Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Int J Parasitol Parasites Wildl ; 25: 100979, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39297147

RESUMO

The phenomenon of cuckoos' brood parasitism is well known and can be investigated using applied mathematical techniques. Among adaptive features of this phenomenon are certain egg parameters that ensure their shortened incubation period (I) and thus the successful survival of their offspring. In particular, the volume of a cuckoo egg is not less than, or exceeds, that of the host species, which should, in theory, increase I. Also, cuckoo eggs have thicker shell than that of nest hosts. Here, we analyzed the available geometric dimensions of eggs in 447 species and found an inverse correlation (-0.585, p < 0.05) between I and the shell thickness-to-egg surface area ratio (T/S). A mathematical relationship was derived to calculate I depending on T/S. This premise was confirmed by comparative calculations using egg images of two parasitic species, common (Cuculus canorus) and plaintive cuckoo (Cacomantis merulinus) and their hosts: great reed warbler (Acrocephalus arundinaceus), European robin (Erithacus rubecula), rufescent prinia (Prinia rufescens), and common tailorbird (Orthotomus sutorius). An average calculated I value for cuckoo eggs was one day less than that for host eggs. Our findings unravel additional details of how cuckoos adapt to brood parasitism and specific host-parasite relationships.

2.
Adv Exp Med Biol ; 1454: 507-539, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008274

RESUMO

Trematode infections stand out as one of the frequently overlooked tropical diseases, despite their wide global prevalence and remarkable capacity to parasitize diverse host species and tissues. Furthermore, these parasites hold significant socio-economic, medical, veterinary and agricultural implications. Over the past decades, substantial strides have been taken to bridge the information gap concerning various "omic" tools, such as proteomics and genomics, in this field. In this edition of the book, we highlight recent progress in genomics and proteomics concerning trematodes with a particular focus on the advances made in the past 5 years. Additionally, we present insights into cutting-edge technologies employed in studying trematode biology and shed light on the available resources for exploring the molecular facets of this particular group of parasitic helminths.


Assuntos
Genômica , Proteômica , Trematódeos , Infecções por Trematódeos , Animais , Humanos , Genoma Helmíntico , Genômica/métodos , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita/genética , Proteômica/métodos , Trematódeos/genética , Infecções por Trematódeos/parasitologia
3.
Adv Exp Med Biol ; 1454: 285-322, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008269

RESUMO

Intestinal trematodes are among the most common types of parasitic worms. About 76 species belonging to 14 families have been recorded infecting humans. Infection commonly occurs when humans eat raw or undercooked foods that contain the infective metacercariae. These parasites are diverse in regard to their morphology, geographical distribution and life cycle, which make it difficult to study the parasitic diseases that they cause. Many of these intestinal trematodes have been considered as endemic parasites in the past. However, the geographical limits and the population at risk are currently expanding and changing in relation to factors such as growing international markets, improved transportation systems, new eating habits in developed countries and demographic changes. These factors make it necessary to better understand intestinal trematode infections. This chapter describes the main features of human intestinal trematodes in relation to their biology, epidemiology, host-parasite relationships, pathogenicity, clinical aspects, diagnosis, treatment and control.


Assuntos
Enteropatias Parasitárias , Trematódeos , Infecções por Trematódeos , Animais , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/parasitologia , Humanos , Enteropatias Parasitárias/parasitologia , Enteropatias Parasitárias/epidemiologia , Trematódeos/patogenicidade , Trematódeos/fisiologia , Interações Hospedeiro-Parasita , Equinostomíase/parasitologia , Equinostomíase/epidemiologia , Echinostoma/fisiologia , Echinostoma/patogenicidade
4.
Parasitol Res ; 123(7): 269, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995426

RESUMO

Nycteribiidae encompasses a specialized group of wingless blood-sucking flies that parasitize bats worldwide. Such relationships are frequently species- or genus-specific, indicating unique eco-evolutionary processes. However, despite this significance, comprehensive studies on the relationships of these flies with their hosts, particularly in the New World, have been scarce. Here, we provide a detailed description of the parasitological patterns of nycteribiid flies infesting a population of Myotis lavali bats in the Atlantic Forest of northeastern Brazil, considering the potential influence of biotic and abiotic factors on the establishment of nycteribiids on bat hosts. From July 2014 to June 2015, we captured 165 M. lavali bats and collected 390 Basilia travassosi flies. Notably, B. travassosi displayed a high prevalence and was the exclusive fly species parasitizing M. lavali in the surveyed area. Moreover, there was a significant predominance of female flies, indicating a female-biased pattern. The distribution pattern of the flies was aggregated; most hosts exhibited minimal or no parasitism, while a minority displayed heavy infestation. Sexually active male bats exhibited greater susceptibility to parasitism compared to their inactive counterparts, possibly due to behavioral changes during the peak reproductive period. We observed a greater prevalence and abundance of flies during the rainy season, coinciding with the peak reproductive phase of the host species. No obvious correlation was observed between the parasite load and bat body mass. Our findings shed light on the intricate dynamics of nycteribiid-bat interactions and emphasize the importance of considering various factors when exploring bat-parasite associations.


Assuntos
Quirópteros , Dípteros , Interações Hospedeiro-Parasita , Animais , Quirópteros/parasitologia , Dípteros/fisiologia , Brasil , Masculino , Feminino , Prevalência , Estações do Ano
5.
Int J Parasitol ; 54(2): 65-88, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37838302

RESUMO

Coral-associated fauna predominantly consists of invertebrates and constitutes an important component of coral reef biodiversity. The symbionts depend on their hosts for food, shelter and substrate. They may act as parasites by feeding on their hosts, by overgowing their polyps, or by excavating their skeletons. Because some of these species partly reside inside their hosts, they may be cryptic and can easily be overlooked in biodiversity surveys. Since no quantitative overview is available about these inter-specific relationships, this present study adresses variation in host ranges and specificity across four large coral-associated taxa and between the Atlantic and Indo-Pacific oceans. These taxa are: coral barnacles (Pyrgomatidae, n = 95), coral gall crabs (Cryptochiridae, n = 54), tubeworms (Serpulidae, n = 31), and date mussels (Lithophaginae, n = 23). A total of 335 host coral species was recorded. An index of host specificity (STD) was calculated per symbiont species, based on distinctness in taxonomic host range levels (species, genus, family, etc.). Mean indices were statistically compared among the four associated taxa and the two oceanic coral reef regions. Barnacles were the most host-specific, tubeworms the least. Indo-Pacific associates were approximately 10 times richer in species and two times more host-specific than their Atlantic counterparts. Coral families varied in the number of associates, with some hosting none. This variation could be linked to host traits (coral growth form, maximum host size) and is most probably also a result of the evolutionary history of the interspecific relationships.


Assuntos
Antozoários , Recifes de Corais , Animais , Biodiversidade , Evolução Biológica , Especificidade de Hospedeiro
6.
Parasitology ; 150(14): 1266-1276, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072659

RESUMO

Avian haemosporidians are protozoan parasites transmitted by insect vectors that infect birds worldwide, negatively impacting avian fitness and survival. However, the majority of haemosporidian diversity remains undescribed. Quantifying this diversity is critical to determining parasite­host relationships and host-switching potentials of parasite lineages as climate change induces both host and vector range shifts. In this study, we conducted a community survey of avian haemosporidians found in breeding birds on the Davis Mountains sky islands in west Texas, USA. We determined parasite abundance and host associations and compared our results to data from nearby regions. A total of 265 birds were screened and infections were detected in 108 birds (40.8%). Most positive infections were identified as Haemoproteus (36.2%), followed by Plasmodium (6.8%) and Leucocytozoon (0.8%). A total of 71 haemosporidian lineages were detected of which 39 were previously undescribed. We found that regional similarity influenced shared lineages, as a higher number of lineages were shared with avian communities in the sky islands of New Mexico compared to south Texas, the Texas Gulf Coast and central Mexico. We found that migratory status of avian host did not influence parasite prevalence, but that host phylogeny is likely an important driver.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Animais , Texas/epidemiologia , Haemosporida/genética , Aves/parasitologia , Filogenia , Prevalência , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Infecções Protozoárias em Animais/epidemiologia
7.
Int J Mol Sci ; 24(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175870

RESUMO

Fasciola hepatica is the main causative agent of fasciolosis, a zoonotic parasitic disease of growing public health concern. F. hepatica metacercariae are ingested by the host and excyst in the intestine, thereby releasing the newly excysted juveniles (FhNEJ), which traverse the gut wall and migrate towards the biliary ducts. Since blocking F. hepatica development is challenging after crossing of the intestinal wall, targeting this first step of migration might result in increased therapeutic success. The intestinal extracellular matrix (ECM) is constituted by a network of structural proteins, including laminin (LM) and fibronectin (FN), that provide mechanical support while acting as physical barrier against intestinal pathogens. Here, we employed ELISA and immunofluorescent assays to test for the presence of LM- and FN-binding proteins on a tegument-enriched antigenic fraction of FhNEJ, and further determined their identity by two-dimensional electrophoresis coupled to mass spectrometry. Additionally, we performed enzymatic assays that revealed for the first time the capability of the juvenile-specific cathepsin L3 to degrade LM, and that LM degradation by FhNEJ proteins is further potentiated in the presence of host plasminogen. Finally, a proteomic analysis showed that the interaction with LM triggers protein changes in FhNEJ that may be relevant for parasite growth and adaptation inside the mammalian host. Altogether, our study provides valuable insights into the molecular interplay between FhNEJ and the intestinal ECM, which may lead to the identification of targetable candidates for the development of more effective control strategies against fasciolosis.


Assuntos
Fasciola hepatica , Fasciolíase , Animais , Fasciola hepatica/metabolismo , Laminina/metabolismo , Proteômica , Intestinos , Espectrometria de Massas , Fasciolíase/parasitologia , Mamíferos
8.
Mol Biol Evol ; 40(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36881879

RESUMO

Increasing numbers of horizontal transfer (HT) of genes and transposable elements are reported in insects. Yet the mechanisms underlying these transfers remain unknown. Here we first quantify and characterize the patterns of chromosomal integration of the polydnavirus (PDV) encoded by the Campopleginae Hyposoter didymator parasitoid wasp (HdIV) in somatic cells of parasitized fall armyworm (Spodoptera frugiperda). PDVs are domesticated viruses injected by wasps together with their eggs into their hosts in order to facilitate the development of wasp larvae. We found that six HdIV DNA circles integrate into the genome of host somatic cells. Each host haploid genome suffers between 23 and 40 integration events (IEs) on average 72 h post-parasitism. Almost all IEs are mediated by DNA double-strand breaks occurring in the host integration motif (HIM) of HdIV circles. We show that despite their independent evolutionary origins, PDV from both Campopleginae and Braconidae wasps use remarkably similar mechanisms for chromosomal integration. Next, our similarity search performed on 775 genomes reveals that PDVs of both Campopleginae and Braconidae wasps have recurrently colonized the germline of dozens of lepidopteran species through the same mechanisms they use to integrate into somatic host chromosomes during parasitism. We found evidence of HIM-mediated HT of PDV DNA circles in no less than 124 species belonging to 15 lepidopteran families. Thus, this mechanism underlies a major route of HT of genetic material from wasps to lepidopterans with likely important consequences on lepidopterans.


Assuntos
Polydnaviridae , Vespas , Animais , Polydnaviridae/genética , Vespas/genética , Larva/genética , Cromossomos
9.
Microorganisms ; 11(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36677444

RESUMO

Metchnikovellids (Microsporidia: Metchnikovellida) are poorly studied hyperparasitic microsporidia that live in gregarines inhabiting the intestines of marine invertebrates, mostly polychaetes. Our recent studies showed that diversity of metchnikovellids might be significantly higher than previously thought, even within a single host. Four species of metchnikovellids were found in the gregarines inhabiting the gut of the polychaete Pygospio elegans from littoral populations of the White and Barents Seas: the eugregarine Polyrhabdina pygospionis is the host for Metchnikovella incurvata and M. spiralis, while the archigregarine Selenidium pygospionis is the host for M. dogieli and M. dobrovolskiji. The most common species in the White Sea is M. incurvata, while M. dobrovolskiji prevails in the Barents Sea. Gregarines within a single worm could be infected with different metchnikovellid species. However, co-infection of one and the same gregarine with several species of metchnikovellids has never been observed. The difference in prevalence and intensity of metchnikovellid invasion apparently depends on the features of the life cycle and on the development strategies of individual species.

10.
Parasitology ; 149(14): 1811-1814, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36226653

RESUMO

Fish (Elasmobranchia and Actinopterygii) inhabit the majority of aquatic habitats globally. They are crucial for human nutrition but they may be negatively affected by parasitic protists and metazoan parasites. Fish parasites are also an extraordinary group of animals because of their ecological and evolutionary importance and unique adaptations to parasitism. They also play a key role in ecosystem functioning. In the present special issue, 13 review and research articles on major groups of fish parasites are provided to document the current advancement in our understanding of different aspects of their biology, ecology and associations with their fish hosts. The existing gaps in our knowledge of these peculiar animals are mapped and future trends in their research outlined.


Assuntos
Doenças dos Peixes , Parasitos , Animais , Humanos , Ecossistema , Interações Hospedeiro-Parasita , Peixes/parasitologia , Evolução Biológica , Doenças dos Peixes/parasitologia
11.
Front Vet Sci ; 9: 928756, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090176

RESUMO

Hard ticks (Acari: Ixodidae) are considered the most important transmitters of pathogens in the temperate zone that covers most of Europe. In the era of climate change tick-borne diseases are predicted to undergo geographical range expansion toward the north through regions that are connected to southern areas of the continent by bird migration. This alone would justify the importance of synthesized knowledge on the association of tick species with avian hosts, yet birds also represent the most taxonomically and ecologically diverse part of urban vertebrate fauna. Birds frequently occur in gardens and near animal keeping facilities, thus playing a significant role in the dispersal of ticks and tick-borne pathogens in synanthropic environments. The primary aim of this review is to provide a comprehensive reference source (baseline data) for future studies, particularly in the context of discovering new tick-host associations after comparison with already published data. The records on the ixodid tick infestations of birds were assessed from nearly 200 papers published since 1952. In this period, 37 hard tick species were reported from 16 orders of avian hosts in Europe. Here we compile a list of these tick species, followed by the English and Latin name of all reported infested bird species, as well as the tick developmental stage and country of origin whenever this information was available. These data allowed a first-hand analysis of general trends regarding how and at which developmental stage of ticks tend to infest avian hosts. Five tick species that were frequently reported from birds and show a broad geographical distribution in the Western Palearctic (Ixodes arboricola, I. frontalis, I. ricinus, Haemaphysalis concinna and Hyalomma marginatum) were also selected for statistical comparisons. Differences were demonstrated between these tick species regarding their association with bird species that typically feed from the ground and those that rarely occur at the soil level. The ecology of these five bird-infesting tick species is also illustrated here according to avian orders, taking into account the ecology (habitat type) and activity (circadian rhythm and feeding level) of most bird species that represent a certain order.

12.
Parasite ; 29: 35, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35833785

RESUMO

Helminth parasitoses are among the most prevalent health issues worldwide. Their control depends largely on unravelling host-parasite interactions, including parasitic exploitation of the host haemostatic system. The present study undertakes a scoping review of the research carried out in this field with the aim of unifying and updating concepts. Multiple keywords combined with Boolean operators were employed to design the literature search strategy. Two online databases were used to identify original peer-reviewed articles written in English and published before 1st January 2020 describing molecular interactions between helminth parasites and the host haemostatic system. Relevant data from the selected sources of evidence were extracted and analysed. Ninety-six publications reporting 259 interactions were selected. Fifty-three proteins belonging to 32 species of helminth parasites were involved in interactions with components of the host haemostatic system. Many of these proteins from both parasite and host were conserved among the different interactions identified. Most of these interactions were related to the inhibition of the coagulation system and the activation of fibrinolysis. This was associated mainly with a potential of parasites to reduce the formation of blood clots in the host and attributed to biological processes, such as parasite nutrition, survival, invasion, evasion and migration or the appearance of pathological mechanisms in the host. A wide range of helminth parasites have developed similar strategies to exploit the haemostatic system of their hosts, which could be regarded as an evolutionary conserved mechanism that could confer benefits to parasites in terms of survival and establishment in their vertebrate hosts.


Title: Interaction des helminthes parasites avec le système hémostatique de leurs hôtes vertébrés : un examen exploratoire. Abstract: Les parasitoses par les helminthes sont à l'origine de problèmes de santé parmi les plus répandus dans le monde. Leur contrôle dépend en grande partie du démêlage des interactions hôte-parasite, y compris l'exploitation par les parasites du système hémostatique de l'hôte. La présente étude entreprend un examen exploratoire des recherches menées dans ce domaine dans le but d'unifier et d'actualiser les concepts. Plusieurs mots-clés combinés à des opérateurs booléens ont été utilisés pour concevoir la stratégie de recherche documentaire. Deux bases de données en ligne ont été utilisées pour identifier des articles originaux évalués par des pairs rédigés en anglais et publiés avant le 1er janvier 2020, décrivant les interactions moléculaires entre les helminthes parasites et le système hémostatique de l'hôte. Les données pertinentes des sources sélectionnées ont été extraites et analysées. Quatre-vingt-seize publications rapportant 259 interactions ont été sélectionnées. Cinquante-trois protéines appartenant à 32 espèces d'helminthes parasites ont été impliquées dans des interactions avec des composants du système hémostatique de l'hôte. Beaucoup de ces protéines du parasite et de l'hôte ont été conservées parmi les différentes interactions identifiées. La plupart de ces interactions étaient liées à l'inhibition du système de coagulation et à l'activation de la fibrinolyse. Ceci était principalement associé à un potentiel des parasites à réduire la formation de caillots sanguins chez l'hôte et attribué à des processus biologiques, tels que la nutrition, la survie, l'invasion, l'évasion et la migration des parasites ou l'apparition de mécanismes pathologiques chez l'hôte. Un large éventail d'helminthes parasites ont développé des stratégies similaires pour exploiter le système hémostatique de leurs hôtes, ce qui pourrait être considéré comme un mécanisme évolutif conservé qui pourrait conférer des avantages aux parasites en termes de survie et d'établissement chez leurs hôtes vertébrés.


Assuntos
Helmintos , Hemostáticos , Parasitos , Animais , Interações Hospedeiro-Parasita , Vertebrados
13.
Parasitol Res ; 121(8): 2253-2262, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35624383

RESUMO

Hypostomus are abundant in Brazilian rivers and streams. In the Ivaí River, the loricariids represent 20.3% of the total species of the basin. Of these 13 species belong to Hypostomus. However, to date, there are no studies on these fish parasitic fauna. Thus, this research aimed to analyze the distribution of the parasitic infracommunity of six species of Hypostomus from the Ivaí River and investigate how the infracommunity is structured in these hosts. One hundred and twenty-eight fish were analyzed, belonging to six sympatric species of Hypostomus (Hypostomus hermanni, H. cochliodon, H. albopunctatus, H. regani, Hypostomus sp.1, and Hypostomus sp.2); of these, 92.9% were parasitized with at least one taxon, totaling 1478 specimens of parasites. The parasitic fauna was composed of the ectoparasites Trinigyrus anthus, T. carvalhoi, Unilatus unilatus (monogeneans), and Placobdella spp. (hirudinea), and the endoparasites Austrodiplostomum compactum (digenean) and Procamallanus annipetterae (nematode). The parasites exhibited similar patterns of infection in all hosts, including a low number of species, low diversity, and numerical dominance of a group of parasites. However, permutational multivariate analysis of variance (PERMANOVA) showed different parasite species compositions among the hosts. Hypostomus cochliodon and H. regani had the highest parasite richness, while Hypostomus sp.1 and Hypostomus sp.2 showed low abundance and intensity of parasitic infections. However, Hypostomus sp.1 showed the highest values of evenness, although the parasite composition in both species did not differ. The results presented herein contribute to increasing the knowledge about the parasitic fauna of Hypostomus spp. from the Ivaí River by presenting new hosts and locality records.


Assuntos
Peixes-Gato , Sanguessugas , Parasitos , Trematódeos , Animais , Brasil/epidemiologia , Peixes-Gato/parasitologia , Rios/parasitologia
14.
J Nematol ; 542022.
Artigo em Inglês | MEDLINE | ID: mdl-35386746

RESUMO

The many decades during which the cultivation of Cannabis sativa (hemp) was strongly restricted by law resulted in little research on potential pathogenic nematodes of this increasingly important crop. The primary literature was searched for hemp-nematode papers, resulting in citations from 1890 through 2021. Reports were grouped into two categories: (i) nematodes as phytoparasites of hemp, and (ii) hemp and hemp products and extracts for managing nematode pests. Those genera with the most citations as phytoparasites were Meloidogyne (root-knot nematodes, 20 papers), Pratylenchus (lesion nematodes, 7) and Ditylenchus (stem nematodes, 7). Several Meloidogyne spp. were shown to reproduce on hemp and some field damage has been reported. Experiments with Heterodera humuli (hop cyst nematode) were contradictory. Twenty-three papers have been published on the effects of hemp and hemp products on plant-parasitic, animal-parasitic and microbivorous species. The effects of hemp tissue soil incorporation were studied in five papers; laboratory or glasshouse experiments with aqueous or ethanol extracts of hemp leaves accounted for most of the remainder. Many of these treatments had promising results but no evidence was found of large-scale implementation. The primary literature was also searched for chemistry of C. sativa roots. The most abundant chemicals were classified as phytosterols and triterpenoids. Cannabinoid concentration was frequently reported due to the interest in medicinal C. sativa. Literature on the impact of root-associated chemicals on plant parasitic nematodes was also searched; in cases where there were no reports, impacts on free-living or animal parasitic nematodes were discussed.

15.
PeerJ ; 9: e11912, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616591

RESUMO

BACKGROUND: Gregarines are a major group of apicomplexan parasites of invertebrates. The gregarine classification is largely incomplete because it relies primarily on light microscopy, while electron microscopy and molecular data in the group are fragmentary and often do not overlap. A key characteristic in gregarine taxonomy is the structure and function of their attachment organelles (AOs). AOs have been commonly classified as "mucrons" or "epimerites" based on their association with other cellular traits such as septation. An alternative proposal focused on the AOs structure, functional role, and developmental fate has recently restricted the terms "mucron" to archigregarines and "epimerite" to eugregarines. METHODS: Light microscopy and scanning and transmission electron microscopy, molecular phylogenetic analyses of ribosomal RNA genes. RESULTS: We obtained the first data on fine morphology of aseptate eugregarines Polyrhabdina pygospionis and Polyrhabdina cf. spionis, the type species. We demonstrate that their AOs differ from the mucron in archigregarines and represent an epimerite structurally resembling that in other eugregarines examined using electron microscopy. We then used the concatenated ribosomal operon DNA sequences (SSU, 5.8S, and LSU rDNA) of P. pygospionis to explore the phylogeny of eugregarines with a resolution superior to SSU rDNA alone. The obtained phylogenies show that the Polyrhabdina clade represents an independent, deep-branching family in the Ancoroidea clade within eugregarines. Combined, these results lend strong support to the hypothesis that the epimerite is a synapomorphic innovation of eugregarines. Based on these findings, we resurrect the family Polyrhabdinidae Kamm, 1922 and erect and diagnose the family Trollidiidae fam. n. within the superfamily Ancoroidea Simdyanov et al., 2017. Additionally, we re-describe the characteristics of P. pygospionis, emend the diagnoses of the genus Polyrhabdina, the family Polyrhabdinidae, and the superfamily Ancoroidea.

16.
Parasite ; 28: 69, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34643505

RESUMO

Diversity of Creptotrema was investigated using morphological and molecular tools, including data for Creptotrema creptotrema (type-species). Three new species, parasites of Brazilian fishes, are described: Creptotrema conconae n. sp. (type-host, Imparfinis mirini Haseman), Creptotrema schubarti n. sp. (type-host, Characidium schubarti Travassos) and Creptotrema megacetabularis n. sp. (type-host, Auchenipterus osteomystax (Miranda Ribeiro)). The diagnosis of the genus was amended to include new features. The new species differ from each other mainly in terms of body shape, relative sucker size, and testes position. DNA sequences were obtained from Creptotrema spp. from Brazil, including 28S, ITS and COI. Genetic divergences among the new species and C. creptotrema varied from 2.1 to 5.2% (21-49 bp) for 28S, and 6.6 to 16.4% (21-45 bp) for COI. Phylogenetic analysis (28S) placed the newly generated DNA sequences of Creptotrema in a clade (Creptotrema clade sensu stricto) composed of C. creptotrema, the new species described herein, and all species previously described as Auriculostoma, revealing that Auriculostoma is best interpreted as a synonym of Creptotrema based on the principle of priority of zoological nomenclature. Creptotrema funduli, the single sequence of the genus previously available, was not grouped within the Creptotrema clade sensu stricto, suggesting the need for reevaluation of the taxonomic status of this species. Our results showed that Creptotrema represents a monophyletic genus of trematodes widely distributed across the Americas, which currently comprises 19 valid species of parasites of teleosts and anurans.


TITLE: Trois nouvelles espèces de Creptotrema (Trematoda, Allocreadiidae) avec diagnostic modifié du genre et une réattribution d'Auriculostoma (Allocreadiidae) sur la base de preuves morphologiques et moléculaires. ABSTRACT: La diversité de Creptotrema a été étudiée à l'aide d'outils morphologiques et moléculaires, incluant des données pour Creptotrema creptotrema (espèce-type). Trois nouvelles espèces, parasites de poissons brésiliens, sont décrites : Creptotrema conconae n. sp. (hôte-type, Imparfinis mirini Haseman), Creptotrema schubarti n. sp. (hôte-type, Characidium schubarti Travassos) et Creptotrema megacetabularis n. sp. (hôte-type, Auchenipterus osteomystax (Miranda Ribeiro)). Le diagnostic du genre a été modifié pour inclure de nouvelles caractéristiques. Les nouvelles espèces diffèrent les unes des autres principalement en termes de forme du corps, de taille relative des ventouses et de position des testicules. Des séquences d'ADN ont été obtenues de Creptotrema spp. du Brésil, y compris 28S, ITS et COI. Les divergences génétiques entre les nouvelles espèces et C. creptotrema variaient de 2,1 à 5,2 % (21 à 49 pb) pour les séquences 28S, et de 6,6 à 16,4 % (21 à 45 pb) pour le COI. L'analyse phylogénétique (28S) a placé les séquences d'ADN nouvellement générées de Creptotrema dans un clade (Creptotrema clade sensu stricto) composé de C. creptotrema, les nouvelles espèces décrites ici et toutes les espèces précédemment décrites comme Auriculostoma, révélant qu'Auriculostoma est mieux interprété comme un synonyme de Creptotrema sur la base du principe de priorité de la nomenclature zoologique. Creptotrema funduli, la seule séquence du genre précédemment disponible, n'a pas été regroupée au sein du clade Creptotrema sensu stricto, ce qui suggère la nécessité d'une réévaluation du statut taxonomique de cette espèce. Nos résultats montrent que Creptotrema est un genre monophylétique de trématodes largement distribué à travers les Amériques, qui comprend actuellement 19 espèces valides, parasites de téléostéens et d'anoures.


Assuntos
Caraciformes , Doenças dos Peixes , Trematódeos , Infecções por Trematódeos , Animais , Doenças dos Peixes/diagnóstico , Filogenia , RNA Ribossômico 28S , Trematódeos/genética , Infecções por Trematódeos/diagnóstico , Infecções por Trematódeos/veterinária
17.
R Soc Open Sci ; 8(6): 210088, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34109041

RESUMO

Disease outbreaks are a consequence of interactions among the three components of a host-parasite system: the infectious agent, the host and the environment. While virulence and transmission are widely investigated, most studies of parasite life-history trade-offs are conducted with theoretical models or tractable experimental systems where transmission is standardized and the environment controlled. Yet, biotic and abiotic environmental factors can strongly affect disease dynamics, and ultimately, host-parasite coevolution. Here, we review research on how environmental context alters virulence-transmission relationships, focusing on the off-host portion of the parasite life cycle, and how variation in parasite survival affects the evolution of virulence and transmission. We review three inter-related 'approaches' that have dominated the study of the evolution of virulence and transmission for different host-parasite systems: (i) evolutionary trade-off theory, (ii) parasite local adaptation and (iii) parasite phylodynamics. These approaches consider the role of the environment in virulence and transmission evolution from different angles, which entail different advantages and potential biases. We suggest improvements to how to investigate virulence-transmission relationships, through conceptual and methodological developments and taking environmental context into consideration. By combining developments in life-history evolution, phylogenetics, adaptive dynamics and comparative genomics, we can improve our understanding of virulence-transmission relationships across a diversity of host-parasite systems that have eluded experimental study of parasite life history.

18.
Microbes Infect ; 23(8): 104836, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34020024

RESUMO

Ascaris lumbricoides and Ascaris suum are two closely related parasites that infect humans and pigs. The zoonotic potential of A. suum has been a matter of debate for decades. Here we sought to investigate the potential human infection by A. suum and its immunological alterations. We orally infected five healthy human subjects with eggs embraced by A. suum. The infection was monitored for symptoms and possible respiratory changes, by an interdisciplinary health team. Parasitological, hematological analyses, serum immunoglobulin, cytokine profiles, and gene expression were evaluated during the infection. Our results show that A. suum is able to infect and complete the cycle in humans causing A. lumbricoides similar symptoms, including, cough, headache, diarrhea, respiratory discomfort and chest x-ray alterations coinciding with larvae migration in the lungs. We also observed activation of the immune system with production of IgM and IgG and a Th2/Th17 response with downregulation of genes related to Th1 and apoptosis. PCA (Principal componts analysis) show that infection with A. suum leads to a change in the immune landscape of the human host. Our data reinforce the zoonotic capacity of A. suum and bring a new perspective on the understanding of the immune response against this parasite.


Assuntos
Ascaríase , Ascaris suum , Doenças dos Suínos , Animais , Ascaríase/parasitologia , Ascaris suum/fisiologia , Humanos , Larva/fisiologia , Suínos
19.
Animals (Basel) ; 11(3)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805634

RESUMO

In order to evade the response of their hosts, helminth parasites have evolved precise and highly regulated mechanisms, including migration strategies of the larval stages. In regard to porcine ascariosis caused by Ascaris suum, its infective third-stage larvae (AsL3) undergo a complex migratory route through the bloodstream of their host before establishing in the small intestine to reach maturation. Despite the benefits attributed to this migration, blood clots formation could compromise larvae survival. The aim of this work was to study the interaction between the cuticle and excretory/secretory antigens of AsL3 and the host coagulation cascade. Larvae were obtained after incubating and hatching A. suum eggs, after which the antigenic extracts were produced. Their ability to disrupt the coagulation cascade was studied using anticoagulation and chromogenic assays, and techniques based on electrophoresis. The obtained results showed that both antigenic extracts possessed anticoagulant potential, being able to inhibit the intrinsic, extrinsic and/or common pathways of the blood coagulation cascade as well as the activated factor X. Moreover, three A. suum serpin proteins were identified as candidates to inhibit this host coagulation factor. To the best of our knowledge, this study shows, for the first time, the anticoagulant potential of the infective larvae of A. suum, which could be used by the parasite as a mechanism to facilitate its invasion and survival in the host.

20.
Biodivers Data J ; 9: e57680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33519260

RESUMO

Bat flies are haematophagous ectoparasites, highly specialised to bats and are also considered to have vectorial potential for several pathogens like Bartonella spp. or Polychromophilus spp. In Romania, past studies mostly focused on the ectoparasitic fauna of cave-dwelling bats, listing the occurrence of 10 bat fly species in the country, with only scarce information on bat flies infesting crevice-roosting bat species. Here we report the occurrence of Basilia italica, a rare nycteribiid species infesting primarily forest-dwelling bats. This is the first country-record for Romania and also represents the easternmost occurrence of this species. Further studies are needed to evaluate the vectorial potential of B. italica.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA