Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(14): 13616-13623, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30892009

RESUMO

The thermal conductivity (κ) of two-dimensional conducting and transparent carbon nanosheets (CNSs) prepared by a catalyst- and transfer-free process is calculated for the first time by the optothermal Raman technique. A systematic structural analysis of CNSs reveals that the thickness of polymer films affects the interaction between molecules and a Si wafer significantly, thus helping to determine the ratio of sp2 and sp3 bonding configurations of carbon (C) atoms in the CNS. Notably, the holding time of carbonization can realize a hierarchical structure with graphitic carbon dots emerging from the CNS through the rearrangement of carbon atoms, leading to the excellent κ value of 540 W/(m·K) at 310 K. It is demonstrated that an appropriate increase in carbonization time can be an effective approach for improving the ratio of sp2- to sp3-bonded C atoms in the CNS. The thermal conductivity of the CNS with the highest ratio of sp2- to sp3-bonded C atoms exhibits superior behavior and is comparable to that of reduced graphene oxide and supported graphene, respectively. Finally, when the CNS with the highest κ value of 540 W/(m·K) was applied to a heater as the heat-dissipating material, the heater showed the temperature decrease by 14 °C compared to the case without the CNS. The catalyst- and transfer-free approach for the synthesis of CNSs is highly desirable for use as heat sink materials or substrates with heat dissipation functions for extensively integrated electronic devices.

2.
Surf Coat Technol ; 208(5-2): 24-31, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23471515

RESUMO

In most metal matrix composites (MMCs) interfaces are decisive but hard to manipulate. Especially copper-carbon composites can exhibit excellent mechanical and thermal properties only if the Cu/C interface is modified by an optimised interlayer. Due to the excellent thermal conductivity and mechanical stability of diamond this form of carbon is preferred as reinforcement in heat sink materials (copper-diamond composite) which are often subjected to severe thermal and mechanical loads. In the present case niobium and boron interlayers of various thicknesses were deposited on diamond and vitreous carbon substrates by magnetron sputter deposition. After the coverage of all samples by a copper film, a part of the samples was subjected to heat treatment for 30 min at 800 °C under high vacuum (HV) to simulate the thermal conditions during the production of the composite material by uniaxial hot pressing. De-wetting during heat treatment leads to the formation of holes or humps in the Cu coating. This effect was investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). A comparison of time-of-flight secondary ion mass spectroscopy (TOF SIMS) profiles of heat treated samples with those of as deposited ones showed the influence of interdiffusion during the heating process. Diffusion behaviour and chemical composition of the interface were also studied by cross sectional transmission electron microscopy (X-TEM) investigations using focused ion beam (FIB) cut samples. The thermal contact resistance (TCR) of the interface was calculated from results obtained from modulated infrared radiometry (IR). Thin interlayers suppressed de-wetting most effectively and consequently the TCR at the Cu-diamond interface was found to decrease. Therefore they are promising candidates for optimising the Cu-diamond interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA