Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1093302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875068

RESUMO

Compelling experimental evidence confirms that the robustness and longevity of mixed chimerism (MC) relies on the persistence and availability of donor-derived hematopoietic stem cell (HSC) niches in recipients. Based on our prior work in rodent vascularized composite allotransplantation (VCA) models, we hypothesize that the vascularized bone components in VCA bearing donor HSC niches, thus may provide a unique biologic opportunity to facilitate stable MC and transplant tolerance. In this study, by utilizing a series of rodent VCA models we demonstrated that donor HSC niches in the vascularized bone facilitate persistent multilineage hematopoietic chimerism in transplant recipients and promote donor-specific tolerance without harsh myeloablation. In addition, the transplanted donor HSC niches in VCA facilitated the donor HSC niches seeding to the recipient bone marrow compartment and contributed to the maintenance and homeostasis of stable MC. Moreover, this study provided evidences that chimeric thymus plays a role in MC-mediated transplant tolerance through a mechanism of thymic central deletion. Mechanistic insights from our study could lead to the use of vascularized donor bone with pre-engrafted HSC niches as a safe, complementary strategy to induce robust and stable MC-mediated tolerance in VCA or solid organ transplantation recipients.


Assuntos
Quimerismo , Transplante de Células-Tronco Hematopoéticas , Humanos , Doadores de Tecidos , Timo , Células-Tronco Hematopoéticas
2.
Front Immunol ; 13: 1049301, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405718

RESUMO

Adult bone marrow (BM) hematopoietic stem cells (HSCs) are maintained in a quiescent state and sustain the continuous production of all types of blood cells. HSCs reside in a specialized microenvironment the so-called HSC niche, which equally promotes HSC self-renewal and differentiation to ensure the integrity of the HSC pool throughout life and to replenish hematopoietic cells after acute injury, infection or anemia. The processes of HSC self-renewal and differentiation are tightly controlled and are in great part regulated through cellular interactions with classical (e.g. mesenchymal stromal cells) and non-classical niche cells (e.g. immune cells). In myeloid leukemia, some of these regulatory mechanisms that evolved to maintain HSCs, to protect them from exhaustion and immune destruction and to minimize the risk of malignant transformation are hijacked/disrupted by leukemia stem cells (LSCs), the malignant counterpart of HSCs, to promote disease progression as well as resistance to therapy and immune control. CD4+ regulatory T cells (Tregs) are substantially enriched in the BM compared to other secondary lymphoid organs and are crucially involved in the establishment of an immune privileged niche to maintain HSC quiescence and to protect HSC integrity. In leukemia, Tregs frequencies in the BM even increase. Studies in mice and humans identified the accumulation of Tregs as a major immune-regulatory mechanism. As cure of leukemia implies the elimination of LSCs, the understanding of these immune-regulatory processes may be of particular importance for the development of future treatments of leukemia as targeting major immune escape mechanisms which revolutionized the treatment of solid tumors such as the blockade of the inhibitory checkpoint receptor programmed cell death protein 1 (PD-1) seems less efficacious in the treatment of leukemia. This review will summarize recent findings on the mechanisms by which Tregs regulate stem cells and adaptive immune cells in the BM during homeostasis and in leukemia.


Assuntos
Leucemia Mieloide Aguda , Nicho de Células-Tronco , Humanos , Camundongos , Animais , Nicho de Células-Tronco/fisiologia , Linfócitos T Reguladores , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Diferenciação Celular/fisiologia , Microambiente Tumoral
3.
Front Cell Dev Biol ; 10: 857045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756991

RESUMO

Bone marrow microenvironment (BMM) has been proven to have benefits for both normal hematopoietic stem cell niche and pathological leukemic stem cell niche. In fact, the pathological leukemia microenvironment reprograms bone marrow niche cells, especially mesenchymal stem cells for leukemia progression, chemoresistance and relapse. The growth and differentiation of MSCs are modulated by leukemia stem cells. Moreover, chromatin abnormality of mesenchymal stem cells is sufficient for leukemia initiation. Here, we summarize the detailed relationship between MSC and leukemia. MSCs can actively and passively regulate the progression of myelogenous leukemia through cell-to-cell contact, cytokine-receptor interaction, and exosome communication. These behaviors benefit LSCs proliferation and survival and inhibit physiological hematopoiesis. Finally, we describe the recent advances in therapy targeting MSC hoping to provide new perspectives and therapeutic strategies for leukemia.

4.
Int J Biol Sci ; 18(5): 2091-2103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35342358

RESUMO

Osteoblastic lineage cells (OBCs) are bone-building cells and essential component of hematopoietic niche, but mechanisms whereby bone-building and hematopoiesis-supportive activities of OBCs could be regulated simultaneously remain largely unknown. Here we found that B cell-specific Moloney murine leukemia virus integration site 1 (Bmi1) was involved in such a co-regulatory mechanism. In this study, we first found that, accompanied with marked decline of osteogenic activity, the hematopoietic niche in Bmi1 knockout (KO) mice was severely impaired and manifested as CXCL12 expression falls and LSK homing failure; however, intratibial injection with CXCL12 effectively facilitated LSK accumulation in bone marrow of Bmi1 KO mice. To try to rescue these defects in Bmi1 KO mice, we generated Bmi1KO/Sirt1Tg (KO-TG) double mutant mice with Sirt1 specific overexpression in mesenchymal progenitor cells (MPCs) in Bmi1 KO mice, and our data showed that KO-TG mice had significantly increased bone-building activity, elevated Cxcl12 expression by MPCs, increased LSK homing and expanded LSK pool in bone marrow compared to Bmi1 KO mice. Of note, similar improvements in KO-TG mice were observed in Bmi1 KO mice fed with dietary resveratrol, an established Sirt1 activator, comparing with KO control mice. Therefore, pharmacologic activation of Bmi1/Sirt1 signaling pathway could simultaneously promote bone-building and hematopoiesis-supportive activities of OBCs.


Assuntos
Células-Tronco Mesenquimais , Sirtuína 1 , Animais , Quimiocina CXCL12 , Hematopoese/genética , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Knockout , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo
5.
Adv Drug Deliv Rev ; 181: 114069, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34838648

RESUMO

Hematopoietic stem cells (HSCs) are the life-long source of all types of blood cells. Their function is controlled by their direct microenvironment, the HSC niche in the bone marrow. Although the importance of the extracellular matrix (ECM) in the niche by orchestrating niche architecture and cellular function is widely acknowledged, it is still underexplored. In this review, we provide a comprehensive overview of the ECM in HSC niches. For this purpose, we first briefly outline HSC niche biology and then review the role of the different classes of ECM molecules in the niche one by one and how they are perceived by cells. Matrix remodeling and the emerging importance of biophysics in HSC niche function are discussed. Finally, the application of the current knowledge of ECM in the niche in form of artificial HSC niches for HSC expansion or targeted differentiation as well as drug testing is reviewed.


Assuntos
Células da Medula Óssea/metabolismo , Medula Óssea/metabolismo , Matriz Extracelular/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Animais , Colágeno/metabolismo , Glicoproteínas/metabolismo , Humanos , Ácido Hialurônico/metabolismo
6.
ACS Biomater Sci Eng ; 7(6): 2592-2604, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33939424

RESUMO

The three-dimensional (3D) marrow microenvironment plays an essential role in regulating human cord blood-derived CD34+ cells (hCB-CD34+) migration, proliferation, and differentiation. Extensive in vitro and in vivo studies have aimed to recapitulate the main components of the bone marrow (BM) niche. Nonetheless, the models are limited by a lack of heterogeneity and compound structure. Here, we fabricated coaxial extruded core-shell tubular scaffolds and extrusion-based bioprinted cell-laden mesh scaffolds to mimic the functional niche in vitro. A multicellular mesh scaffold and two different core-shell tubular scaffolds were developed with human bone marrow-derived mesenchymal stromal cells (BMSCs) in comparison with a conventional 2D coculture system. A clear cell-cell connection was established in all three bioprinted constructs. Cell distribution and morphology were observed in different systems with scanning electron microscopy (SEM). Collected hCB-CD34+ cells were characterized by various stem cell-specific and lineage-specific phenotypic parameters. The results showed that compared with hCB-CD34+ cells cocultured with BMSCs in Petri dishes, the self-renewal potential of hCB-CD34+ cells was stronger in the tubular scaffolds after 14 days. Besides, cells in these core-shell constructs tended to obtain stronger differentiation potential of lymphoid and megakaryocytes, while cells encapsulated in mesh scaffolds obtained stronger differentiation tendency into erythroid cells. Consequently, 3D bioprinting technology could partially simulate the niche of human hematopoietic stem cells. The three models have their potential in stemness maintenance and multilineage differentiation. This study can provide initial effective guidance in the directed differentiation research and related screening of drug models for hematological diseases.


Assuntos
Bioimpressão , Células-Tronco Mesenquimais , Diferenciação Celular , Sangue Fetal , Células-Tronco Hematopoéticas , Humanos
7.
Front Cell Dev Biol ; 9: 621214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33553181

RESUMO

Self-renewal and multidirectional differentiation of hematopoietic stem cells (HSCs) are strictly regulated by numerous cellular components and cytokines in the bone marrow (BM) microenvironment. Several cell types that regulate HSC niche have been identified, including both non-hematopoietic cells and HSC-derived cells. Specific changes in the niche composition can result in hematological malignancies. Furthermore, processes such as homing, proliferation, and differentiation of HSCs are strongly controlled by the BM niche and have been reported to be related to the success of hematopoietic stem cell transplantation (HSCT). Single-cell sequencing and in vivo imaging are powerful techniques to study BM microenvironment in hematological malignancies and after HSCT. In this review, we discuss how different components of the BM niche, particularly non-hematopoietic and hematopoietic cells, regulate normal hematopoiesis, and changes in the BM niche in leukemia and after HSCT. We believe that this comprehensive review will provide clues for further research on improving HSCT efficiency and exploring potential therapeutic targets for leukemia.

8.
Transplant Cell Ther ; 27(1): 92.e1-92.e5, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32961376

RESUMO

Although mesenchymal stromal cell (MSC) transfer has long drawn attention owing to its immunosuppressive potential to treat immune-mediated diseases, the role of endogenous MSCs in immune regulation in vivo has remained largely unclear. MSCs constitute the hematopoietic stem cell (HSC) niche, perhaps contributing to immune protection of HSCs, termed immune privilege. Our recent study demonstrates that immune privilege of HSCs is endowed by niche-residential regulatory T cells (Tregs), which promote allogeneic HSC engraftment. This immune privilege depends on cell surface ectoenzymes CD39 and CD73 on niche Tregs, which generate extracellular adenosine, a nucleotide known to suppress immunity and potentiate Tregs. Another niche constituent, leptin receptor-expressing (lepr+) perivascular MSCs, also highly express CD39 and CD73, prompting us to study their roles in immune privilege. This work demonstrates an unexpected negative regulation of immune privilege by MSC-derived adenosine. CD39 deletion in lepr+ cells increased and potentiated effector memory-like niche Tregs, promoting allogeneic HSC engraftment. CD39 deletion in Tregs also activated niche Tregs, while abrogating engraftment. These observations demonstrate paradoxical effects of MSC-derived adenosine to activate immunity, revealing a previously undescribed dual roles of adenosine. Adenosine from both Tregs and MSCs inhibits niche Tregs, whereas adenosine from Tregs, but not that from MSCs, acts as an effector molecule of immune privilege.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Adenosina , Medula Óssea , Privilégio Imunológico
9.
Cell Metab ; 32(5): 829-843.e9, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32966766

RESUMO

Like normal hematopoietic stem cells, leukemic stem cells depend on their bone marrow (BM) microenvironment for survival, but the underlying mechanisms remain largely unknown. We have studied the contribution of nestin+ BM mesenchymal stem cells (BMSCs) to MLL-AF9-driven acute myeloid leukemia (AML) development and chemoresistance in vivo. Unlike bulk stroma, nestin+ BMSC numbers are not reduced in AML, but their function changes to support AML cells, at the expense of non-mutated hematopoietic stem cells (HSCs). Nestin+ cell depletion delays leukemogenesis in primary AML mice and selectively decreases AML, but not normal, cells in chimeric mice. Nestin+ BMSCs support survival and chemotherapy relapse of AML through increased oxidative phosphorylation, tricarboxylic acid (TCA) cycle activity, and glutathione (GSH)-mediated antioxidant defense. Therefore, AML cells co-opt energy sources and antioxidant defense mechanisms from BMSCs to survive chemotherapy.


Assuntos
Antioxidantes/metabolismo , Medula Óssea/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Antineoplásicos/uso terapêutico , Células Cultivadas , Metabolismo Energético , Feminino , Humanos , Leucemia Mieloide Aguda/terapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
10.
Front Cell Dev Biol ; 8: 607, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754595

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous, complex, and deadly disease, whose treatment has hardly evolved for decades and grounds on the use of intensive chemotherapy regimens. Chemotherapy helps reduce AML bulk, but promotes relapse in the long-run by selection of chemoresistant leukemia stem cells (LSC). These may diversify and result in progression to more aggressive forms of AML. In vivo models suggest that the bone marrow stem cell niche helps LSC stay dormant and protected from chemotherapy. Here, we summarize relevant changes in stem cell niche homing and adhesion of AML LSC vs. healthy hematopoietic stem cells, and provide an overview of clinical trials aiming at targeting these processes for AML treatment and future directions within this field. Promising results with various non-mutation-targeted novel therapies directed to LSC eradication via interference with their anchoring to the stem cell niche have encouraged on-going or future advanced phase III clinical trials. In the coming years, we may see a shift in the focus of AML treatment to LSC-directed therapies if the prospect of improved cure rates holds true. In the future, AML treatment should lean toward personalized therapies using combinations of these compounds plus mutation-targeted agents and/or targeted delivery of chemotherapy, aiming at LSC eradication with reduced side effects.

11.
Front Cell Dev Biol ; 8: 612, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793589

RESUMO

Hematopoietic stem cells (HSCs) generated during embryonic development are able to maintain hematopoiesis for the lifetime, producing all mature blood lineages. HSC transplantation is a widely used cell therapy intervention in the treatment of hematologic, autoimmune and genetic disorders. Its use, however, is hampered by the inability to expand HSCs ex vivo, urging for a better understanding of the mechanisms regulating their physiological expansion. In the adult, HSCs reside in the bone marrow, in specific microenvironments that support stem cell maintenance and differentiation. Conversely, while developing, HSCs are transiently present in the fetal liver, the major hematopoietic site in the embryo, where they expand. Deeper insights on the dynamics of fetal liver composition along development, and on how these different cell types impact hematopoiesis, are needed. Both, the hematopoietic and hepatic fetal systems have been extensively studied, albeit independently. This review aims to explore their concurrent establishment and evaluate to what degree they may cross modulate their respective development. As insights on the molecular networks that govern physiological HSC expansion accumulate, it is foreseeable that strategies to enhance HSC proliferation will be improved.

12.
Dev Cell ; 53(5): 503-513.e5, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32413329

RESUMO

Bone marrow (BM) mesenchymal stem and progenitor cells (MSPCs) are a critical constituent of the hematopoietic stem cell (HSC) niche. Previous studies have suggested that the zinc-finger epithelial-mesenchymal transition transcription factor Snai2 (also known as Slug) regulated HSCs autonomously. Here, we show that Snai2 expression in the BM is restricted to the BM stromal compartment where it regulates the HSC niche. Germline or MSPC-selective Snai2 deletion reduces the functional MSPC pool and their mesenchymal lineage output and impairs HSC niche function during homeostasis and after stress. RNA sequencing analysis revealed that Spp1 (osteopontin) expression is markedly upregulated in Snai2-deficient MSPCs. Genetic deletion of Spp1 in Snai2-deficient mice rescues MSPCs' functions. Thus, SNAI2 is a critical regulator of the transcriptional network maintaining MSPCs by the suppression of osteopontin expression.


Assuntos
Células da Medula Óssea/metabolismo , Osteopontina/genética , Fatores de Transcrição da Família Snail/metabolismo , Nicho de Células-Tronco , Animais , Células da Medula Óssea/citologia , Células Cultivadas , Deleção de Genes , Camundongos , Camundongos Endogâmicos C57BL , Osteopontina/metabolismo , Fatores de Transcrição da Família Snail/genética
13.
Pathol Int ; 70(2): 63-71, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31709722

RESUMO

Pathological phenotypes of myeloid neoplasms are closely related to genetic/chromosomal abnormalities of neoplastic cells whereas the bone marrow microenvironment, including stromal elements and hematopoietic stem cell niche cells, have a great influence on the differentiation/proliferation of both hematopoietic and neoplastic cells. The pathology of myeloid neoplasms might be generated through the interaction of hematopoietic (stem) cells and stromal cells. The present study aims to provide the morphological/functional aspects of the bone marrow environment in myeloid neoplasms. Among the myeloid neoplasms, myelodysplastic syndromes (MDS) exhibit significant and complex interactions between neoplastic cells and stromal cells. Hematopoietic cells in MDS are greatly influenced by macrophages/niche cells via several signaling pathways. As such, the pathological significance of cell proliferation, cell apoptosis, and anti-apoptosis signals in the bone marrow of myeloid neoplasms, especially MDS bone marrow, will be discussed.


Assuntos
Síndromes Mielodisplásicas/patologia , Transtornos Mieloproliferativos/patologia , Células-Tronco Neoplásicas/patologia , Nicho de Células-Tronco , Animais , Medula Óssea/patologia , Células-Tronco Hematopoéticas/patologia , Humanos
14.
Hum Exp Toxicol ; 39(5): 577-595, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31884827

RESUMO

Benzene is a known hematotoxic and leukemogenic agent with hematopoietic stem cells (HSCs) niche being the potential target. Occupational and environmental exposure to benzene has been linked to the incidences of hematological disorders and malignancies. Previous studies have shown that benzene may act via multiple modes of action targeting HSCs niche, which include induction of chromosomal and micro RNA aberrations, leading to genetic and epigenetic modification of stem cells and probable carcinogenesis. However, understanding the mechanism linking benzene to the HSCs niche dysregulation is challenging due to complexity of its microenvironment. The niche is known to comprise of cell populations accounted for HSCs and their committed progenitors of lymphoid, erythroid, and myeloid lineages. Thus, it is fundamental to address novel approaches via lineage-directed strategy to elucidate precise mechanism involved in benzene-induced toxicity targeting HSCs and progenitors of different lineages. Here, we review the key genetic and epigenetic factors that mediate hematotoxicological effects by benzene and its metabolites in targeting HSCs niche. Overall, the use of combined genetic, epigenetic, and lineage-directed strategies targeting the HSCs niche is fundamental to uncover the key mechanisms in benzene-induced hematological disorders and malignancies.


Assuntos
Benzeno/toxicidade , Carcinógenos/toxicidade , Células-Tronco Hematopoéticas/efeitos dos fármacos , Neoplasias/induzido quimicamente , Animais , Benzeno/farmacocinética , Carcinógenos/farmacocinética , Epigênese Genética , Hematopoese/efeitos dos fármacos , Humanos , Neoplasias/genética , Nicho de Células-Tronco/efeitos dos fármacos
15.
J Clin Med ; 8(5)2019 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-31109063

RESUMO

Bone marrow adipocytes (BMA) exert pleiotropic roles beyond mere lipid storage and filling of bone marrow (BM) empty spaces, and we are only now beginning to understand their regulatory traits and versatility. BMA arise from the differentiation of BM mesenchymal stromal cells, but they seem to be a heterogeneous population with distinct metabolisms, lipid compositions, secretory properties and functional responses, depending on their location in the BM. BMA also show remarkable differences among species and between genders, they progressively replace the hematopoietic BM throughout aging, and play roles in a range of pathological conditions such as obesity, diabetes and anorexia. They are a crucial component of the BM microenvironment that regulates hematopoiesis, through mechanisms largely unknown. Previously considered as negative regulators of hematopoietic stem cell function, recent data demonstrate their positive support for hematopoietic stem cells depending on the experimental approach. Here, we further discuss current knowledge on the role of BMA in hematological malignancies. Early hints suggest that BMA may provide a suitable metabolic niche for the malignant growth of leukemic stem cells, and protect them from chemotherapy. Future in vivo functional work and improved isolation methods will enable determining the true essence of this elusive BM hematopoietic stem cell niche component, and confirm their roles in a range of diseases. This promising field may open new pathways for efficient therapeutic strategies to restore hematopoiesis, targeting BMA.

16.
Methods Mol Biol ; 1842: 43-54, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30196400

RESUMO

Mesenchymal stromal cells are an important component of the adult hematopoietic stem cell niche. They are a diverse population of cells that include a hierarchy of primitive, intermediate, and mature osteoprogenitors that support HSCs and supply the bone with matrix producing osteoblast. To understand the different roles played by individual types of progenitors, it is necessary to separate individual populations and analyze them in a controlled environment. Here we describe two transplantation models, an ectopic bone forming assay and an intravenous injection assay, in which niche components can be isolated and manipulated to dissect their individual properties.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Nicho de Células-Tronco , Animais , Separação Celular , Ensaio de Unidades Formadoras de Colônias , Imunofluorescência , Regulação da Expressão Gênica , Imunofenotipagem , Camundongos , Fenótipo , Interferência de RNA , RNA Interferente Pequeno/genética , Transplante de Células-Tronco
17.
Cell Mol Life Sci ; 75(12): 2177-2195, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29541793

RESUMO

The neuroepithelial stem cell protein, or Nestin, is a cytoskeletal intermediate filament initially characterized in neural stem cells. However, current extensive evidence obtained in in vivo models and humans shows presence of Nestin+ cells with progenitor and/or regulatory functions in a number of additional tissues, remarkably bone marrow. This review presents the current knowledge on the role of Nestin in essential stem cell functions, including self-renewal/proliferation, differentiation and migration, in the context of the cytoskeleton. We further discuss the available in vivo models for the study of Nestin+ cells and their progeny, their function and elusive nature in nervous system and bone marrow, and their potential mechanistic role and promising therapeutic value in preclinical models of disease. Future improved in vivo models and detection methods will allow to determine the true essence of Nestin+ cells and confirm their potential application as therapeutic target in a range of diseases.


Assuntos
Nestina/metabolismo , Células-Tronco/citologia , Animais , Diferenciação Celular , Movimento Celular , Proliferação de Células , Expressão Gênica , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Neoplasias Hematológicas/terapia , Humanos , Modelos Moleculares , Nestina/análise , Nestina/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Conformação Proteica , Células-Tronco/metabolismo , Células-Tronco/patologia
18.
Dev Cell ; 44(5): 634-641.e4, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29456137

RESUMO

The spatial localization of hematopoietic stem cells (HSCs) in the bone marrow (BM) remains controversial, with some studies suggesting that they are maintained in homogeneously distributed niches while others have suggested the contributions of distinct niche structures. Subsets of quiescent HSCs have been reported to associate with megakaryocytes (MK) or arterioles in the BM. However, these HSC subsets have not been prospectively defined. Here, we show that platelet and myeloid-biased HSCs, marked by von Willebrand factor (vWF) expression, are highly enriched in MK niches. Depletion of MK selectively expands vWF+ HSCs, whereas the depletion of NG2+ arteriolar niche cells selectively depletes vWF- lymphoid-biased HSCs. In addition, MK depletion compromises vWF+ HSC function by reducing their long-term self-renewal capacity and eliminating their lineage bias after transplantation. These studies demonstrate the existence of two spatially and functionally separate BM niches for HSC subsets with distinct developmental potential.


Assuntos
Plaquetas/citologia , Medula Óssea/crescimento & desenvolvimento , Linhagem da Célula , Células-Tronco Hematopoéticas/citologia , Megacariócitos/citologia , Nicho de Células-Tronco , Animais , Plaquetas/metabolismo , Medula Óssea/metabolismo , Divisão Celular , Células Cultivadas , Feminino , Células-Tronco Hematopoéticas/metabolismo , Masculino , Megacariócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
19.
Stem Cell Reports ; 10(2): 436-446, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29307583

RESUMO

Various mesenchymal cell types have been identified as critical components of the hematopoietic stem/progenitor cell (HSPC) niche. Although several groups have described the generation of mesenchyme from human pluripotent stem cells (hPSCs), the capacity of such cells to support hematopoiesis has not been reported. Here, we demonstrate that distinct mesenchymal subpopulations co-emerge from mesoderm during hPSC differentiation. Despite co-expression of common mesenchymal markers (CD73, CD105, CD90, and PDGFRß), a subset of cells defined as CD146hiCD73hi expressed genes associated with the HSPC niche and supported the maintenance of functional HSPCs ex vivo, while CD146loCD73lo cells supported differentiation. Stromal support of HSPCs was contact dependent and mediated in part through high JAG1 expression and low WNT signaling. Molecular profiling revealed significant transcriptional similarity between hPSC-derived CD146++ and primary human CD146++ perivascular cells. The derivation of functionally diverse types of mesenchyme from hPSCs opens potential avenues to model the HSPC niche and develop PSC-based therapies.


Assuntos
Diferenciação Celular/genética , Células-Tronco Mesenquimais/citologia , Mesoderma/citologia , Células-Tronco Pluripotentes/citologia , Antígeno CD146/genética , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Hematopoese/genética , Humanos , Células-Tronco Mesenquimais/metabolismo , Mesoderma/crescimento & desenvolvimento , Mesoderma/metabolismo , Células-Tronco Pluripotentes/metabolismo , Nicho de Células-Tronco/genética , Via de Sinalização Wnt/genética
20.
Biochim Biophys Acta Rev Cancer ; 1868(1): 183-198, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28363872

RESUMO

Acute myeloid leukemia and acute lymphoblastic leukemia cells hijack hematopoietic stem cell (HSC) niches in the bone marrow and become leukemic stem cells (LSCs) at the expense of normal HSCs. LSCs are quiescent and resistant to chemotherapy and can cause relapse of the disease. HSCs in niches are needed to generate blood cell precursors that are committed to unilineage differentiation and eventually production of mature blood cells, including red blood cells, megakaryocytes, myeloid cells and lymphocytes. Thus far, three types of HSC niches are recognized: endosteal, reticular and perivascular niches. However, we argue here that there is only one type of HSC niche, which consists of a periarteriolar compartment and a perisinusoidal compartment. In the periarteriolar compartment, hypoxia and low levels of reactive oxygen species preserve the HSC pool. In the perisinusoidal compartment, hypoxia in combination with higher levels of reactive oxygen species enables proliferation of progenitor cells and their mobilization into the circulation. Because HSC niches offer protection to LSCs against chemotherapy, we review novel therapeutic strategies to inhibit homing of LSCs in niches for the prevention of dedifferentiation of leukemic cells into LSCs and to stimulate migration of leukemic cells out of niches. These strategies enhance differentiation and proliferation and thus sensitize leukemic cells to chemotherapy. Finally, we list clinical trials of therapies that tackle LSCs in HSC niches to circumvent their protection against chemotherapy.


Assuntos
Leucemia Mieloide Aguda/terapia , Células-Tronco Neoplásicas/fisiologia , Nicho de Células-Tronco/fisiologia , Animais , Medula Óssea/fisiologia , Diferenciação Celular/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA