely by healthy adults over four weeks with a potential beneficial impact in their digestive symptom quality of life.


Assuntos
Suplementos Nutricionais , Fezes , Microbioma Gastrointestinal , Probióticos , Qualidade de Vida , Humanos , Método Duplo-Cego , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Feminino , Adulto , Fezes/microbiologia , Probióticos/administração & dosagem , Adulto Jovem , Pessoa de Meia-Idade
4.
Vet Res Commun ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269670

RESUMO

This study aimed to evaluate the dietary administration of a blend composed of carvacrol, tannic acid derived from Castanea sativa mill and Glycyrrhiza glabra, medium chain fatty acids (MCFAs) glycerides for weanling piglets. An in vitro digestion followed by total phenolic content (TPC) and total antioxidant activity (TAC) assessment was performed before the in vivo application. At weaning, a total of 210 piglets were randomly allocated to two experimental treatments (7 replicates/15 piglets for each replicate). Control group (CTR) was fed a standard basal diet while the treated group (T) was fed the basal diet mixed with 1.500 mg/kg of blend. After in vitro digestion, TPC and TAC evidenced peaks at the end of oral and gastric phases in comparison to the intestinal one in line with the high content of phenolic compound (P < 0.05). Treatment conditioned body weight and average daily gain (P < 0.05), fecal score on 6, 7, and 8 d after weaning (P < 0.05). At 35d, the T group showed a decrease in salivary cortisol compared to CTR (P < 0.05). Duodenum and jejunum sections of T piglets revealed higher villi (P < 0.05), deeper crypts (P < 0.01), and increased V/C ratio (P < 0.01). CTR showed a higher expression of duodenal Occludin (P < 0.05). Jejunal E-cadherin and Occludin were more expressed in T jejunum sections (P < 0.05). Twelve differentially abundant genera were identified in T group caecal samples. Potentially harmful Clostridium sensu stricto 13 was reduced by the treatment (P < 0.05). In conclusion, the tested blend positively affected salivary stress markers and the gut health of weaned piglets.

5.
Anim Nutr ; 18: 133-144, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39263443

RESUMO

Considerable research has been conducted into the efficacy of individual probiotics in broiler production, however information on the most effective combinations of synergistic Bacillus probiotic is lacking. This study investigated the impact of different Bacillus strain combinations in broiler chickens, as well as in vitro enzyme production. In experiment one, a total of 576 Ross 308 broilers at 1 d old were grown for 21 d across 6 treatments of maize-soybean diets (n = 12 pens per treatment) to compare three different strain combinations (formulation 1 [F1]: 3 strains Bacillus amyloliquefaciens; F2: Bacillus coagulans and 2 strains B. amyloliquefaciens; F3: B. coagulans, Bacillus licheniformis and 2 strains B. amyloliquefaciens; F5: Bacillus subtilis, B. licheniformis and 2 strains B. amyloliquefaciens), positive control (PC), and a negative control antibiotic treatment group (NC). In Exp. 2, a total of 360 one-day-old ROSS308 broilers were used to test five treatments (n = 9) including PC, NC, F1 and F5 (selected from Exp. 1), and F4 (Bacillus pumilis and 2 strains B. amyloliquefaciens) in a maize-soybean diet. B. amyloliquefaciens F1 demonstrated a significant improvement in feed conversion ratio (FCR) compared to F2 at d 14 (1.49 vs 2.10; P = 0.038) and the body weight (BW) at d 21 (847.0 g vs 787.4 g) compared to other combinations (P = 0.027). The FCR at d 21 tended to be lower in birds fed F1 (1.46 vs 1.66) compared to the control (P = 0.068). Probiotic treatments had significantly improved nutrient digestibility compared to the PC and NC. Also, probiotic treatments supported the growth of Streptococcus, a common commensal genus and reduced the abundance of genera that correlated with low weight gain such as Akkermansia. Experiment two revealed that F4 improved FCR (P < 0.001) and BW at 28 d (P = 0.014). In vitro testing showed a high production of protease and amylase by Bacillus. Thus, the addition of Bacillus probiotics, particularly containing B. amyloliquefaciens strains and Bacillus pumilus, into the diet of broiler chickens improves production performance, nutrient digestibility, and allows the proliferation of beneficial gut microbiota.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39261391

RESUMO

Intermittent fasting (IF) is an increasingly popular dietary approach involving alternating fasting and eating periods. This review aims to summarize the growing body of literature demonstrating that IF is a potential nutritional practice that involves alternating periods of fasting and eating and the numerous benefits of IF, especially in the modulation of healthy gut microbiota. The positive impact of intermittent fasting on gut microbiota not only promotes gastrointestinal health but also has far-reaching effects on critical systems throughout the body. Additionally, the evidence presented in this review highlights the significant preventive and therapeutic effects of intermittent fasting on a wide range of disorders. This includes reducing the risk of diabetes, and neurological disorders, alleviating obesity, and enhancing the functioning of the liver, ultimately contributing to the maintenance of metabolic equilibrium. Perhaps most notably, these effects play a substantial role in preventing diabetes, a global health concern of increasing significance. This comprehensive investigation delves into the scientific foundations of intermittent fasting's impact on gut microbiota and its implications for averting chronic diseases, providing valuable insights for future research and therapeutic applications.

7.
Am J Clin Nutr ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39307188

RESUMO

BACKGROUND & AIMS: Our objectives were to determine the effect of dietary milk protein and milk carbohydrate on the intestinal permeability, fecal 16S rRNA gene configuration, and fecal metabolomics of children with moderate malnutrition. METHODS: This was a randomized, double-blind, controlled trial among 413 children with wasting in rural Sierra Leone who received one of four supplementary foods. The foods differed in sources of protein and carbohydrate: milk protein and milk carbohydrate (MPMC), milk protein and vegetable carbohydrate (MPVC), vegetable protein and milk carbohydrate (VPMC), or a control group consuming entirely vegetable-based food (VPVC). After 4 weeks, urine and stool were collected from participants enrolled with mid-upper arm circumference < 12.1 cm. Urine was analyzed for lactulose excretion (%L). Stools underwent both 16S rRNA gene analysis to assess ß diversity and untargeted metabolomic abundance. RESULTS: Among the 386 children who completed permeability testing, the mean difference (95% CI) in %L excretion as compared with VPVC was 0.01 (-0.05, 0.07) for MPMC, 0.05 (-0.01, 0.11) for MPVC, and 0.01 (-0.05, 0.07) for VPMC. Of the 374 children who provided a stool sample that was analyzed , the ß diversity among bacterial taxa was similar between dietary groups (P>0.05 for all comparisons). No significant differences between dietary groups were seen among the 20 most abundant bacterial taxa. Among the 5,769 unique metabolomic features identified, greater flavonoid levels in VPVC were seen. CONCLUSIONS: Abnormal intestinal permeability did not improve with 4 weeks of supplementary feeding. Fecal rRNA did not differ with consumption of different diets. Trial registration ClinicalTrials.gov (NCT04216043). TRIAL REGISTRATION: Clinicaltrails.gov NCT04216043URL of registration: https://clinicaltrials.gov/study/NCT04216043?id=NCT04216043&rank=1.

8.
J Med Humanit ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283529

RESUMO

From Italian physician Hieronymus Mercurialis's contention that the stomach was 'the king of the belly', to its promotion by the end of the nineteenth century to the 'monarch of humanity' in patent medicine, to Byron Robinson's discovery of the enteric nervous system in 1907 (a mesh of neural connectivity that led him to dub the gut 'the second brain'), there has historically been a longstanding awareness of the expansive reach of the gut in the functions of the body. In the nineteenth century, the authority of the gut and its allyship with the brain became a focus for writers thinking about the intersections of illness and 'modern life'. In medical texts, domestic health manuals, patent medicine, and fiction, the electric telegraph in particular became a way of envisaging what we would now call the 'gut-brain axis'. The telegraphic metaphor enabled a view of digestion as not simply a mechanical or chemical process, but one that was understood in terms of time, space, and communication. However, such a framework also suggested problems of connection that were common to both systems, emphasising not only the healthy body's quasi-telegraphic networks but also its vulnerability to delay, disruption, and pathological incoherence. This article will explore the use of telegraphic technologies as proxies for theorising gastric connection and more broadly the concept of 'gastric time' as a key conceit for understanding digestion as a process that was and is subject to the idiosyncrasies of bodily rhythms.

9.
J Anim Sci ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320367

RESUMO

The popularity of functional ingredients such as probiotics and postbiotics has increased as pet owners seek ways to improve the health quality and longevity of their pets. Limited research has been conducted regarding the use of probiotics and postbiotics and their effects on canine health. The objective of this study was to evaluate the effects of daily supplementation of Bifidobacterium animalis subsp. lactis CECT 8145, in both live probiotic (PRO) and heat-treated postbiotic (POST) forms, on fecal fermentative end-products and microbiome, insulin sensitivity, serum gut hormones, oxidative stress, inflammatory biomarkers, and white blood cell gene expression of adult dogs. Eighteen adult beagles and 18 adult English pointers were used in a double-blinded placebo controlled parallel group design, with 12 animals per group (6 English pointers and 6 beagles). The study began with a 60 d adaptation period followed by a 90 d period of daily supplementation with either PRO, POST, or placebo (maltodextrin; CON). Longitudinal assessment of body weight (BW), body condition score (BCS), and pelvic circumference (PC) did not differ among dietary supplements (P > 0.05). Throughout the experimental period, fecal scores did not differ (P > 0.05), however, fecal pH was lower (P = 0.0049) in the dogs fed POST compared with CON. A higher fecal concentration of propionate (P = 0.043) was observed in dogs fed PRO and POST when compared with CON. While PRO and POST supplementation was associated with changes in bacterial composition at the family and genus level, the overall richness and diversity of the microbiome was not significantly affected. Functional analysis of the metagenome also suggests that PRO and POST supplementation induced potentially beneficial changes in the abundance of pathways involved in pathogenicity, amino acid biosynthesis and DNA repair. No differences in glycemic or insulinemic responses were observed among the groups (P > 0.05). Dogs supplemented with PRO had a higher (P < 0.05) mean white blood cell leptin relative fold gene expression compared with groups POST and CON. Serum metabolites and complete blood cells counts were within normal ranges and all dogs remained healthy throughout the study. Together, these data suggest that the PRO and POST can safely be supplemented for dogs. Moreover, the results of this study support further investigation of the role of PRO and POST in supporting parameters related to gut health and hormonal regulation.

10.
Antioxidants (Basel) ; 13(9)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39334703

RESUMO

Piglet weaning is accompanied by gastrointestinal tract (GIT) dysfunction, resulting in post-weaning diarrhea (PWD). The treatment involves antibiotics due to the susceptibility of the weaned GIT to pathogens. However, antibiotic resistance has shifted attitudes toward a nutraceutical approach by enriching feed with functional compounds. Polyphenols are touted for their antimicrobial activity and ability to improve GIT function. Thus, we investigated the protective effects of crude blueberry phenolic extracts (BPE) in vitro using porcine cells challenged with lipopolysaccharide (LPS) as a weaning model. Cells were pretreated with 1 µg/mL and 2.5 µg/mL BPE for 24 h, followed by 10 µg/mL LPS stimulation for 6 h. Antioxidant status, paracellular permeability, the gene expression of proinflammatory cytokines, and tight junction proteins were measured. The antimicrobial activity of the extract was evaluated against porcine pathogens. The pretreatment of cells with 1 µg/mL BPE preserved catalase (CAT) activity. Reduced paracellular permeability was observed in a dose-dependent manner. The BPE preserved the relative mRNA abundance of tight junctions and reduced inflammatory cytokine expression. Pretreatment with the BPE was able to preserve occludin (OCLN) protein levels. The minimum inhibitory concentration of the BPE against Enterotoxigenic E. coli (ETEC) and Salmonella typhimurium (ST) was 62.50 µg/mL. These findings indicate that blueberry polyphenols hold potential as feed additives in swine weaning.

11.
Water Res ; 267: 122503, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39340867

RESUMO

Drinking water (DW) harbours diverse microbial species and chemical attributes. Water comprises the greatest portion of our daily diet, ingested both on its own and used in the preparation of food. DW is our major source of liquids, which is vital to maintaining homeostasis, and can also supply essential minerals. Limited evidence suggests that DW plays a role in shaping the gut microbiome, which implies that it may impact human health. Despite its significant contribution to diet, DW is often overlooked in studies examining dietary influences on the gut microbiota. This perspective explores our current understanding of the link between DW and the gut microbiota - an area of human microbiome science that has been surprisingly understudied. Existing studies reveal links between DW source, microbiota composition, and gut health, emphasizing the need for comprehensive investigations. Understanding the interplay between DW and gut microbiota holds potential for tailored interventions to enhance human health.

12.
J Agric Food Chem ; 72(39): 21594-21609, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39303156

RESUMO

The diet in early life is essential for the growth and intestinal health later in life. However, beneficial effects of a diet enriched in branched short-chain fatty acids (BSCFAs) for infants are ambiguous. This study aimed to develop a novel fermented protein food, enriched with BSCFAs and assess the effects of dry and wet ferment products on young pig development, nutrient absorption, intestinal barrier function, and gut microbiota and metabolites. A total of 18 young pigs were randomly assigned to three groups. The dry corn gluten-wheat bran mixture (DFCGW) and wet corn gluten-wheat bran mixture (WFCGW) were utilized as replacements for 10% soybean meal in the basal diet. Our results exhibited that the WFCGW diet significantly increased the growth performance of young pigs, enhanced the expression of tight junction proteins, and regulated associated cytokines expression in the colonic mucosa. Simultaneously, the WFCGW diet led to elevated levels of colonic isobutyric and isovaleric acid, as well as the activation of GPR41 and GPR109A. Furthermore, more potential probiotics including Lactobacillus, Megasphaera, and Lachnospiraceae_ND3007_group were enriched in the WFCGW group and positively associated with the beneficial metabolites such as 5-hydroxyindole-3-acetic acid. Differential metabolite KEGG pathway analysis suggested that WFCGW might exert gut health benefits by modulating tryptophan metabolism. In addition, the WFCGW diet significantly increased ghrelin concentrations in serum and hypothalamus and promoted the appetite of young pigs by activating hypothalamic NPY/AGRP neurons. This study extends the knowledge of BSCFAs and provides a reference for the fermented food application in the infant diet.


Assuntos
Ração Animal , Bactérias , Ácidos Graxos Voláteis , Alimentos Fermentados , Microbioma Gastrointestinal , Animais , Suínos/metabolismo , Suínos/crescimento & desenvolvimento , Ração Animal/análise , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/crescimento & desenvolvimento , Ácidos Graxos Voláteis/metabolismo , Alimentos Fermentados/análise , Alimentos Fermentados/microbiologia , Fermentação , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Intestinos/metabolismo , Masculino , Zea mays/metabolismo , Zea mays/química
13.
Nutr Res Rev ; : 1-18, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324277

RESUMO

Pectin is composed of a group of complex polysaccharides that are naturally found in various plants and are associated with a range of beneficial health effects. Health outcomes from dietary pectin can vary depending on botanical origin, dietary dose and structure of pectin. The objective of this scoping review is to build a comprehensive overview of the current evidence available on intervention studies conducted in humans and to better understand the possible knowledge gaps in terms of structure-function relationships across the different health-related effects. PubMed and Embase databases were searched using PRISMA-ScR guidelines, yielding 141 references (from the initial 3704), representing 134 intervention studies performed between 1961 and 2022 that met inclusion criteria. Studies were divided into six categories, which included gut health, glycaemic response and appetite, fat metabolism, bioavailability of micronutrients, immune response and other topics. Review of these human intervention studies identified a variety of cohort characteristics and populations (life stage, health status, country), sources/types of pectin (i.e. citrus, sugarbeet, apple, other and non-defined), intervention timeframes (from one single intake to 168 d) and doses (0.1-50 g/d) that were tested for health outcomes in people. Gut health, post-prandial glucose regulation and maintenance of blood cholesterol represented the largest categories of studied outcomes. Further research to strengthen the structure-function relationships for pectin with health properties and associated outcomes is warranted and will benefit from a more precise description of physico-chemical characteristics and molecular compositions, such as degree of esterification, weight, degree of branching, viscosity, gel formation and solubility.

14.
Artigo em Inglês | MEDLINE | ID: mdl-39290657

RESUMO

Bovine dairy foods provide several essential nutrients. Fermented bovine dairy foods contain additional compounds, increasing their potential to benefit gastrointestinal health. This review explores the effects of dairy consumption on the gut microbiome and symptoms in gastrointestinal disease cohorts. Human subjects with common gastrointestinal diseases (functional gastrointestinal disorders and inflammatory bowel disease) or associated symptoms, and equivalent animal models were included. A systematic literature search was performed using PubMed, Embase and Web of Science. The search yielded 3014 studies in total, with 26 meeting inclusion criteria, including 15 human studies (1550 participants) and 11 animal studies (627 subjects). All test foods were fermented bovine dairy products, primarily fermented milk and yogurt. Six studies reported increases in gastrointestinal bacterial alpha diversity, with nine studies reporting increases in relative Lactobacillus and Bifidobacterium abundance. Six studies reported increases in beneficial short-chain fatty acids, while three reported decreases. Gastrointestinal symptoms, specifically gut comfort and defecation frequency, improved in 14 human studies. Five animal studies demonstrated reduced colonic damage and improved healing. This review shows fermented bovine dairy consumption may improve gut microbial characteristics and gastrointestinal symptoms in gastrointestinal disease cohorts. Further human intervention studies are needed, expanding test foods and capturing non-self-reported gastrointestinal measures.

15.
Animals (Basel) ; 14(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39272343

RESUMO

(1) Background: In a metabolomics analysis conducted to investigate the mechanisms behind the growth-promoting effects of probiotics in broilers, ß-alanine was found to be significantly elevated. This led to the hypothesis that ß-alanine could also contribute to growth-promoting effects in infected broilers. (2) Methods: An in vitro culture system was developed to assess ß-alanine's impact on proinflammatory cytokine response in chicken macrophage cells, gut integrity in chicken intestinal epithelial cells, and muscle differentiation in quail muscle cells and primary chicken embryonic muscle cells. In vivo animal feeding studies were then conducted to investigate the effects of dietary ß-alanine on various disease parameters in Eimeria maxima-infected broiler chickens. (3) Results: In vitro, ß-alanine treatment significantly decreased the gene expression of cytokines in chicken macrophage cells and increased occuldin expression in chicken intestinal epithelial cells. Dietary ß-alanine increased the body weight of chickens following Eimeria maxima infection in the H-ALA group. Dietary ß-alanine also suppressed cytokines and increased JAM-2 and occludin expression in the H-ALA group compared to the infected group without ß-alanine supplementation. (4) Conclusions: These results strongly support the positive effects of dietary ß-alanine on intestinal immune responses and gut barrier function in broiler chickens infected with Eimeria maxima.

16.
World J Gastrointest Pharmacol Ther ; 15(5): 97261, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39281261

RESUMO

BACKGROUND: The gastrointestinal symptom rating scale (GSRS) is a questionnaire in English language which is designed to assess the clinical symptoms in patients with irritable bowel syndrome (IBS) and peptic ulcer disease. This validated scale has questions on around 15 items and has been validated in patients with dyspepsia and IBS. AIM: To translate and validate the English version of the GSRS questionnaire to the Hindi version. METHODS: The purpose of the present work was to create a Hindi version of this questionnaire for use in the Indian population. The process involved various steps as per the World Health Organization methodology including initial forward translation, backward translation, and assessment by an expert committee. Initial pilot testing was followed by testing in healthy and diseased individuals. RESULTS: The Hindi translation was pilot tested in 20 individuals and further validated in healthy controls (n = 30, 15 females) and diseased individuals (n = 72, 27 females). The diseased group included patients with functional dyspepsia and IBS. Cronbach's alpha for internal consistency on the final translated GSRS questionnaire was 0.715 which is considered adequate. Twelve questions significantly differentiated the diseased population from the healthy population (P value < 0.05) in the translated Hindi version of the GSRS. CONCLUSION: The translated Hindi GSRS can be used to evaluate gastrointestinal function in clinical trials and community surveys in Hindi speaking populations.

17.
Animal ; 18(9): 101288, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39226779

RESUMO

Brewery by-products are recognised as suitable rearing substrates for Hermetia illucens, better known as black soldier fly (BSF) but information about the impact of different ratios of brewer's spent grains (BSG) and brewer's spent yeast (BSY) are still scarce. This study evaluated the effects of BSG-BSY-based diets on BSF larval growth, survival, bioconversion efficiency, nutritional profile, and microbiota and mycobiota. A total of 3 000 6-day-old BSF larvae were allotted to five dietary treatments (six replicate boxes/diet, 100 larvae/box): (i) BSY2.5 (25 g/kg of BSY+975 g/kg of BSG), (ii) BSY5 (50 g/kg of BSY+950 g/kg of BSG), (iii) BSY7.5 (75 g/kg of BSY+925 g/kg of BSG), (iv) BSY10 (100 g/kg of BSY+900 g/kg of BSG), and (v) control (Gainesville diet). Larval weight and substrate pH were recorded every 4 days. At the end of the trial (5% of prepupae), bioconversion efficiency corrected for residue (BER), reduction rate (RR), and waste reduction index (WRI) were calculated, and the larval proximate composition, microbiota and mycobiota characterised. At 10 and 14 days of age, BSY7.5 and BSY10 larvae displayed higher weight than BSY2.5 and BSY5 (P < 0.05), with BSY10 larvae showing the highest weight among the BSG-BSY-based diets at the end of the trial (P < 0.05). The BSY7.5 and BSY10 larvae also displayed a better BER than BSY2.5 and BSY5 (P < 0.01), whereas similar RR, WRI, survival and development time, as well as pH, were, however, observed among the BSG-BSY-based diets (P > 0.05). The BSY10 larvae displayed lower ether extract content than the other BSG-BSY-based diets (P > 0.001). The use of BSG-BSY-based diets did not influence the alpha diversity of larval microbiota and mycobiota (P > 0.05), but a specific microbial signature was identified per each dietary treatment (Porphyromonadaceae [BSY5], Sphingomonas [BSY7.5], Bacillus [BSY10] and Ruminococcus and Myroides [BSG-BSY-based diets]; P < 0.05). Co-occurrence and co-exclusion analysis also showed that Saccharomyces cerevisiae and Pichia excluded and favoured, respectively, the presence of Streptomyces and Fluviicola, while Clavispora lusitaniae was associated with Myroides (P < 0.05). In conclusion, BSG-BSY-based diets are suitable for rearing HI in terms of larval performance, nutritional profile, and microbiota and mycobiota, with 7.5 and 10% of BSY inclusion levels being able to improve larval growth and bioconversion efficiency.


Assuntos
Ração Animal , Dieta , Larva , Microbiota , Animais , Larva/crescimento & desenvolvimento , Larva/microbiologia , Ração Animal/análise , Dieta/veterinária , Microbiota/efeitos dos fármacos , Simuliidae/crescimento & desenvolvimento , Dípteros/crescimento & desenvolvimento , Dípteros/microbiologia , Micobioma , Grão Comestível/química , Fenômenos Fisiológicos da Nutrição Animal
18.
J Dairy Sci ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245164

RESUMO

This study investigated the potential of 2'-Fucosyllactose (2'-FL) and galactooligosaccharides (GOS) combinations as a novel and cost-effective substitute for human milk oligosaccharides (HMOs) in promoting gut health and reducing inflammation. In vitro studies using Caco-2 cells showed that 2'-FL and GOS combinations (H1: GOS:2'-FL ratio of 1.8:1; H2: ratio of 3.6:1) reduced lipopolysaccharide-induced inflammation by decreasing pro-inflammatory markers, while individual treatments had no significant effects. In a mouse model of dextran sulfate sodium (DSS)-induced colitis, combined 2'-FL and GOS supplementation alleviated symptoms, improved gut permeability, and enhanced intestinal structure, with the GH1 group (H1 combo with DSS) being the most effective. 2'-FL and GOS combinations also enhanced short-chain fatty acid production in infant fecal batch fermentation and mouse fecal analysis, with GH1 showing the most promising results. GH1 supplementation altered gut microbiota in mice with DSS-induced colitis, promoting microbial diversity and a more balanced Firmicutes to Bacteroidota ratio. Infant formula products (IFPs) containing 2'-FL and GOS combinations (IFP2: 174 mg GOS and 95 mg 2'-FL per 14 g serving, 1.8:1 ratio; IFP3: 174 mg GOS and 48 mg 2'-FL per 14 g serving, 3.6:1 ratio) demonstrated gastrointestinal protective and anti-inflammatory properties in a coculture model of Caco-2 and THP-1 cells. These findings suggest that 2'-FL and GOS combinations have potential applications in advanced infant formulas and supplements to promote gut health and reduce inflammation.

19.
Trop Anim Health Prod ; 56(8): 279, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39317782

RESUMO

The present study evaluated the effects of weaning strategy on piglet growth performance, onset of feed intake, and intestinal health. A total of 254 crossbred piglets were used and the experimental period lasted 45 days. The piglets were assigned to the fallowing treatments: early strategic weaning (ESW, n = 85), piglets weaned at 16 days of age and transferred to the pre-nursery unit; strategic segregated weaning (SSW, n = 85), piglets weaned at 21 days of age and kept in the farrowing crate until 24 days of age; and conventional weaning (CW, n = 84), piglet weaned at 24 days of age and transferred directly to the nursery unity; this experimental group was used as a control. Piglets from all treatments were transferred to the nursery unit at 24 days of age. For the nursery phase three periods of evaluation was considered: nursery phase I (0-7 d), nursery phase II (7-14 d), and nursery phase III (14-21 days). Piglets from the ESW and CW had greater (P < 0.001) ADG in the lactation period 16-21 days. The BW at 24 day of age was higher (P < 0.001) for piglets in the ESW and CW groups. In the nursery phase I, the ESW group had higher (P = 0.003) daily feed intake. Piglets from the ESW group had higher (P = 0.004) BW at the end of the experimental period. The ESW and SSW groups had a higher percentage of piglets (88% and 92%, respectively; P < 0,001) consuming feed in the first 24 h after transference to the nursery facility. When the total experimental period is considered, a reduction (P < 0.001) in the incidence of diarrhea was observed for ESW piglets. Overall, there was no effect of weaning strategy on intestinal permeability. In conclusion, the results of our study showed that the Segregated Strategic Weaning management can be used to mitigate the deleterious effects of early weaning.


Assuntos
Criação de Animais Domésticos , Desmame , Animais , Criação de Animais Domésticos/métodos , Feminino , Masculino , Ingestão de Alimentos , Suínos/crescimento & desenvolvimento , Sus scrofa/crescimento & desenvolvimento , Sus scrofa/fisiologia , Ração Animal/análise , Animais Recém-Nascidos/crescimento & desenvolvimento
20.
Front Vet Sci ; 11: 1430347, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39309030

RESUMO

Introduction: Despite progress in reducing antimicrobial use in the veterinary field, it is crucial to find alternatives to preserve effectiveness and limit antimicrobial resistance. In pig farming, pathogenic strains of E. coli are the main cause of gastrointestinal disorders and antibiotic use. In this field, algae represent an innovation in animal nutrition that aligns with livestock sustainability principles and provide a high content of functional molecules. Aim: The aim of this study was to evaluate the impact of an innovative dietary combination of Ascophyllum nodosum and Lithothamnium calcareum, on growth, duodenum gene expression, jejunum intestinal morphology, and serum oxidative status in F4+ Escherichia coli challenged piglets. Materials and methods: Forty-eight weaned pigs, aged 28 ± 2 days, were divided into two groups (n = 24 pigs/group): the control group was fed a commercial diet (CTRL), while the seaweeds group was fed a commercial diet supplemented with 1.5% A. nodosum and 0.5% L. calcareum for 27 days (ALGAE). After 13 days, 50% of animals in each group were challenged with a single dose of 108 CFU/dose of E. coli F4+, resulting in two infected groups (CTRL+ and ALGAE+, n = 12 pigs/group). Growth performance was assessed by measuring the individual body weight. At day 27, from six animals/group duodenum and jejunum sections were sampled for gene expression analysis via qRT-PCR and histological evaluation. Results and discussion: The results indicated a significantly higher body weight in the ALGAE+ group compared to CTRL+ after 7 days post-challenge (p < 0.0001). Jejunum morphology revealed lower villus height, villus width and villus height/crypt depth ratio in CTRL+ compared to ALGAE+ (p < 0.05) suggesting a protective effect of seaweeds on gut health. Conclusion: In conclusion, algae mixture exerted a protective effect against intestinal damage from E. coli F4+ infection proposing A. nodosum and L. calcareum supplementation as interesting strategy to support animal growth, enhance health and reduce antibiotic treatments in weaned piglets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA