Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Gene Ther Methods ; 28(6): 318-329, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28854814

RESUMO

Hereditary pulmonary alveolar proteinosis (hPAP) is a rare disorder of pulmonary surfactant accumulation and hypoxemic respiratory failure caused by mutations in CSF2RA (encoding the granulocyte/macrophage colony-stimulating factor [GM-CSF] receptor α-chain [CD116]), which results in reduced GM-CSF-dependent pulmonary surfactant clearance by alveolar macrophages. While no pharmacologic therapy currently exists for hPAP, it was recently demonstrated that endotracheal instillation of wild-type or gene-corrected mononuclear phagocytes (pulmonary macrophage transplantation [PMT]) results in a significant and durable therapeutic efficacy in a validated murine model of hPAP. To facilitate the translation of PMT therapy to human hPAP patients, a self-inactivating (SIN) lentiviral vector was generated expressing a codon-optimized human CSF2RA-cDNA driven from an EF1α short promoter (Lv.EFS.CSF2RAcoop), and a series of nonclinical efficacy and safety studies were performed in cultured macrophage cell lines and primary human cells. Studies in cytokine-dependent Ba/F3 cells demonstrated efficient transduction, vector-derived CD116 expression proportional to vector copy number, and GM-CSF-dependent cell survival and proliferation. Using a novel cell line constructed to express a normal GM-CSF receptor ß subunit and a dysfunctional α subunit (due to a function-altering CSF2RAG196R mutation) that reflects the macrophage disease phenotype of hPAP patients, it was demonstrated that Lv.EFS.CSF2RAcoop transduction restored GM-CSF receptor function. Further, Lv.EFS.CSF2RAcoop transduction of healthy primary CD34+ cells did not adversely affect cell proliferation or affect the cell differentiation program. Results demonstrate Lv.EFS.CSF2RAcoop reconstituted GM-CSF receptor α expression, restoring GM-CSF signaling in hPAP macrophages, and had no adverse effects in the intended target cells, thus supporting testing of PMT therapy of hPAP in humans.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/genética , Lentivirus/genética , Proteinose Alveolar Pulmonar/congênito , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Transdução Genética/métodos , Animais , Células Cultivadas , Terapia Genética/efeitos adversos , Células HEK293 , Humanos , Macrófagos/metabolismo , Camundongos , Fator 1 de Elongação de Peptídeos/genética , Regiões Promotoras Genéticas , Proteinose Alveolar Pulmonar/terapia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA