Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Molecules ; 29(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38202795

RESUMO

Endemic in 21 countries, Chagas disease, also known as American Trypanosomiasis, is a neglected tropical disease (NTD) caused by the protozoan parasite Trypanosoma cruzi. The available drugs for the treatment of this disease, benznidazole and nifurtimox, are outdated and display severe side effects. Thus, the discovery of new drugs is crucial. Based on our continuous studies aiming towards the discovery of natural products with anti-T. cruzi potential, the MeOH extract from aerial parts of Baccharis sphenophylla Dusén ex. Malme (Asteraceae) displayed activity against this parasite and was subjected to high-performance countercurrent chromatography (HPCCC), to obtain one unreported syn-labdane diterpene - sphenophyllol (1) - as well as the known compounds gaudichaudol C (2), ent-kaurenoic acid (3), hispidulin (4), eupafolin (5), and one mixture of di-O-caffeoylquinic acids (6-8). Compounds 1-8 were characterized by analysis of nuclear magnetic resonance (NMR) and mass spectrometry (MS) data. When tested against trypomastigote forms, isolated labdane diterpenes 1 and 2 displayed potent activity, with EC50 values of 20.1 µM and 2.9 µM, respectively. The mixture of chlorogenic acids 6-8, as well as the isolated flavones 4 and 5, showed significant activity against the clinically relevant amastigotes, with EC50 values of 24.9, 12.8, and 2.7 µM, respectively. Nonetheless, tested compounds 1-8 displayed no cytotoxicity against mammalian cells (CC50 > 200 µM). These results demonstrate the application of HPCCC as an important tool to isolate bioactive compounds from natural sources, including the antitrypanosomal extract from B. sphenophylla, allowing for the development of novel strategic molecular prototypes against tropical neglected diseases.


Assuntos
Baccharis , Doença de Chagas , Trypanosoma cruzi , Animais , Distribuição Contracorrente , Extratos Vegetais/farmacologia , Mamíferos
2.
Molecules, v. 29, 212, dez. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5231

RESUMO

Endemic in 21 countries, Chagas disease, also known as American Trypanosomiasis, is a neglected tropical disease (NTD) caused by the protozoan parasite Trypanosoma cruzi. The available drugs for the treatment of this disease, benznidazole and nifurtimox, are outdated and display severe side effects. Thus, the discovery of new drugs is crucial. Based on our continuous studies aiming towards the discovery of natural products with anti-T. cruzi potential, the MeOH extract from aerial parts of Baccharis sphenophylla Dusén ex. Malme (Asteraceae) displayed activity against this parasite and was subjected to high-performance countercurrent chromatography (HPCCC), to obtain one unreported syn-labdane diterpene — sphenophyllol (1) — as well as the known compounds gaudichaudol C (2), ent-kaurenoic acid (3), hispidulin (4), eupafolin (5), and one mixture of di-O caffeoylquinic acids (6–8). Compounds 1–8 were characterized by analysis of nuclear magnetic resonance (NMR) and mass spectrometry (MS) data. When tested against trypomastigote forms, isolated labdane diterpenes 1 and 2 displayed potent activity, with EC50 values of 20.1 µM and 2.9 µM, respectively. The mixture of chlorogenic acids 6–8, as well as the isolated flavones 4 and 5, showed significant activity against the clinically relevant amastigotes, with EC50 values of 24.9, 12.8, and 2.7 µM, respectively. Nonetheless, tested compounds 1–8 displayed no cytotoxicity against mammalian cells (CC50 > 200 µM). These results demonstrate the application of HPCCC as an important tool to isolate bioactive compounds from natural sources, including the antitrypanosomal extract from B. sphenophylla, allowing for the development of novel strategic molecular prototypes against tropical neglected diseases.

3.
Molecules ; 26(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920874

RESUMO

The detailed metabolite profiling of Laguncularia racemosa was accomplished by high-performance countercurrent chromatography (HPCCC) using the three-phase system n-hexane-tert-butyl methyl ether-acetonitrile-water 2:3:3:2 (v/v/v/v) in step-gradient elution mode. The gradient elution was adjusted to the chemical complexity of the L. racemosa ethyl acetate partition and strongly improved the polarity range of chromatography. The three-phase solvent system was chosen for the gradient to avoid equilibrium problems when changing mobile phase compositions encountered between the gradient steps. The tentative recognition of metabolites including the identification of novel ones was possible due to the off-line injection of fractions to electrospray ionization mass spectrometry (ESI-MS/MS) in the sequence of recovery. The off-line hyphenation profiling experiment of HPCCC and ESI-MS projected the preparative elution by selected single ion traces in the negative ionization mode. Co-elution effects were monitored and MS/MS fragmentation data of more than 100 substances were used for structural characterization and identification. The metabolite profile in the L. racemosa extract comprised flavonoids, hydrolysable tannins, condensed tannins and low molecular weight polyphenols.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Fracionamento Químico/métodos , Distribuição Contracorrente/métodos , Flavonoides/análise , Polifenóis/análise , Solventes/química
4.
Molecules ; 25(3)2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31991709

RESUMO

The infusion of the desertic plant Nolana ramosissima I.M. Johnst showed vascular smooth muscle relaxation in rat aorta and the presence of several phenolic compounds, which were detected by high resolution UHPLC-Orbitrap-HESI-MS. In addition, five flavonoids were rapidly isolated from a methanolic extract using high-performance counter-current chromatography (HPCCC). The N. ramosissima extract showed endothelium-independent relaxation effect in rat aorta. Sixty-one compounds were detected in the infusion, mainly glycosylated flavonoids, flavanones and several oxylipins, suggesting that a synergistic effect between the compounds in the extracts could be responsible for the relaxation activity. Vascular activity experiments were done in isolated organ bath. In rat aorta, a nitric oxide inhibitor did not prevent the relaxation effects of the extract; however, a selective guanylyl cyclase inhibitor partially blunted this effect. The compound 5,3'-dihydroxy-4'7-dimethoxyflavone presented higher relaxation effect than 100 µg/mL of N. ramosissima extract. The extract and the isolated metabolites from N. ramosissima can show relaxation effects on rat aorta by a mechanism that is independent of the endothelium.


Assuntos
Aorta/fisiopatologia , Endotélio Vascular/fisiopatologia , Flavonoides , Extratos Vegetais/química , Solanaceae/química , Vasodilatação/efeitos dos fármacos , Animais , Feminino , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Ratos , Ratos Sprague-Dawley
5.
Se Pu ; 38(12): 1363-1368, 2020 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-34213250

RESUMO

Brazilein is among the main chemical constituents of Caesalpinia sappan. It has diverse pharmacological activities. Modern pharmacological studies have shown that the compound has antitumor, anti-inflammatory, antibacterial, antioxidant, immunomodulatory, and other pharmacological activities. Brazilein is often used as a stain in various industries. The separation of brazilein by traditional column chromatography will not only result in contamination of the chromatographic column materials, but also lead to loss of the active ingredient. Countercurrent chromatography is an advanced liquid-liquid chromatographic separation technique. It has been widely used for natural product separation and isolation as it offers several advantages, such as low solvent consumption, a highly selective solvent system, and high recoveries. Typical countercurrent chromatography techniques include centrifugal partition chromatography (CPC), high-speed countercurrent chromatography (HSCCC), and high performance countercurrent chromatography (HPCCC). It is well known that choosing a suitable solvent system is vital in countercurrent separation. Therefore, two methods were introduced for choosing a suitable solvent system. One is the generally useful estimation of solvent systems (GUESS) method, which employs thin-layer chromatography (TLC) to identify a suitable solvent system with minimal labor for the rapid purification of target compounds, and another is the Shake-Flash method. The solvent system could be determined by observing the distribution of the sample in the upper and lower phases. Two kinds of solvent systems were screened using the TLC-GUESS and Shake-Flash methods, and tested through the analysis mode of the HPCCC instrument. The results showed that chloroform-methanol-water (4:3:2, v/v/v) was the optimal solvent system for HPCCC separation. A total of 15.2 mg of brazilein and 5.7 mg of caesappanin C were obtained from an ethyl acetate extract with high purities (95.6% and 89.0%, analyzed by HPLC) in one step using the preparation mode of HPCCC, the reversed-phase liquid chromatography mode with the apparatus rotated at 1600 r/min, a flow rate of 10 mL/min, separation temperature of 25℃, and detection wavelength of 285 nm. Their structures were determined by spectroscopic and spectrometric analyses. Brazilein stained the solid packing material in the column and was difficult to elute. The results showed that the use of HPCCC for the separation of brazilein can not only prevent the loss of target active ingredients in Caesalpinia sappan, but also shorten the separation and purification times and improve the operating efficiency. Therefore, HPCCC can be used for the separation and preparation of other pigment compounds in Caesalpinia sappan and other dye plants.


Assuntos
Benzopiranos , Caesalpinia , Indenos , Extratos Vegetais/química , Benzopiranos/isolamento & purificação , Caesalpinia/química , Cromatografia Líquida de Alta Pressão , Distribuição Contracorrente , Indenos/isolamento & purificação
6.
J Chromatogr A ; 1608: 460422, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31500882

RESUMO

Nectandra leucantha (Lauraceae) is a tree indigenous to the tropical Atlantic forests of Brazil, one of the most biodiverse flora hotspots worldwide. This plant species contains high concentrations of neolignan and dehydrodieugenol derivatives that express significant in-vitro activities against various parasite strains. These activities are however responsible for severe tropical human infections, such as Leishmaniasis (Leishmania spp.) and Chagas disease (Trypanosoma cruzi), which have been classified by the World Health Organization (WHO) as Neglected Tropical Diseases (NTDs). In order to optimize the isolation process for these target metabolites, n-hexane extract of the leaves was separated by means of semi-preparative high performance countercurrent chromatography (HPCCC) and scale-up spiral-coil countercurrent chromatography (sp-CCC) systems. Several biphasic solvent mixtures were evaluated for their partitioning effects on neolignans, resulting in the selection of an optimized system n-hexane - ethylacetate - methanol - water (7:3:7:3, v/v/v/v). The chromatographic experiments on the HPCCC and sp-CCC were run in the head-to-tail mode with 500 mg and 16 g injections, respectively. For specific and multiple metabolite detection, the recovered CCC-fractions were off-line injected, in the sequence of recovery, to an electrospray mass-spectrometry (ESI-MS/MS) device. A projection of the single ion traces of the target compounds, in the positive ionization mode at a scan range of m/z 100-1500, located chromatographic areas where the co-elution effects occurred and pure target metabolites were present. Five major target neolignans were specifically detected, which enabled the accurate pooling of CCC-fractions for an optimum recovery of the metabolites. The direct comparison of the performance characteristics of the two CCC-devices, with very different mechanical designs was achieved by the conversion of the time axis into a partition ratio (KD) separation scale. As a result, the compound specific KD-elution values of the target neolignan were determined in high precision, while the comparison of the calculated separation factor (α) and resolution factor (RS) values revealed a superior separation performance for the HPCCC system. Also, the reproducibility of detected metabolites in the two CCC experiments was confirmed by small variations (ΔKD ±0.1). Neolignan target compounds with anti-parasite activities were successfully isolated in the 100 mg to 4 g range in a single lab-scale countercurrent chromatographic process step.


Assuntos
Distribuição Contracorrente/métodos , Lauraceae/química , Lignanas/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Espectrometria de Massas em Tandem/métodos , Brasil , Cromatografia Líquida de Alta Pressão/métodos , Eugenol/análogos & derivados , Eugenol/análise , Eugenol/isolamento & purificação , Lignanas/análise , Extratos Vegetais/análise , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA