Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 12(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39066404

RESUMO

The SARS-CoV-2 pandemic and the emergence of novel virus variants have had a dramatic impact on public health and the world economy, underscoring the need for detailed studies that explore the high efficacy of additional vaccines in animal models. In this study, we confirm the pathogenicity of the SARS-CoV-2/Leiden_008 isolate (GenBank accession number MT705206.1) in K18-hACE2 transgenic mice. Using this isolate, we show that a vaccine consisting of capsid virus-like particles (cVLPs) displaying the receptor-binding domain (RBD) of SARS-CoV-2 (Wuhan strain) induces strong neutralizing antibody responses and sterilizing immunity in K18-hACE2 mice. Furthermore, we demonstrate that vaccination with the RBD-cVLP vaccine protects mice from both a lethal infection and symptomatic disease. Our data also indicate that immunization significantly reduces inflammation and lung pathology associated with severe disease in mice. Additionally, we show that the survival of naïve animals significantly increases when sera from animals vaccinated with RBD-cVLP are passively transferred, prior to a lethal virus dose. Finally, the RBD-cVLP vaccine has a similar antigen composition to the clinical ABNCOV2 vaccine, which has shown non-inferiority to the Comirnaty mRNA vaccine in phase I-III trials. Therefore, our study provides evidence that this vaccine design is highly immunogenic and confers full protection against severe disease in mice.

2.
Sci Rep ; 14(1): 13865, 2024 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879684

RESUMO

Severe acute respiratory syndrome coronavirus 2 had devastating consequences for human health. Despite the introduction of several vaccines, COVID-19 continues to pose a serious health risk due to emerging variants of concern. DNA vaccines gained importance during the pandemic due to their advantages such as induction of both arms of immune response, rapid development, stability, and safety profiles. Here, we report the immunogenicity and protective efficacy of a DNA vaccine encoding spike protein with D614G mutation (named pcoSpikeD614G) and define a large-scale production process. According to the in vitro studies, pcoSpikeD614G expressed abundant spike protein in HEK293T cells. After the administration of pcoSpikeD614G to BALB/c mice through intramuscular (IM) route and intradermal route using an electroporation device (ID + EP), it induced high level of anti-S1 IgG and neutralizing antibodies (P < 0.0001), strong Th1-biased immune response as shown by IgG2a polarization (P < 0.01), increase in IFN-γ levels (P < 0.01), and increment in the ratio of IFN-γ secreting CD4+ (3.78-10.19%) and CD8+ (5.24-12.51%) T cells. Challenging K18-hACE2 transgenic mice showed that pcoSpikeD614G administered through IM and ID + EP routes conferred 90-100% protection and there was no sign of pneumonia. Subsequently, pcoSpikeD614G was evaluated as a promising DNA vaccine candidate and scale-up studies were performed. Accordingly, a large-scale production process was described, including a 36 h fermentation process of E. coli DH5α cells containing pcoSpikeD614G resulting in a wet cell weight of 242 g/L and a three-step chromatography for purification of the pcoSpikeD614G DNA vaccine.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Camundongos Endogâmicos BALB C , Mutação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de DNA , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Animais , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Camundongos , COVID-19/prevenção & controle , COVID-19/imunologia , Células HEK293 , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Feminino , Imunogenicidade da Vacina , Imunoglobulina G/sangue , Imunoglobulina G/imunologia
3.
EBioMedicine ; 103: 105132, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677182

RESUMO

BACKGROUND: SARS-CoV-2 infection is considered as a relapsing inflammatory process with a dysregulation of IL-6 signalling. Classic IL-6 signalling is thought to represent a defence mechanism against pathogens. In contrast, IL-6 trans-signalling has pro-inflammatory effects. In severe COVID-19, therapeutic strategies have focused on global inhibition of IL-6, with controversial results. We hypothesized that specific blockade of IL-6 trans-signalling could inhibit inflammatory response preserving the host defence activity inherent to IL-6 classic signalling. METHODS: To test the role of the specific IL-6 trans-signalling inhibition by sgp130Fc in short- and long-term consequences of COVID-19, we used the established K18-hACE2 transgenic mouse model. Histological as well as immunohistochemical analysis, and pro-inflammatory marker profiling were performed. To investigate IL-6 trans-signalling in human cells we used primary lung microvascular endothelial cells and fibroblasts in the presence/absence of sgp130Fc. FINDINGS: We report that targeting IL-6 trans-signalling by sgp130Fc attenuated SARS-CoV-2-related clinical symptoms and mortality. In surviving mice, the treatment caused a significant decrease in lung damage. In vitro, IL-6 trans-signalling induced strong and persisting JAK1/STAT3 activation in endothelial cells and lung fibroblasts with proinflammatory effects, which were attenuated by sgp130Fc. Our data also suggest that in those cells with scant amounts of IL-6R, the induction of gp130 and IL-6 by IL-6:sIL-6R complex sustains IL-6 trans-signalling. INTERPRETATION: IL-6 trans-signalling fosters progression of COVID-19, and suggests that specific blockade of this signalling mode could offer a promising alternative to mitigate both short- and long-term consequences without affecting the beneficial effects of IL-6 classic signalling. These results have implications for the development of new therapies of lung injury and endotheliopathy in COVID-19. FUNDING: The project was supported by ISCIII, Spain (COV-20/00792 to MB, PI23/01351 to MARH) and the European Commission-Next generation EU (European Union) (Regulation EU 2020/2094), through CSIC's Global Health Platform (PTI Salud Global, SGL2103029 to MB). PID2019-110587RB-I00 (MB) supported by MICIN/AEI/10.13039/501100011033/and PID2022-143034OB-I00 (MB) by MICIN/AEI/10.13039/501100011033/FEDER. MAR-H acknowledges support from ISCIII, Spain and the European Commission-Next generation EU (European Union), through CSIC's Global Health PTI.


Assuntos
COVID-19 , Receptor gp130 de Citocina , Interleucina-6 , Camundongos Transgênicos , SARS-CoV-2 , Transdução de Sinais , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Infecções por Coronavirus/patologia , COVID-19/metabolismo , Tratamento Farmacológico da COVID-19 , Receptor gp130 de Citocina/metabolismo , Receptor gp130 de Citocina/antagonistas & inibidores , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Interleucina-6/metabolismo , Pulmão/patologia , Pulmão/virologia , Pulmão/metabolismo , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Pneumonia Viral/patologia , Pneumonia Viral/metabolismo , Receptores de Interleucina-6/metabolismo , Receptores de Interleucina-6/antagonistas & inibidores , Proteínas Recombinantes de Fusão/farmacologia , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos
4.
Sci China Life Sci ; 67(7): 1502-1513, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38478297

RESUMO

Various SARS-CoV-2-related coronaviruses have been increasingly identified in pangolins, showing a potential threat to humans. Here we report the infectivity and pathogenicity of the SARS-CoV-2-related virus, PCoV-GX/P2V, which was isolated from a Malayan pangolin (Manis javanica). PCoV-GX/P2V could grow in human hepatoma, colorectal adenocarcinoma cells, and human primary nasal epithelial cells. It replicated more efficiently in cells expressing human angiotensin-converting enzyme 2 (hACE2) as SARS-CoV-2 did. After intranasal inoculation to the hACE2-transgenic mice, PCoV-GX/P2V not only replicated in nasal turbinate and lungs, but also caused interstitial pneumonia, characterized by infiltration of mixed inflammatory cells and multifocal alveolar hemorrhage. Existing population immunity established by SARS-CoV-2 infection and vaccination may not protect people from PCoV-GX/P2V infection. These findings further verify the hACE2 utility of PCoV-GX/P2V by in vivo experiments using authentic viruses and highlight the importance for intensive surveillance to prevent possible cross-species transmission.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Camundongos Transgênicos , Pangolins , SARS-CoV-2 , Animais , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2/patogenicidade , SARS-CoV-2/genética , COVID-19/virologia , Pangolins/virologia , Camundongos , Replicação Viral , Pulmão/virologia , Pulmão/patologia , Chlorocebus aethiops , Células Vero
5.
Vaccines (Basel) ; 11(11)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38006064

RESUMO

Mucosal vaccination appears to be suitable to protect against SARS-CoV-2 infection. In this study, we tested an intranasal mucosal vaccine candidate for COVID-19 that consisted of a cationic liposome containing a trimeric SARS-CoV-2 spike protein and CpG-ODNs, a Toll-like receptor 9 agonist, as an adjuvant. In vitro and in vivo experiments indicated the absence of toxicity following the intranasal administration of this vaccine formulation. First, we found that subcutaneous or intranasal vaccination protected hACE-2 transgenic mice from infection with the wild-type (Wuhan) SARS-CoV-2 strain, as shown by weight loss and mortality indicators. However, when compared with subcutaneous administration, the intranasal route was more effective in the pulmonary clearance of the virus and induced higher neutralizing antibodies and anti-S IgA titers. In addition, the intranasal vaccination afforded protection against gamma, delta, and omicron virus variants of concern. Furthermore, the intranasal vaccine formulation was superior to intramuscular vaccination with a recombinant, replication-deficient chimpanzee adenovirus vector encoding the SARS-CoV-2 spike glycoprotein (Oxford/AstraZeneca) in terms of virus lung clearance and production of neutralizing antibodies in serum and bronchial alveolar lavage (BAL). Finally, the intranasal liposomal formulation boosted heterologous immunity induced by previous intramuscular vaccination with the Oxford/AstraZeneca vaccine, which was more robust than homologous immunity.

6.
Eur J Med Res ; 28(1): 421, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821945

RESUMO

OBJECTIVES: To study clinical disease outcomes in both human and animal models to understand the pathogenicity of omicron compared to the delta variant. METHODS: In this cross-sectional observational study, clinical outcomes of adults who tested positive at 2 testing centres in Delhi National Capital Region between January 2022 and March 2022 (omicron-infected; N = 2998) were compared to a similar geographical cohort (delta-infected; N = 3292). In addition, disease course and outcomes were studied in SARS-CoV-2-infected golden Syrian hamsters and K-18 humanized ACE2 transgenic mice. RESULTS: Omicron variant infection was associated with a milder clinical course [83% (95% CI 61, 94) reduced risk of severity compared against delta] adjusting for vaccination, age, sex, prior infection and occupational risk. This correlated with lower disease index and vir comparing omicron with other variants in animal models. CONCLUSIONS: Infections caused by the omicron variant were milder compared to those caused by the delta variant independent of previous immunity.


Assuntos
COVID-19 , Adulto , Animais , Cricetinae , Camundongos , Humanos , Estudos Transversais , SARS-CoV-2/genética , Progressão da Doença
7.
Viruses ; 15(7)2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37515173

RESUMO

Successful SARS-CoV-2 inactivation allows its safe use in Biosafety Level 2 facilities, and the use of the whole viral particle helps in the development of analytical methods and a more reliable immune response, contributing to the development and improvement of in vitro and in vivo assays. In order to obtain a functional product, we evaluated several inactivation protocols and observed that 0.03% beta-propiolactone for 24 h was the best condition tested, as it promoted SARS-CoV-2 inactivation above 99.99% and no cytopathic effect was visualized after five serial passages. Moreover, RT-qPCR and transmission electron microscopy revealed that RNA quantification and viral structure integrity were preserved. The antigenicity of inactivated SARS-CoV-2 was confirmed by ELISA using different Spike-neutralizing monoclonal antibodies. K18-hACE2 mice immunized with inactivated SARS-CoV-2, formulated in AddaS03TM, presented high neutralizing antibody titers, no significant weight loss, and longer survival than controls from a lethal challenge, despite RNA detection in the oropharyngeal swab, lung, and brain. This work emphasizes the importance of using different techniques to confirm viral inactivation and avoid potentially disastrous contamination. We believe that an efficiently inactivated product can be used in several applications, including the development and improvement of molecular diagnostic kits, as an antigen for antibody production as well as a control for non-clinical trials.


Assuntos
COVID-19 , SARS-CoV-2 , Camundongos , Animais , Formação de Anticorpos , COVID-19/prevenção & controle , Anticorpos Antivirais , Imunização , Ensaio de Imunoadsorção Enzimática , Anticorpos Neutralizantes
8.
Front Immunol ; 14: 1138215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960064

RESUMO

Cytokine release syndrome (CRS) due to severe acute respiratory coronavirus-2 (SARS-CoV-2) infection leads to life-threatening pneumonia which has been associated with coronavirus disease (COVID-19) pathologies. Centuries-old Asian traditional medicines such as Withania somnifera (L.) Dunal (WS) and Tinospora cordifolia (Willd.) Miers (TC) possess potent immunomodulatory effects and were used by the AYUSH ministry, in India during the COVID-19 pandemic. In the present study, we investigated WS and TC's anti-viral and immunomodulatory efficacy at the human equivalent doses using suitable in vitro and in vivo models. While both WS and TC showed immuno-modulatory potential, WS showed robust protection against loss in body weight, viral load, and pulmonary pathology in the hamster model of SARS-CoV2. In vitro pretreatment of mice and human neutrophils with WS and TC had no adverse effect on PMA, calcium ionophore, and TRLM-induced ROS generation, phagocytosis, bactericidal activity, and NETs formation. Interestingly, WS significantly suppressed the pro-inflammatory cytokines-induced Th1, Th2, and Th17 differentiation. We also used hACE2 transgenic mice to further investigate the efficacy of WS against acute SARS-CoV2 infection. Prophylactic treatment of WS in the hACE2 mice model showed significant protection against body weight loss, inflammation, and the lung viral load. The results obtained indicate that WS promoted the immunosuppressive environment in the hamster and hACE2 transgenic mice models and limited the worsening of the disease by reducing inflammation, suggesting that WS might be useful against other acute viral infections. The present study thus provides pre-clinical efficacy data to demonstrate a robust protective effect of WS against COVID-19 through its broader immunomodulatory activity.


Assuntos
COVID-19 , Tinospora , Withania , Animais , Camundongos , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Neutrófilos , Pandemias , RNA Viral , SARS-CoV-2 , Diferenciação Celular , Inflamação/tratamento farmacológico , Modelos Teóricos , Camundongos Transgênicos
9.
Viruses ; 15(3)2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36992320

RESUMO

The emergence and availability of closely related clinical isolates of SARS-CoV-2 offers a unique opportunity to identify novel nonsynonymous mutations that may impact phenotype. Global sequencing efforts show that SARS-CoV-2 variants have emerged and then been replaced since the beginning of the pandemic, yet we have limited information regarding the breadth of variant-specific host responses. Using primary cell cultures and the K18-hACE2 mouse, we investigated the replication, innate immune response, and pathology of closely related, clinical variants circulating during the first wave of the pandemic. Mathematical modeling of the lung viral replication of four clinical isolates showed a dichotomy between two B.1. isolates with significantly faster and slower infected cell clearance rates, respectively. While isolates induced several common immune host responses to infection, one B.1 isolate was unique in the promotion of eosinophil-associated proteins IL-5 and CCL11. Moreover, its mortality rate was significantly slower. Lung microscopic histopathology suggested further phenotypic divergence among the five isolates showing three distinct sets of phenotypes: (i) consolidation, alveolar hemorrhage, and inflammation, (ii) interstitial inflammation/septal thickening and peribronchiolar/perivascular lymphoid cells, and (iii) consolidation, alveolar involvement, and endothelial hypertrophy/margination. Together these findings show divergence in the phenotypic outcomes of these clinical isolates and reveal the potential importance of nonsynonymous mutations in nsp2 and ORF8.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , SARS-CoV-2/genética , Genótipo , Fenótipo , Inflamação , Camundongos Transgênicos , Modelos Animais de Doenças , Pulmão
11.
Front Immunol ; 13: 1055811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457995

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) has been a global health concern since 2019. The viral spike protein infects the host by binding to angiotensin-converting enzyme 2 (ACE2) expressed on the cell surface, which is then processed by type II transmembrane serine protease. However, ACE2 does not react to SARS-CoV-2 in inbred wild-type mice, which poses a challenge for preclinical research with animal models, necessitating a human ACE2 (hACE2)-expressing transgenic mouse model. Cytokeratin 18 (K18) promoter-derived hACE2 transgenic mice [B6.Cg-Tg(K18-ACE2)2Prlmn/J] are widely used for research on SARS-CoV-1, MERS-CoV, and SARS-CoV-2. However, SARS-CoV-2 infection is lethal at ≥105 PFU and SARS-CoV-2 target cells are limited to type-1 alveolar pneumocytes in K18-hACE2 mice, making this model incompatible with infections in the human lung. Hence, we developed lung-specific SARS-CoV-2 infection mouse models with surfactant protein B (SFTPB) and secretoglobin family 1a member 1 (Scgb1a1) promoters. After inoculation of 105 PFU of SARS-CoV-2 to the K18-hACE2, SFTPB-hACE2, and SCGB1A1-hACE2 models, the peak viral titer was detected at 2 days post-infection and then gradually decreased. In K18-hACE2 mice, the body temperature decreased by approximately 10°C, body weight decreased by over 20%, and the survival rate was reduced. However, SFTPB-hACE2 and SCGB1A1-hACE2 mice showed minimal clinical signs after infection. The virus targeted type I pneumocytes in K18-hACE2 mice; type II pneumocytes in SFTPB-hACE2 mice; and club, goblet, and ciliated cells in SCGB1A1-hACE2 mice. A time-dependent increase in severe lung lesions was detected in K18-hACE2 mice, whereas mild lesions developed in SFTPB-hACE2 and SCGB1A1-hACE2 mice. Spleen, small intestine, and brain lesions developed in K18-hACE2 mice but not in SFTPB-hACE2 and SCGB1A1-hACE2 mice. These newly developed SFTPB-hACE2 and SCGB1A1-hACE2 mice should prove useful to expand research on hACE2-mediated respiratory viruses.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Animais , Humanos , Camundongos , Células Epiteliais Alveolares/virologia , Enzima de Conversão de Angiotensina 2/genética , Modelos Animais de Doenças , Camundongos Transgênicos , SARS-CoV-2
12.
Virol Sin ; 37(6): 804-812, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36167254

RESUMO

The continuously arising of SARS-CoV-2 variants has been posting a great threat to public health safety globally, from B.1.17 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta) to B.1.1.529 (Omicron). The emerging or re-emerging of the SARS-CoV-2 variants of concern is calling for the constant monitoring of their epidemics, pathogenicity and immune escape. In this study, we aimed to characterize replication and pathogenicity of the Alpha and Delta variant strains isolated from patients infected in Laos. The amino acid mutations within the spike fragment of the isolates were determined via sequencing. The more efficient replication of the Alpha and Delta isolates was documented than the prototyped SARS-CoV-2 in Calu-3 and Caco-2 â€‹cells, while such features were not observed in Huh-7, Vero E6 and HPA-3 â€‹cells. We utilized both animal models of human ACE2 (hACE2) transgenic mice and hamsters to evaluate the pathogenesis of the isolates. The Alpha and Delta can replicate well in multiple organs and cause moderate to severe lung pathology in these animals. In conclusion, the spike protein of the isolated Alpha and Delta variant strains was characterized, and the replication and pathogenicity of the strains in the cells and animal models were also evaluated.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2 , Células CACO-2 , COVID-19/virologia , Camundongos Transgênicos , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus , Virulência
13.
Front Immunol ; 13: 948431, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091051

RESUMO

Emergence of variants of concern (VOC) during the COVID-19 pandemic has contributed to the decreased efficacy of therapeutic monoclonal antibody treatments for severe cases of SARS-CoV-2 infection. In addition, the cost of creating these therapeutic treatments is high, making their implementation in low- to middle-income countries devastated by the pandemic very difficult. Here, we explored the use of polyclonal EpF(ab')2 antibodies generated through the immunization of horses with SARS-CoV-2 WA-1 RBD conjugated to HBsAg nanoparticles as a low-cost therapeutic treatment for severe cases of disease. We determined that the equine EpF(ab')2 bind RBD and neutralize ACE2 receptor binding by virus for all VOC strains tested except Omicron. Despite its relatively quick clearance from peripheral circulation, a 100µg dose of EpF(ab')2 was able to fully protect mice against severe disease phenotypes following intranasal SARS-CoV-2 challenge with Alpha and Beta variants. EpF(ab')2 administration increased survival while subsequently lowering disease scores and viral RNA burden in disease-relevant tissues. No significant improvement in survival outcomes or disease scores was observed in EpF(ab')2-treated mice challenged using the Delta variant at 10µg or 100µg doses. Overall, the data presented here provide a proof of concept for the use of EpF(ab')2 in the prevention of severe SARS-CoV-2 infections and underscore the need for either variant-specific treatments or variant-independent therapeutics for COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/prevenção & controle , Cavalos , Humanos , Imunização Passiva , Melfalan , Camundongos , Pandemias , SARS-CoV-2/genética , gama-Globulinas
14.
Molecules ; 27(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35807384

RESUMO

COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global pandemic that might lead to very serious consequences. Notably, mental status change, brain confusion, and smell and taste disorders along with neurological complaints have been reported in patients infected with SARS-CoV-2. Furthermore, human brain tissue autopsies from COVID-19 patients show the presence of SARS-CoV-2 neuroinvasion, which correlates with the manifestation of meningitis, encephalitis, leukocyte infiltration, and neuronal damage. The olfactory mucosa has been suggested as a way of entry into the brain. SARS-CoV-2 infection is also known to provoke a hyper-inflammatory reaction with an exponential increase in the production of pro-inflammatory cytokines leading to systemic responses, even in the absence of direct infection of brain cells. Angiotensin-converting enzyme 2 (ACE2), the entry receptor of SARS-CoV-2, has been extensively demonstrated to be present in the periphery, neurons, and glial cells in different brain regions. To dissect the details of neurological complications and develop therapies helping COVID-19 survivors regain pre-infection quality of life, the development of robust clinical models is highly warranted. Several human angiotensin-converting enzyme 2 (hACE2) transgenic mouse models have been developed and used for antiviral drug screening and vaccine development, as well as for better understanding of the molecular pathogenetic mechanisms of SARS-CoV-2 infection. In this review, we summarize recent results from the studies involving two such mouse models, namely K18- and CAG-hACE2 transgenics, to evaluate the direct and indirect impact of SARS-CoV-2 infection on the central nervous system.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Animais , Modelos Animais de Doenças , Melfalan , Camundongos , Camundongos Transgênicos , Peptidil Dipeptidase A , Qualidade de Vida , gama-Globulinas
15.
Methods Mol Biol ; 2452: 259-289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35554912

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), emerged in December 2019 in Wuhan, China, and rapidly spread throughout the world, threatening global public health. An animal model is a valuable and a crucial tool that allows understanding of nature in the pathogenesis of SARS-CoV-2 and its associated COVID-19 disease. Here we introduce detailed protocols of SARS-CoV-2 infection and COVID-19 disease using C57BL/6 (B6) transgenic mice expressing the human angiotensin-converting enzyme 2 (hACE2) from the human cytokeratin 18 promoter (K18 hACE2). To mimic natural SARS-CoV-2 infection, K18 hACE2 transgenic mice are infected intranasally under anesthesia. Upon infection, viral pathogenesis is determined by monitoring changes in body weight (morbidity) and monitoring survival (mortality), cytokine/chemokine responses, gross-lung pathology, histopathology, and viral replication in tissues. The presence of the virus and viral replication is evaluated by immunohistochemistry (IHC) and viral titrations, respectively, from the upper (nasal turbinate) and the lower (lungs) respiratory tracts, and nervous system (brain). Also, the immune response to SARS-CoV-2 infection is measured by cytokine/chemokine enzyme-linked immunosorbent assay (ELISA) from lung, spleen and brain homogenates to characterize the cytokine storm that hallmarks as one of the major causes of death caused by SARS-CoV-2 infection. This small rodent animal model based on the use of K18 hACE2 transgenic mice represents an excellent option to understand the pathogenicity of natural SARS-CoV-2 strains and its recently described Variants of Concern (VoC), and will be applicable to the identification and characterization of prophylactic (vaccine) and therapeutic (antiviral and/or neutralizing monoclonal antibodies) strategies for the prevention or treatment of SARS-CoV-2 infection or its associated COVID-19 disease.


Assuntos
COVID-19 , Animais , Anticorpos Neutralizantes , Quimiocinas , Citocinas , Modelos Animais de Doenças , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , SARS-CoV-2/genética
16.
EMBO Mol Med ; 14(4): e15298, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35138028

RESUMO

The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants has altered the trajectory of the COVID-19 pandemic and raised some uncertainty on the long-term efficiency of vaccine strategy. The development of new therapeutics against a wide range of SARS-CoV-2 variants is imperative. We, here, have designed an inhalable siRNA, C6G25S, which covers 99.8% of current SARS-CoV-2 variants and is capable of inhibiting dominant strains, including Alpha, Delta, Gamma, and Epsilon, at picomolar ranges of IC50 in vitro. Moreover, C6G25S could completely inhibit the production of infectious virions in lungs by prophylactic treatment, and decrease 96.2% of virions by cotreatment in K18-hACE2-transgenic mice, accompanied by a significant prevention of virus-associated extensive pulmonary alveolar damage, vascular thrombi, and immune cell infiltrations. Our data suggest that C6G25S provides an alternative and effective approach to combating the COVID-19 pandemic.


Assuntos
COVID-19 , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Pandemias , RNA Interferente Pequeno/genética , SARS-CoV-2/genética
17.
J Virol ; 96(6): e0218421, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35080423

RESUMO

SARS-CoV-2 variants of concern (VoC) are impacting responses to the COVID-19 pandemic. Here, we utilized passive immunization using human convalescent plasma (HCP) obtained from a critically ill COVID-19 patient in the early pandemic to study the efficacy of polyclonal antibodies generated to ancestral SARS-CoV-2 against the Alpha, Beta, and Delta VoC in the K18 human angiotensin converting enzyme 2 (hACE2) transgenic mouse model. HCP protected mice from challenge with the original WA-1 SARS-CoV-2 strain; however, only partially protected mice challenged with the Alpha VoC (60% survival) and failed to save Beta challenged mice from succumbing to disease. HCP treatment groups had elevated receptor binding domain (RBD) and nucleocapsid IgG titers in the serum; however, Beta VoC viral RNA burden in the lung and brain was not decreased due to HCP treatment. While mice could be protected from WA-1 or Alpha challenge with a single dose of HCP, six doses of HCP could not decrease mortality of Delta challenged mice. Overall, these data demonstrate that VoC have enhanced immune evasion and this work underscores the need for in vivo models to evaluate future emerging strains. IMPORTANCE Emerging SARS-CoV-2 VoC are posing new problems regarding vaccine and monoclonal antibody efficacy. To better understand immune evasion tactics of the VoC, we utilized passive immunization to study the effect of early-pandemic SARS-CoV-2 HCP against, Alpha, Beta, and Delta VoC. We observed that HCP from a human infected with the original SARS-CoV-2 was unable to control lethality of Alpha, Beta, or Delta VoC in the K18-hACE2 transgenic mouse model of SARS-CoV-2 infection. Our findings demonstrate that passive immunization can be used as a model to evaluate immune evasion of emerging VoC strains.


Assuntos
COVID-19/terapia , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Animais , Anticorpos Neutralizantes/imunologia , COVID-19/prevenção & controle , Modelos Animais de Doenças , Humanos , Imunização Passiva , Melfalan , Camundongos , Camundongos Transgênicos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , gama-Globulinas , Soroterapia para COVID-19
18.
Vet Pathol ; 59(4): 613-626, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34955064

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes respiratory disease, but it can also affect other organs including the central nervous system. Several animal models have been developed to address different key questions related to Coronavirus Disease 2019 (COVID-19). Wild-type mice are minimally susceptible to certain SARS-CoV-2 lineages (beta and gamma variants), whereas hACE2-transgenic mice succumb to SARS-CoV-2 and develop a fatal neurological disease. In this article, we aimed to chronologically characterize SARS-CoV-2 neuroinvasion and neuropathology. Necropsies were performed at different time points, and the brain and olfactory mucosa were processed for histopathological analysis. SARS-CoV-2 virological assays including immunohistochemistry were performed along with a panel of antibodies to assess neuroinflammation. At 6 to 7 days post inoculation (dpi), brain lesions were characterized by nonsuppurative meningoencephalitis and diffuse astrogliosis and microgliosis. Vasculitis and thrombosis were also present and associated with occasional microhemorrhages and spongiosis. Moreover, there was vacuolar degeneration of virus-infected neurons. At 2 dpi, SARS-CoV-2 immunolabeling was only found in the olfactory mucosa, but at 4 dpi intraneuronal virus immunolabeling had already reached most of the brain areas. Maximal distribution of the virus was observed throughout the brain at 6 to 7 dpi except for the cerebellum, which was mostly spared. Our results suggest an early entry of the virus through the olfactory mucosa and a rapid interneuronal spread of the virus leading to acute encephalitis and neuronal damage in this mouse model.


Assuntos
COVID-19 , Doenças do Sistema Nervoso , Doenças dos Roedores , Enzima de Conversão de Angiotensina 2 , Animais , Encéfalo/patologia , COVID-19/veterinária , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/veterinária , Peptidil Dipeptidase A/metabolismo , Doenças dos Roedores/patologia , SARS-CoV-2
19.
EMBO Mol Med ; 13(12): e14459, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34647691

RESUMO

COVID-19 vaccines already in use or in clinical development may have reduced efficacy against emerging SARS-CoV-2 variants. In addition, although the neurotropism of SARS-CoV-2 is well established, the vaccine strategies currently developed have not taken into account protection of the central nervous system. Here, we generated a transgenic mouse strain expressing the human angiotensin-converting enzyme 2, and displaying unprecedented brain permissiveness to SARS-CoV-2 replication, in addition to high permissiveness levels in the lung. Using this stringent transgenic model, we demonstrated that a non-integrative lentiviral vector, encoding for the spike glycoprotein of the ancestral SARS-CoV-2, used in intramuscular prime and intranasal boost elicits sterilizing protection of lung and brain against both the ancestral virus, and the Gamma (P.1) variant of concern, which carries multiple vaccine escape mutations. Beyond induction of strong neutralizing antibodies, the mechanism underlying this broad protection spectrum involves a robust protective T-cell immunity, unaffected by the recent mutations accumulated in the emerging SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Encéfalo/metabolismo , Vacinas contra COVID-19 , Humanos , Camundongos , Camundongos Transgênicos , Glicoproteína da Espícula de Coronavírus/metabolismo
20.
Emerg Microbes Infect ; 10(1): 1156-1168, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34060982

RESUMO

ABSTRACTThe risk of secondary infection with SARS-CoV-2 and influenza A virus is becoming a practical problem that must be addressed as the flu season merges with the COVID-19 pandemic. As SARS-CoV-2 and influenza A virus have been found in patients, understanding the in vivo characteristics of the secondary infection between these two viruses is a high priority. Here, hACE2 transgenic mice were challenged with the H1N1 virus at a nonlethal dose during the convalescent stage on 7 and 14 days post SARS-CoV-2 infection, and importantly, subsequent H1N1 infection showed enhanced viral shedding and virus tissue distribution. Histopathological observation revealed an extensive pathological change in the lungs related to H1N1 infection in mice recovered from SARS-CoV-2 infection, with severe inflammation infiltration and bronchiole disruption. Moreover, upon H1N1 exposure on 7 and 14 dpi of SARS-CoV-2 infection, the lymphocyte population activated at a lower level with T cell suppressed in both PBMC and lung. These findings will be valuable for evaluating antiviral therapeutics and vaccines as well as guiding public health work.


Assuntos
Lesão Pulmonar Aguda/patologia , Enzima de Conversão de Angiotensina 2/genética , COVID-19/patologia , Infecções por Orthomyxoviridae/patologia , Lesão Pulmonar Aguda/virologia , Animais , COVID-19/terapia , Coinfecção/patologia , Coinfecção/virologia , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Pulmão/patologia , Contagem de Linfócitos , Linfócitos/imunologia , Camundongos , Camundongos Transgênicos , Infecções por Orthomyxoviridae/terapia , SARS-CoV-2/isolamento & purificação , Carga Viral , Replicação Viral/fisiologia , Eliminação de Partículas Virais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA