Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Immunol ; 173: 1-9, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996607

RESUMO

Restoring and maintaining the function of endothelial cells is critical for acute respiratory distress syndrome (ARDS). Guanylate binding protein 1(GBP1) is proved to elevated in ARDS patients, but its role and mechanism remains unclear. The objective of this study is to investigate the internal mechanism of GBP1 in lung injury. Our study showed that when the LPS and IFN-γ induced human Pulmonary Microvascular Endothelial Cells (HPMECs) injury model was established, cell viability was significantly reduced, and the levels of GBP1 levels and inflammatory factors were significantly increased. When transfection with si-GBP1, low expression of GBP1 promoted cell proliferation and migration, and decreased the expression of downstream inflammatory factors. Furthermore, the inhibition of GBP1 significantly reduced the occurrence of cell pyroptosis and the expression of NLRP3 and STAT1. Our study indicated that GBP1 alleviates endothelial pyroptosis and inflammation through STAT1 / NLRP3/GSDMD signaling pathway, and GBP1 may be a new target in the treatment of lung injury in the future.

2.
Mol Biol Rep ; 50(7): 5667-5674, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37209327

RESUMO

BACKGROUND: Ferroptosis plays an important part in Acute lung injury (ALI) caused by sepsis. The six-transmembrane epithelial antigen of the prostate 1 (STEAP1) has potential effects on iron metabolism and inflammation but reports on its function in ferroptosis and sepsis-caused ALI are lacking. Here we explored the role of STEAP1 in sepsis-caused ALI and the possible mechanisms. METHODS AND RESULTS: Lipopolysaccharide (LPS) was added to human pulmonary microvascular endothelial cells (HPMECs) to form the sepsis-caused ALI model in vitro. The Cecal ligation and puncture (CLP) experiment was performed on C57/B6J mice to form the sepsis-caused ALI model in vivo. The effect of STEAP1 on inflammation was investigated by PCR, ELISA, and Western blot for the inflammatory factors and adhesion molecular. The reactive oxygen species (ROS) levels were detected by immunofluorescence. The effect of STEAP1 on ferroptosis was investigated by detecting malondialdehyde (MDA) levels, glutathione (GSH) levels, Fe2+ levels, cell viability, and mitochondrial morphology. Our findings suggested that STEAP1 expression was increased in the sepsis-induced ALI models. Inhibition of STEAP1 decreased the inflammatory response and ROS production as well as MDA levels but increased the levels of Nrf2 and GSH. Meanwhile, inhibition of STEAP1 improved cell viability and restored mitochondrial morphology. Western Blot results showed that inhibition of STEAP1 could affect the SLC7A11/GPX4 axis. CONCLUSION: Inhibition of STEAP1 may be valuable for pulmonary endothelial protection in lung injury caused by sepsis.


Assuntos
Lesão Pulmonar Aguda , Ferroptose , Sepse , Animais , Humanos , Camundongos , Lesão Pulmonar Aguda/metabolismo , Antígenos de Neoplasias , Células Endoteliais/metabolismo , Lipopolissacarídeos/farmacologia , Oxirredutases/metabolismo , Próstata/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sepse/complicações , Sepse/metabolismo
3.
Int Immunopharmacol ; 113(Pt B): 109440, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36417821

RESUMO

BACKGROUND: Circular RNAs (circRNAs) have been reported to be involved in the pathophysiology of sepsis-induced acute lung injury (sepsis-ALI). Herein, this work aimed to investigate the role and mechanism of circWDR33 in the process of sepsis-ALI. METHODS: Lipopolysaccharide (LPS)-stimulated human pulmonary microvascular endothelial cells (HPMECs) were used to establish the cell model of sepsis-ALI in vitro. Levels of genes and proteins were measured by RT-qPCR and western blotting. The abundances of inflammatory factors were detected by ELISA analysis, and cell apoptosis was assayed by flow cytometry. Cell permeability (PA) was determined by transendothelial resistance (TER) and fluorescein isothiocyanate (FITC) with transwell assay. The tubulogenesis of HPMECs was assessed by tube formation assay. The binding between miR-217-5p and circWDR33 or SERP1 (Stress Associated Endoplasmic Reticulum Protein 1) was validated using pull-down and dual-luciferase reporter assays. RESULTS: CircWDR33 expression was low in sepsis-ALI patients and LPS-challenged HPMECs. Functionally, forced expression of circWDR33 could alleviate LPS-induced inflammatory and apoptotic injury, permeability enhancement and tubule formation arrest in HPMECs. Mechanistically, circWDR33/miR-217-5p/SERP1 formed an axis in HPMECs. MiR-217-5p was highly expressed, while SERP1 was decreased in sepsis-ALI patients and LPS-challenged HPMECs. MiR-217-5p silencing could protect against LPS-evoked HPMEC injury. Further rescue experiments showed that protective effects of circWDR33 on LPS-challenged HPMECs were attenuated by miR-217-5p up-regulation or SERP1 down-regulation. CONCLUSION: CircWDR33 protected against LPS-induced inflammatory and apoptotic injury, permeability enhancement and tubule formation arrest in HPMECs via miR-217-5p/SERP1 axis, indicating a new potential therapeutic approach for sepsis-ALI patients.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Sepse , Humanos , Células Endoteliais , Lipopolissacarídeos , Proteínas de Membrana , MicroRNAs/genética , RNA Circular
4.
Antioxidants (Basel) ; 11(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35740027

RESUMO

Bronchopulmonary dysplasia (BPD) is a morbid lung disease distinguished by lung alveolar and vascular simplification. Hyperoxia, an important BPD causative factor, increases extracellular signal-regulated kinases (ERK)-1/2 expression, whereas decreased lung endothelial cell ERK2 expression reduces angiogenesis and potentiates hyperoxia-mediated BPD in mice. However, ERK1's role in experimental BPD is unclear. Thus, we hypothesized that hyperoxia-induced experimental BPD would be more severe in global ERK1-knockout (ERK1-/-) mice than their wild-type (ERK1+/+ mice) littermates. We determined the extent of lung development, ERK1/2 expression, inflammation, and oxidative stress in ERK1-/- and ERK1+/+ mice exposed to normoxia (FiO2 21%) or hyperoxia (FiO2 70%). We also quantified the extent of angiogenesis and hydrogen peroxide (H2O2) production in hyperoxia-exposed neonatal human pulmonary microvascular endothelial cells (HPMECs) with normal and decreased ERK1 signaling. Compared with ERK1+/+ mice, ERK1-/- mice displayed increased pulmonary ERK2 activation upon hyperoxia exposure. However, the extent of hyperoxia-induced inflammation, oxidative stress, and interrupted lung development was similar in ERK1-/- and ERK1+/+ mice. ERK1 knockdown in HPMECs increased ERK2 activation at baseline, but did not affect in vitro angiogenesis and hyperoxia-induced H2O2 production. Thus, we conclude ERK1 is dispensable for hyperoxia-induced experimental BPD due to compensatory ERK2 activation.

5.
Open Med (Wars) ; 17(1): 676-688, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480402

RESUMO

Acute lung injury (ALI) is a devastating human malignancy characterized by excessively uncontrolled inflammation and lung endothelial dysfunction. Non-coding RNAs play essential roles in endothelial protections during the pathological processes of ALI. The precise functions and molecular mechanisms of the lncRNA-NORAD-mediated endothelial protection remain obscure. This study reports NORAD was significantly induced in human pulmonary microvascular endothelial cells (HPMECs) under lipopolysaccharide (LPS) treatment. Silencing NORAD effectively protected HPMECs against the LPS-induced cell dysfunction. In addition, RNA pull-down and luciferase assay validated that NORAD sponged miR-30c-5p, which showed reverse functions of NORAD in the LPS-induced cell injury of HPMECs. Furthermore, the glucose metabolism of HPMECs was significantly elevated under LPS stimulation which promoted the glucose consumption and extracellular acidification rate (ECAR) of HPMECs. Inhibiting NORAD or overexpressing miR-30c-5p suppressed glucose metabolism in HPMECs, leading to protective effects on HPMECs under LPS stimulation. The glycolysis key enzyme, lactate dehydrogenase-A (LDHA), was subsequently identified as a direct target of miR-30c-5p. Finally, recovery of miR-30c-5p in NORAD-overexpressing HPMECs effectively overrode the NORAD-promoted glycolysis and impaired endothelial dysfunction under LPS stimulation by targeting LDHA. Summarily, we demonstrated a NORAD-miR-30c-5p-LDHA-glycolysis axis in the LPS-induced HPMECs dysfunction in vitro and in vivo, contributing to the development of anti-ALI therapeutic approaches.

6.
Artigo em Inglês | MEDLINE | ID: mdl-35378837

RESUMO

Background: Prohibitin has been identified to play roles in cell survival and apoptosis. Here, this study aimed to clarify the role of prohibitin in cigarette smoke extract (CSE)-induced endothelial cell apoptosis. Methods: The protein level of prohibitin was assessed by Western blot in lung tissues from emphysema and control mice. CSE-induced human pulmonary microvascular endothelial cells (hPMECs) were applied to mimic smoke-related cell apoptosis in vitro. Prohibitin was overexpressed in hPMECs with or without CSE. Mitochondrial function was analyzed by JC-1 staining and ATP assay kits. Oxidative stress was assessed by flow cytometry, fluorescence staining and immunocytochemistry. Apoptosis was analyzed by flow cytometry, Western blot and caspase-3 activity assays. In addition, the expression of inflammatory markers was assessed by Western blot and real-time polymerase chain reaction (PCR). The secretion of inflammatory cytokines was measured by ELISA. Results: Prohibitin was downregulated in emphysema mouse tissues compared with control experiments. Consistently, CSE inhibited both the protein and RNA levels of prohibitin in hPMECs in a dose-dependent manner. Gain-of-function experiments indicated that CSE induced collapse of mitochondrial membrane potential (MMP) and loss of ATP, while prohibitin improved mitochondrial function. CSE induced robust ROS production and oxidative DNA damage, while prohibitin decreased this damage. Upregulation of prohibitin protected the apoptosis of hPMECs from CSE. Overexpression of prohibitin significantly reduced the levels of the main proinflammatory cytokines. Finally, prohibitin inhibited nuclear factor-kappa B (NF-κB) p65 accumulation and IκBα degradation induced by CSE. Conclusion: The current findings suggest that CSE-mediated mitochondrial dysfunction, oxidative stress, cell apoptosis and inflammation in hPMECs were reduced by overexpression of prohibitin. We identified prohibitin as a novel regulator of endothelial cell apoptosis and survival in the context of CSE exposure.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Animais , Apoptose , Células Endoteliais/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/prevenção & controle , Pulmão/metabolismo , Camundongos , Proibitinas , Doença Pulmonar Obstrutiva Crônica/metabolismo
7.
Antioxidants (Basel) ; 10(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34943016

RESUMO

Bronchopulmonary dysplasia and pulmonary hypertension, or BPD-PH, are serious chronic lung disorders of prematurity, without curative therapies. Hyperoxia, a known causative factor of BPD-PH, activates adenosine monophosphate-activated protein kinase (AMPK) α1 in neonatal murine lungs; however, whether this phenomenon potentiates or mitigates lung injury is unclear. Thus, we hypothesized that (1) endothelial AMPKα1 is necessary to protect neonatal mice against hyperoxia-induced BPD-PH, and (2) AMPKα1 knockdown decreases angiogenesis in hyperoxia-exposed neonatal human pulmonary microvascular endothelial cells (HPMECs). We performed lung morphometric and echocardiographic studies on postnatal day (P) 28 on endothelial AMPKα1-sufficient and -deficient mice exposed to 21% O2 (normoxia) or 70% O2 (hyperoxia) from P1-P14. We also performed tubule formation assays on control- or AMPKα1-siRNA transfected HPMECs, exposed to 21% O2 or 70% O2 for 48 h. Hyperoxia-mediated alveolar and pulmonary vascular simplification, pulmonary vascular remodeling, and PH were significantly amplified in endothelial AMPKα1-deficient mice. AMPKα1 siRNA knocked down AMPKα1 expression in HPMECs, and decreased their ability to form tubules in normoxia and hyperoxia. Furthermore, AMPKα1 knockdown decreased proliferating cell nuclear antigen expression in hyperoxic conditions. Our results indicate that AMPKα1 is required to reduce hyperoxia-induced BPD-PH burden in neonatal mice, and promotes angiogenesis in HPMECs to limit lung injury.

8.
Ann Transl Med ; 9(2): 159, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33569461

RESUMO

BACKGROUND: Previous experiments revealed phospholipid scramblase 4 (PLSCR4) mRNA to be significantly increased in a lipopolysaccharide (LPS)-induced acute respiratory distress syndrome (ARDS) model of human pulmonary microvascular endothelial cells (HPMECs); however, the effect of PLSCR4 and its mechanism have not been reported to date. The PLSCR family is thought to mediate the transmembrane movement of phospholipids (PS), and has been found to be involved in pyroptosis through combing with gasdermin D (GSDMD). We therefore speculated that PLSCR4 may contribute to cell death via pyroptosis. METHODS: To investigate the effect and mechanism of PLSCR4 in ARDS, we constructed an in vitro model of LPS-induced ARDS in HPMECs transfected with PLSCR4 small interfering RNA (siRNA) or scramble siRNA (sc siRNA). After 4 h of LPS stimulation, western blotting, immunoprecipitation, enzyme-linked immunosorbent assay (ELISA), tracer flux assays, and fluorescence assays were used to study the relationship between PLSCR4 and pyroptosis with regards to their impact on ARDS. We also established an ARDS mouse model which was pretreated with a liquid complex of PLSCR4 siRNA/sc siRNA-lipofectamine 2000 through the fundus venous plexus. Finally, we used DNA pull-down and protein profiling to study the potential transcription factor of PLSCR4. RESULTS: It was found that when the expression of PLSCR4 was elevated, the concentration of interleukin 1 beta (IL-1ß) and IL-18 decreased, along with barrier damage (P<0.05). Furthermore, HPMEC injury was reduced with more distribution of PS and N-terminal cleavage product (GSDMD-NT) of GSDMD on the external side of cell membrane. However, the pyroptosis-relevant proteins of GSDMD and caspase-1 were not obviously changed (P<0.05); we further found that when PLSCR4 was depressed, the lung injury was aggravated in the mice. In the DNA pull-down assay, P62280 remarkably increased, which suggested that P62280 might be the transcription factor for PLSCR4. CONCLUSIONS: PLSCR4 alleviated pyroptosis by transporting PS to the outside of the membrane, blocking the formation of pyroptosis pores composed of GSDMD. Moreover, P62280 might be the transcription factor of PLSCR4. These insults may provide useful insights into the clinical treatment of ARDS.

9.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244398

RESUMO

Bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension (PH) is a significant lung morbidity of infants, and disrupted lung angiogenesis is a hallmark of this disease. We observed that extracellular signal-regulated kinases (ERK) 1/2 support angiogenesis in vitro, and hyperoxia activates ERK1/2 in fetal human pulmonary microvascular endothelial cells (HPMECs) and in neonatal murine lungs; however, their role in experimental BPD and PH is unknown. Therefore, we hypothesized that Tie2 Cre-mediated deficiency of ERK2 in the endothelial cells of neonatal murine lungs would potentiate hyperoxia-induced BPD and PH. We initially determined the role of ERK2 in in vitro angiogenesis using fetal HPMECs. To disrupt endothelial ERK2 signaling in the lungs, we decreased ERK2 expression by breeding ERK2flox/flox mice with Tie-Cre mice. One-day-old endothelial ERK2-sufficient (eERK2+/+) or -deficient (eERK2+/-) mice were exposed to normoxia or hyperoxia (FiO2 70%) for 14 d. We then performed lung morphometry, gene and protein expression studies, and echocardiography to determine the extent of inflammation, oxidative stress, and development of lungs and PH. The knockdown of ERK2 in HPMECs decreased in vitro angiogenesis. Hyperoxia increased lung inflammation and oxidative stress, decreased lung angiogenesis and alveolarization, and induced PH in neonatal mice; however, these effects were augmented in the presence of Tie2-Cre mediated endothelial ERK2 deficiency. Therefore, we conclude that endothelial ERK2 signaling is necessary to mitigate hyperoxia-induced experimental BPD and PH in neonatal mice. Our results indicate that endothelial ERK2 is a potential therapeutic target for the management of BPD and PH in infants.


Assuntos
Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Hipertensão Pulmonar/metabolismo , Integrases/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/deficiência , Proteína Quinase 1 Ativada por Mitógeno/genética , Receptor TIE-2/metabolismo , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/patologia , Células Endoteliais/metabolismo , Humanos , Hiperóxia/metabolismo , Hipertensão Pulmonar/patologia , Pulmão/metabolismo , Pulmão/patologia , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Pneumonia/metabolismo , Transdução de Sinais , Transcriptoma
10.
Biosci Rep ; 40(3)2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32129458

RESUMO

Chronic obstructive pulmonary disease (COPD) is a common airway disease characterized by an exaggerated pulmonary inflammatory response. Long noncoding MIR155 host gene (lncRNA MIR155HG) has been identified to be related to the macrophage polarization in COPD. However, the detailed function of MIR155HG in cigarette smoke (CS)-mediated COPD remains largely unknown. The expression level of MIR155HG was elevated while miR-218-5p was decreased in lung tissues of smokers without or with COPD, especially in smokers with COPD, and cigarette smoke extract (CSE)-treated human pulmonary microvascular endothelial cell (HPMECs) in a dose- and time-dependent manner. Then, functional experiments showed that MIR155HG deletion could reverse CSE exposure-induced apoptosis and inflammation in HPMECs. MiR-218-5p was confirmed to be a target of MIR155HG and rescue assay showed miR-218-5p inhibitor attenuated the inhibitory action of MIR155HG knockdown on CSE-induced HPMECs. Subsequently, miR-218-5p was found to target bromodomain containing 4 (BRD4) directly, and miR-218-5p overexpression overturned CSE-induced injury of HPMECs via regulating BRD4. Additionally, co-expression analysis indicated MIR155HG indirectly regulated BRD4 expression in HPMECs via miR-218-5p. Thus, we concluded that MIR155HG contributed to the apoptosis and inflammation of HPMECs in smoke-related COPD by regulating miR-128-5p/BRD4 axis, providing a novel insight on the pathogenesis of COPD and a therapeutic strategy on COPD treatments.


Assuntos
MicroRNAs/genética , Doença Pulmonar Obstrutiva Crônica/genética , Apoptose/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Células Endoteliais/metabolismo , Inflamação/patologia , Pulmão/patologia , MicroRNAs/metabolismo , Proteínas Nucleares/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , RNA Longo não Codificante/genética , Fumar/efeitos adversos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Cytokine ; 111: 287-294, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30269024

RESUMO

Angiogenesis is fundamental to normal placental development, and aberrant angiogenesis contributes substantially to placental pathologies. Placental angiogenesis is a pivotal process that plays a key mechanistic role in the elaboration of the placental villous tree, which is mainly taken by human placental microvascular endothelial cells (HPMECs), present in the fetal capillaries of chorionic villi, and macrovascular human umbilical vein endothelial cells (HUVECs) also play a role in this process. These are the two types of endothelial cells that form the placenta and differ in morphology and function. The placental vasculature represents a distinct territory that is highly specialized in structure and function. To distinguish the differences between HPMECs and HUVECs, we isolated HPMECs by paramagnetic particle separation and HUVECs through trypsinization and validated their characteristics. Then, we examined their response to fibroblast growth factor 2 (FGF2), vascular endothelial growth factor (VEGF) and endocrine-gland-derived vascular endothelial growth factor (EG-VEGF), as well as the underlying signaling mechanisms and their transcriptomes. We found that cultured HPMECs and HUVECs took up DiI-Ac-LDL and formed capillary-like tube structures on Matrigel. HPMECs and HUVECs had different expressions of eNOS, PROKR1 and PROKR2, and these characteristics substantiate the endothelial nature of cultured cells. FGF2 and VEGF stimulated the proliferation and migration of HPMECs and HUVECs via activation of PI3K/AKT1 and MEK1/MEK2/ERK1/ERK2. Interestingly, EG-VEGF increased the proliferation and migration of HPMECs via only MEK1/MEK2/ERK1/ERK2 and not PI3K/AKT1. Microarray analysis showed that there were some differentially expressed genes between HPMECs and HUVECs. Gene ontology analysis indicated that the differentially expressed genes were highly related to G-protein coupled receptor signaling pathway, angiogenesis, L-lysine transmembrane transport and blood vessel remodeling. These data provided evidence of heterogeneity between microvascular HPMECs and macrovascular HUVECs that most likely reflected significant differences in endothelial cell function in the two different cellular environments.


Assuntos
Células Endoteliais/patologia , Células Endoteliais da Veia Umbilical Humana/patologia , Placenta/patologia , Adulto , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Colágeno/metabolismo , Combinação de Medicamentos , Células Endoteliais/metabolismo , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Laminina/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Placenta/metabolismo , Gravidez , Proteoglicanas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Mol Immunol ; 103: 78-88, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30219663

RESUMO

An essential component of acute pancreatitis(AP)-induced acute lung injury(ALI) is the inflammation that is part of the body's systemic inflammatory response to a variety of systemic stimuli. Lipoxins(LXs) are considered important endogenous lipids that mediate the resolution of inflammation. In previous studies, we found that Lipoxin A4 (LXA4) reduced AP-induced pulmonary oedema and TNF-α production in lung. However, the underlying mechanism remains unclear. Due to the above studies, we investigated the aquaporin, matrix metalloprotein, apoptosis and PKC/SSeCKS signal pathway in cellular and animal models of AP-associated lung injury following LXA4 intervention. In this study, we first proved LXA4 could effectively promote F-actin reconstruction and regulate its expression in pulmonary microvascular endothelial cells both in vivo and vitro via suppressing PKC/SSeCKS signalling pathway. Next, we found that LXA4 attenuated cell growth inhibition and apoptosis in lung tissues of AP-ALI mice and HPMECs. Additionally, we demonstrated that LXA4 could regulate the expression of AQP-5 and MMP-9 to stabilize the permeability of pulmonary microvascular endothelial cell. In summary, our results suggest that the anti-inflammatory eff ;ects of LXA4 may be due to the inhibition of both the PKC/SSeCKS pathway and apoptosis to reduce alveolar fluid exudation and to the regulation of AQP-5 and MMP-9 expression to maintain the clearance of alveolar fluid. Thus, LXA4 is capable of exerting protective eff ;ects on AP-induced ALI.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Apoptose/efeitos dos fármacos , Aquaporina 5/metabolismo , Lipoxinas/farmacologia , Metaloproteinase 9 da Matriz/metabolismo , Pancreatite/complicações , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Actinas/genética , Actinas/metabolismo , Doença Aguda , Lesão Pulmonar Aguda/complicações , Lesão Pulmonar Aguda/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Apoptose/genética , Aquaporina 5/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Humanos , Metaloproteinase 9 da Matriz/genética , Camundongos Endogâmicos BALB C , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...