Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Water Res ; 266: 122416, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39265212

RESUMO

Due to the strong pathogenicity of hypervirulent Klebsiella pneumoniae (hvKP), its performance against disinfectants in water should be understood to protect public health and ecological environment. Unfortunately, the disinfectant tolerance of hvKP with a hypermucoviscosity (HMV) phenotype is a critical underexplored area. Here, the tolerance of K. pneumoniae isolates to common disinfectants was evaluated, and its underlying mechanisms were clarified. Results showed that hvKP strains with HMV exhibited remarkable tolerance to triclosan (TCS), sodium hypochlorite (NaClO), and benzalkonium bromide (BB), surpassing that of low-virulent K. pneumoniae (lvKP) and Escherichia coli, which is the microbial indicator of drinking water quality. Ct value of NaClO reached 4.41 mg/L·min to kill 4-log hvKP, while the values were 2.52 and 2.28 mg/L·min to achieve 4-log killing of lvKP and E. coli, respectively. The curing of the virulence plasmid from hvKP strain K2044 revealed that capsular polysaccharide (CPS) synthesis, driven by the virulence plasmids, helped mitigate cell membrane injury and bacterial inactivation under NaClO stress; consequently, it provided a protective advantage to hvKP. Enhancing the antioxidative stress system to reduce ROS production and mitigate oxidative stress caused by NaClO further improved the disinfectant resistance of hvKP strains with HMV. This study emphasized that hvKP strains with HMV posed a considerable challenge to disinfection procedure of water treatment. It also revealed that an improved dosage of NaClO ensures bacteria killing, indicating the optimization of the design of water treatment processes involving disinfection strategies and technical parameters should be considered.

2.
J Appl Microbiol ; 135(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39090973

RESUMO

AIMS: Hypervirulent Klebsiella pneumoniae (hvKp) causes invasive community-acquired infections in healthy individuals, and hypermucoviscosity (HMV) is the main phenotype associated with hvKp. This study investigates the impact of microaerobic environment availability on the mucoviscosity of K. pneumoniae. METHODS AND RESULTS: By culturing 25 clinical strains under microaerobic and aerobic environments, we observed a notable reduction in mucoviscosity in microaerobic environments. RNA sequencing and qRT-PCR revealed downregulated expressions of capsule synthesis genes (galf, orf2, wzi, wza, wzb, wzc, wcaj, manC, manB, and ugd) and regulatory genes (rmpA, rmpD, and rmpC) under microaerobic conditions. Transmission electron microscopy and Indian ink staining analysis were performed, revealing that the capsular thickness of K. pneumoniae decreased by half in microaerobic conditions compared to aerobic conditions. Deletion of rmpD and rmpC caused the loss of the HMV phenotype in both aerobic and microaerobic conditions. However, compared to wild-type strain in microaerobic condition, only rmpD overexpression strain, and not rmpC overexpression strain, displayed a significant increase in capsule thickness in microaerobic conditions. CONCLUSIONS: Microaerobic conditions can suppress the mucoviscosity of K. pneumoniae, but this suppression can be overcome by altering the expression of rmpD, indicating a specific function for rmpD in the oxygen environmental adaptation of K. pneumoniae.


Assuntos
Proteínas de Bactérias , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Aerobiose , Humanos , Regulação Bacteriana da Expressão Gênica , Fenótipo , Infecções por Klebsiella/microbiologia , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/genética , Virulência/genética
3.
Front Cell Infect Microbiol ; 14: 1411658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39165917

RESUMO

Objective: This study used whole-genome sequencing (WGS) to explore the genetic diversity, virulence factors, and antimicrobial resistance determinants of string test-positive Klebsiella pneumoniae (KP) over a 4-year surveillance period in Huzhou, China. Methods: In total, 632 clinical isolates were collected via hospital surveillance from 2020 to 2023; 100 were positive in the string test and these 100 strains were subjected to antimicrobial susceptibility testing using an agar dilution method followed by WGS. Results: The resistance rates to cefotaxime (77.0%), trimethoprim-sulfamethoxazole (67.0%), and nalidixic acid (64.0%) were high. Multilocus sequence typing revealed high genetic diversity; there were 33 sequence types (STs) and 15 capsular serotypes. The most common ST was ST23 (16.0%) and the most common capsular serotype was K1 (22.5%). Virulome analysis revealed among-strain differences in virulence factors that affected bacterial adherence, efflux pump action, iron uptake, nutritional factors, metabolic regulation, the secretion system, and toxin production. The Kleborate strain-specific virulence scores of all 100 string test-positive KPs were derived: 28 strains scored 5, 28 scored 4, 21 scored 3, 12 scored 1, and 11 scored 0. All 77 strains with scores of 3 to 5 contained the iucA gene. The phylogeny based on whole-genome single nucleotide polymorphisms (wgSNPs) indicated high clonality; the string test-positive KP strains were grouped into six clades. Closely related isolates in each genetic cluster usually shared STs. Conclusion: The present study highlights the significance of the KP iucA gene in terms of hypervirulence and the diverse genotypes of string test-positive KP strains isolated in Huzhou hospitals.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Fatores de Virulência , Sequenciamento Completo do Genoma , China/epidemiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/classificação , Humanos , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Fatores de Virulência/genética , Variação Genética , Antibacterianos/farmacologia , Sorogrupo , Filogenia , Genoma Bacteriano , Farmacorresistência Bacteriana/genética , Virulência/genética , Masculino , Feminino
4.
Front Immunol ; 15: 1436039, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148735

RESUMO

Klebsiella pneumoniae is an opportunistic bacterium that frequently colonizes the nasopharynx and gastrointestinal tract and can also cause severe infections when invading other tissues, particularly in immunocompromised individuals. Moreover, K. pneumoniae variants exhibiting a hypermucoviscous (HMV) phenotype are usually associated with hypervirulent strains that can produce invasive infections even in immunocompetent individuals. Major carbohydrate structures displayed on the K. pneumoniae surface are the polysaccharide capsule and the lipopolysaccharide, which presents an O-polysaccharide chain in its outermost part. Various capsular and O-chain structures have been described. Of note, production of a thick capsule is frequently observed in HMV variants. Here we examined the surface sugar epitopes of a collection of HMV and non-HMV K. pneumoniae clinical isolates and their recognition by several Siglecs and galectins, two lectin families of the innate immune system, using bacteria microarrays as main tool. No significant differences among isolates in sialic acid content or recognition by Siglecs were observed. In contrast, analysis of the binding of model lectins with diverse carbohydrate-binding specificities revealed striking differences in the recognition by galactose- and mannose-specific lectins, which correlated with the binding or lack of binding of galectins and pointed to the O-chain as the plausible ligand. Fluorescence microscopy and microarray analyses of galectin-9 binding to entire cells and outer membranes of two representative HMV isolates supported the bacteria microarray results. In addition, Western blot analysis of the binding of galectin-9 to outer membranes unveiled protein bands recognized by this galectin, and fingerprint analysis of these bands identified several proteins containing potential O-glycosylation sites, thus broadening the spectrum of possible galectin ligands on the K. pneumoniae surface. Moreover, Siglecs and galectins apparently target different structures on K. pneumoniae surfaces, thereby behaving as non-redundant complementary tools of the innate immune system.


Assuntos
Galectinas , Imunidade Inata , Infecções por Klebsiella , Klebsiella pneumoniae , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Klebsiella pneumoniae/imunologia , Klebsiella pneumoniae/metabolismo , Humanos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Galectinas/metabolismo , Galectinas/imunologia , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Cápsulas Bacterianas/imunologia , Cápsulas Bacterianas/metabolismo , Lectinas/metabolismo , Lectinas/imunologia , Ligação Proteica
5.
Front Cell Infect Microbiol ; 14: 1411286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947124

RESUMO

Background: Convergence of Klebsiella pneumoniae (KP) pathotypes has been increasingly reported in recent years. These pathogens combine features of both multidrug-resistant and hypervirulent KP. However, clinically used indicators for hypervirulent KP identification, such as hypermucoviscosity, appear to be differentially expressed in convergent KP, potential outbreak clones are difficult to identify. We aimed to fill such knowledge gaps by investigating the temperature dependence of hypermucoviscosity and virulence in a convergent KP strain isolated during a clonal outbreak and belonging to the high-risk sequence type (ST)307. Methods: Hypermucoviscosity, biofilm formation, and mortality rates in Galleria mellonella larvae were examined at different temperatures (room temperature, 28°C, 37°C, 40°C and 42°C) and with various phenotypic experiments including electron microscopy. The underlying mechanisms of the phenotypic changes were explored via qPCR analysis to evaluate plasmid copy numbers, and transcriptomics. Results: Our results show a temperature-dependent switch above 37°C towards a hypermucoviscous phenotype, consistent with increased biofilm formation and in vivo mortality, possibly reflecting a bacterial response to fever-like conditions. Furthermore, we observed an increase in plasmid copy number for a hybrid plasmid harboring carbapenemase and rmpA genes. However, transcriptomic analysis revealed no changes in rmpA expression at higher temperatures, suggesting alternative regulatory pathways. Conclusion: This study not only elucidates the impact of elevated temperatures on hypermucoviscosity and virulence in convergent KP but also sheds light on previously unrecognized aspects of its adaptive behavior, underscoring its resilience to changing environments.


Assuntos
Biofilmes , Infecções por Klebsiella , Klebsiella pneumoniae , Temperatura , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidade , Klebsiella pneumoniae/classificação , Biofilmes/crescimento & desenvolvimento , Virulência/genética , Animais , Infecções por Klebsiella/microbiologia , Larva/microbiologia , Plasmídeos/genética , Mariposas/microbiologia , Humanos , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lepidópteros/microbiologia , Viscosidade , Fenótipo , Perfilação da Expressão Gênica
6.
mSystems ; 9(7): e0026224, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38904378

RESUMO

Hypermucoviscosity (HMV) is a phenotype that is commonly associated with hypervirulence in Klebsiella pneumoniae. The factors that contribute to the emergence of HMV subpopulations remain unclear. In this study, eight K. pneumoniae strains were recovered from an inpatient who had been hospitalized for 20 days. Three of the isolates exhibited a non-HMV phenotype, which was concomitant with higher biofilm formation than the other five HMV isolates. All eight isolates were highly susceptible to serum killing, albeit HMV strains were remarkably more infective than non-HMV counterparts in a mouse model of infection. Whole genome sequencing (WGS) showed that the eight isolates belonged to the K57-ST412 lineage. Average nucleotide identity (FastANIb) analysis indicated that eight isolates share 99.96% to 99.99% similarity and were confirmed to be the same clone. Through comparative genomics analysis, 12 non-synonymous mutations were found among these isolates, eight of which in the non-HMV variants, including rmpA (c.285delG) and wbaP (c.1305T > A), which are assumed to be associated with the non-HMV phenotype. Mutations in manB (c.1318G > A), dmsB (c.577C > T) and tkt (c.1928C > A) occurred in HMV isolates only. RNA-Seq revealed transcripts of genes involved in energy metabolism, carbohydrate metabolism and membrane transport, including cysP, cydA, narK, tktA, pduQ, aceB, metN, and lsrA, to be significantly dysregulated in the non-HMV strains, suggesting a contribution to HMV phenotype development. This study suggests that co-occurrence of HMV and non-HMV phenotypes in the same clonal population may be mediated by mutational mechanisms as well as by certain genes involved in membrane transport and central metabolism. IMPORTANCE: K. pneumoniae with a hypermucoviscosity (HMV) phenotype is a community-acquired pathogen that is associated with increased invasiveness and pathogenicity, and underlying diseases are the most common comorbid risk factors inducing metastatic complications. HMV was earlier attributed to the overproduction of capsular polysaccharide, and more data point to the possibility of several causes contributing to this bacterial phenotype. Here, we describe a unique event in which the same clonal population showed both HMV and non-HMV characteristics. Studies have demonstrated that this process is influenced by mutational processes and genes related to transport and central metabolism. These findings provide fresh insight into the mechanisms behind co-occurrence of HMV and non-HMV phenotypes in monoclonal populations as well as potentially being critical in developing strategies to control the further spread of HMV K. pneumoniae.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Fenótipo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Humanos , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , Camundongos , Animais , Sequenciamento Completo do Genoma , Biofilmes/crescimento & desenvolvimento , Virulência/genética , Genoma Bacteriano/genética , Masculino , Mutação , Feminino
7.
Trop Med Infect Dis ; 9(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38922035

RESUMO

Extraintestinal pathogenic Escherichia coli (ExPEC) strains are capable of causing various systemic infections in both humans and animals. In this study, we isolated and characterized 30 E. coli strains from the parenchymatic organs and brains of young (<3 months of age) camel calves which died in septicemia. Six of the strains showed hypermucoviscous phenotype. Based on minimum inhibitory concentration (MIC) values, seven of the strains were potentially multidrug resistant, with two additional showing colistin resistance. Four strains showed mixed pathotypes, as they carried characteristic virulence genes for intestinal pathotypes of E. coli: three strains carried cnf1, encoding cytotoxic necrotizing factor type 1, the key virulence gene of necrotoxigenic E. coli (NTEC), and one carried eae encoding intimin, the key virulence gene of enteropathogenic E. coli (EPEC). An investigation of the integration sites of pathogenicity islands (PAIs) and the presence of prophage-related sequences showed that the strains carry diverse arrays of mobile genetic elements, which may contribute to their antimicrobial resistance and virulence patterns. Our work is the first to describe ExPEC strains from camels, and points to their veterinary pathogenic as well as zoonotic potential in this important domestic animal.

8.
Cureus ; 16(4): e59094, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38800315

RESUMO

Introduction Hypermucoviscous Klebsiella pneumoniae (hvKP) is related to invasive infections; however, there have been very few comprehensive reports on the clinical features and prognosis of critically ill patients with the infection. Methods We conducted a retrospective case series in a general intensive care unit in Japan. Patients with positive blood cultures for KP between January 1, 2020 and December 31, 2022 were included. hvKP was defined by the positivity in the string test. We analyzed the patient's characteristics at baseline, including comorbidities, abscess formation, Sequential Organ Failure Assessment (SOFA) score, Acute Physiology and Chronic Health Evaluation (APACHE) II score, septic shock, duration of hospitalization, 30-day mortality, and infection site. Results A total of 24 patients had a positive blood culture for KP; nine patients (37.5%) were positive for the string test (hvKP) while 15 (62.5%) were negative (non-hvKP). In both groups, the patients were old (mean age, hvKP 80.4 vs. non-hvKP 75.7 years) and more often male (five patients (55.6%) vs. 12 patients (80.0%)). No statistically significant difference was found between the two groups in terms of comorbidities, such as diabetes mellitus, chronic obstructive pulmonary disease, chronic kidney disease, and malignancy. No statistical difference was seen in abscess formation (two patients [22.2%] vs. one patient (6.7%)), SOFA score (5.2±4.8 vs. 4.7±3.4), APACHE II score (19.6 (15.0-20.0) vs. 17.0 (11.2-20.8)), septic shock (five patients (55.6%) vs. four patient (26.7%)), duration of hospitalization (37.2 (12.0-51.0) vs. 32.3 (9.5-21.0)), and 30-day mortality (two patients (22.2%) vs. two patients (13.3%)). Two cases with hvKP died within 24 h. No significant difference was seen in the infection sources; respiratory infection (2 (22.2%) vs. 1 (6.7%)), hepatobiliary infection (2 (22.2%) vs. 7 (46.7%)), and genitourinary infection (1 (11.1%) vs. 5 (33.3%)). Conclusions Critically ill patients with hvKP infection showed characteristics similar to those reported previously. However, the disease could rapidly become severe and have a poor prognostic outcome.

9.
Ann N Y Acad Sci ; 1535(1): 109-120, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38577761

RESUMO

This study aimed to screen antibiotic resistance and virulence genes in carbapenem-resistant hypermucoviscous Klebsiella pneumoniae isolates from an Egyptian hospital. Among 38 previously confirmed carbapenem-nonsusceptible K. pneumoniae isolates, a string test identified three isolates as positive for hypermucoviscosity. Phenotypic characterization and molecular detection of carbapenemase- and virulence-encoding genes were performed. PCR-based multilocus sequence typing and phylogenetics were used to determine the clonality and global epidemiology of the strains. The coexistence of virulence and resistance genes in the isolates was analyzed statistically using a chi-square test. Three isolates showed the presence of carbapenemase-encoding genes (blaNDM, blaVIM, and blaIMP), adhesion genes (fim-H-1 and mrkD), and siderophore genes (entB); the isolates belonged to sequence types (STs) 101, 1310, and 1626. The relatedness between these sequence types and the sequence types of globally detected hypermucoviscous K. pneumoniae that also harbor carbapenemases was determined. Our analysis showed that the resistance and virulence profiles were not homogenous. Phylogenetically, different clones clustered together. There was no significant association between the presence of resistance and virulence genes in the isolates. There is a need for periodic surveillance of the healthcare settings in Egypt and globally to understand the true epidemiology of carbapenem-resistant, hypermucoviscous K. pneumoniae.


Assuntos
Proteínas de Bactérias , Infecções por Klebsiella , Klebsiella pneumoniae , Filogenia , beta-Lactamases , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/patogenicidade , beta-Lactamases/genética , Egito/epidemiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , Virulência/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Tipagem de Sequências Multilocus , Carbapenêmicos/farmacologia , Hospitais
10.
Diagnostics (Basel) ; 14(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38667438

RESUMO

Hypervirulent Klebsiella pneumoniae (KP) is defined according to hypermucoviscosity or various virulence factors and is clinically associated with community-acquired liver abscess (CLA). In this study, we investigated the clinical and microbiological characteristics of KP and significant factors associated with hypervirulence. The clinical characteristics, antimicrobial susceptibility, hypermucoviscosity, serotypes, hypervirulence-related genes, and biofilm formation of 414 KP isolates collected from the Keimyung University Dongsan Hospital between December 2013 and November 2015 were analyzed according to CLA. Significant risk factors for hypervirulent KP (HvKP) associated with CLA were investigated using logistic regression analysis. Notably, 155 (37.4%) isolates were hypermucoviscous, and 170 (41.1%) harbored aerobactin. CLA was present in 34 cases (8.2%). Epidemiology and treatment outcomes did not differ significantly between the CLA and non-CLA groups. The CLA group had significantly higher antibiotic susceptibility, K1/K2, rmpA, magA, allS, kfu, iutA, string test-positive result, and biofilm mass. Multivariate logistic regression revealed rmpA (OR, 5.67; 95% CI, 2.09-15.33; p = 0.001), magA (OR, 2.34; 95% CI, 1.01-5.40; p = 0.047), and biofilm mass >0.80 (OR, 2.13; 95% CI, 1.00-4.56; p = 0.050) as significant risk factors for CLA. rmpA was identified as the most significant risk factor for CLA among KP strains, implying that it is an important factor associated with HvKP.

11.
Sci Rep ; 14(1): 5876, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467675

RESUMO

Here, we conducted a comprehensive analysis of 356 Klebsiella pneumoniae species complex (KpSC) isolates that were classified as classical (cl), presumptive hypervirulent (p-hv) and hypermucoviscous-like (hmv-like). Overall, K. pneumoniae (82.3%), K. variicola (2.5%) and K. quasipneumoniae (2.5%) were identified. These isolates comprised 321 cl-KpSC, 7 p-hv-KpSC and 18 hmv-like-KpSC. A large proportion of cl-KpSC isolates were extended-spectrum-ß-lactamases (ESBLs)-producers (64.4%) and 3.4% of isolates were colistin-resistant carrying carbapenemase and ESBL genes. All p-hv-KpSC showed an antibiotic susceptible phenotype and hmv-like isolates were found to be ESBL-producers (8/18). Assays for capsule production and capsule-dependent virulence phenotypes and whole-genome sequencing (WGS) were performed in a subset of isolates. Capsule amount differed in all p-hv strains and hmv-like produced higher capsule amounts than cl strains; these variations had important implications in phagocytosis and virulence. Murine sepsis model showed that most cl strains were nonlethal and the hmv-like caused 100% mortality with 3 × 108 CFUs. Unexpectedly, 3/7 (42.9%) of p-hv strains required 108 CFUs to cause 100% mortality (atypical hypervirulent), and 4/7 (57.1%) strains were considered truly hypervirulent (hv). Genomic analyses confirmed the diverse population, including isolates belonging to hv clonal groups (CG) CG23, CG86, CG380 and CG25 (this corresponded to the ST3999 a novel hv clone) and MDR clones such as CG258 and CG147 (ST392) among others. We noted that the hmv-like and hv-ST3999 isolates showed a close phylogenetic relationship with cl-MDR K. pneumoniae. The information collected here is important to understand the evolution of clinically important phenotypes such as hypervirulent and ESBL-producing-hypermucoviscous-like amongst the KpSC in Mexican healthcare settings. Likewise, this study shows that mgrB inactivation is the main mechanism of colistin resistance in K. pneumoniae isolates from Mexico.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Animais , Camundongos , Klebsiella , Colistina , Filogenia , beta-Lactamases/genética , Antibacterianos/farmacologia , Fenótipo , Testes de Sensibilidade Microbiana
12.
Int J Food Microbiol ; 413: 110605, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308879

RESUMO

Given the increasing incidence of multidrug-resistant (MDR) Klebsiella pneumoniae infections, it is of great interest to investigate the risk of transmission associated with the prevalence of this pathogen. Some studies have described fresh raw poultry meat as a reservoir of MDR K. pneumoniae, including clinically relevant sequence types (ST) and extended-spectrum ß-lactamase (ESBL) strains, indicating possible consumer exposure. This study compared 47 MDR strains of K. pneumoniae from poultry meat and human clinical isolates to assess similarities, including analysis of antimicrobial resistance profiles and virulence factors involved in infection. In addition, several biofilm culture methods were evaluated for reproducible assessment of biofilm formation in K. pneumoniae strains. Globally, no association between strain origin and STs, hypermucoviscosity, biofilm formation or serum resistance could be found between isolates of food and clinical origin, nor an associated AMR pattern, suggesting overlapping populations. We found that LB supplemented with glucose in microaerobiosis was the best discrimination condition for biofilm formation in the active attachment biofilm cultivation model. The biofilm formation capacity was strongly dependent on culture conditions, with a strain-specific response, but only a minor increase in biofilm levels was recorded in clinical K. pneumoniae populations. Our results suggest that a similar risk of zoonosis transmission from potentially virulent foodborne strains previously observed in E. coli is also present in this high-priority pathogen. This study further confirms that foodborne isolates of K. pneumoniae pose a risk to consumers and therefore this pathogen should be included in the surveillance of foodborne pathogens with high risk of MDR infections and therapeutic failure.


Assuntos
Escherichia coli , Infecções por Klebsiella , Animais , Humanos , Klebsiella pneumoniae , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Zoonoses , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamases , Testes de Sensibilidade Microbiana
13.
Acta Microbiol Immunol Hung ; 70(4): 278-287, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38047929

RESUMO

Klebsiella pneumoniae is a major human pathogen as it is responsible for various infections. In the past years hypervirulent K. pneumoniae (hvKP) emerged and disseminated worldwide. In this review a summary will be given about epidemiology, detection and antibiotic resistance of hypervirulent K. pneumoniae. A common feature of hypervirulent K. pneumoniae is a combined expression of several virulence factors. A mucoviscosus phenotype, certain capsulare serotypes (e.g.: K1, K2, K28, K47, K63) together with additional genetic markers namely, magA, rmpA or iucABCD, are needed in combinations to achieve the hypervirulent pathotype. Plasmid coded virulence determinants are also detected, that indicates horizontal gene transfer of hypervirulence factors in K. pneumoniae.Interestingly, infections caused by hypervirulent K. pneumoniae occur usually in the community in otherwise healthy people, and during these infections multiple infection sites are detected. Clinical pictures include both invasive infections and local abscess formation. Pyogenic liver abscess is the most frequently reported clinical manifestation and abscess formation in brain, spleen and lung are also diagnosed. Additionally, meningitis, endophthalmitis, trombophlebitis, pneumonia can also develop.In the early reports, hypervirulent K. pneumoniae strains exhibited enhanced virulence but these were susceptible to commonly used antibiotics. However, recently KPC, VIM, NDM and OXA-48 carbapenemase producing hypervirulent K. pneumoniae strains are increasingly reported, furthermore, well-known high-risk K. pneumoniae clones (e.g.: ST11, ST147, ST307) can develop hypervirulent pathotype, that poses an even more alarming challenge.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Abscesso/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/tratamento farmacológico , Virulência/genética , Fatores de Virulência/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Resistência Microbiana a Medicamentos
14.
Infect Immun ; 91(12): e0030323, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37982617

RESUMO

Klebsiella pneumoniae is a Gram-negative bacterium that causes a variety of human diseases, ranging from pneumonia to urinary tract infections and invasive diseases. The emergence of K. pneumoniae strains that are resistant to multiple antibiotics has made treatment more complex and led to K. pneumoniae becoming a global health threat. Addressing this threat necessitates the development of new therapeutic strategies to combat this pathogen, including strategies to overcome antimicrobial resistance and therapeutics for novel targets such as antivirulence. Here, we investigated the function of TolC, an outer membrane protein essential for the function of tripartite transporters, in K. pneumoniae. Mutation of tolC rendered K. pneumoniae hypersensitive to multiple antibiotics. Moreover, the tolC mutation impaired capsule production and affected the expression of key capsule biosynthetic genes, indicating a regulatory role for TolC in capsule biosynthesis. Additionally, TolC was essential for growth under iron-limiting conditions, suggesting its involvement in iron acquisition. The tolC mutant exhibited increased adherence to human enterocytes and enhanced serum sensitivity. In the Galleria mellonella infection model, the tolC mutant displayed reduced virulence compared to the wild type. Our findings highlight the pleiotropic role of TolC in K. pneumoniae pathobiology, influencing antimicrobial resistance, capsule production, iron homeostasis, adherence to host cells, and virulence. Understanding the multifaceted role of TolC in K. pneumoniae may guide the development of new therapeutic strategies against this pathogen. .


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Virulência , Antibacterianos , Farmacorresistência Bacteriana , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Ferro
15.
Curr Protoc ; 3(11): e937, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38010271

RESUMO

Klebsiella pneumoniae is a clinically significant, Gram-negative pathogen in which the production of extracellular polysaccharides is a key virulence factor. Extracellular polysaccharides such as the capsule and its mucoviscosity play a significant role in K. pneumoniae infection. In this article, we explain several standard protocols used to characterize the extracellular polysaccharides of K. pneumoniae. Several of these protocols are adapted specifically for K. pneumoniae and describe methods to purify and quantify the extracellular polysaccharide of K. pneumoniae. We also present a standardized protocol to quantify K. pneumoniae mucoviscosity, a unique feature of K. pneumoniae extracellular polysaccharide. These protocols will help create uniformity in standard protocols used in K. pneumoniae extracellular polysaccharide studies. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Extracellular polysaccharide isolation and purification Basic Protocol 2: Large-scale isolation and purification of extracellular polysaccharide Basic Protocol 3: Uronic acid quantification of extracellular polysaccharide Basic Protocol 4: Extracellular polysaccharide visualization by SDS-PAGE Basic Protocol 5: Klebsiella pneumoniae mucoviscosity measurement by sedimentation resistance assay Alternate Protocol 5: 96-well plate-based Klebsiella pneumoniae sedimentation resistance assay Support Protocol 5: Determination of plate to cuvette conversion factor.


Assuntos
Klebsiella pneumoniae , Polissacarídeos , Fatores de Virulência
16.
Front Microbiol ; 14: 1247091, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869673

RESUMO

Klebsiella pneumoniae is an opportunistic pathogen that mainly causes nosocomial infections and hospital-associated pneumonia in elderly and immunocompromised people. However, multidrug-resistant hypervirulent K. pneumoniae (MDR-hvKp) has emerged recently as a serious threat to global health that can infect both immunocompromised and healthy individuals. It is scientifically established that plasmid-mediated regulator of mucoid phenotype genes (rmpA and rmpA2) and other virulence factors (aerobactin and salmochelin) are mainly responsible for this phenotype. In this study, we collected 23 MDR-hvKp isolates and performed molecular typing, whole genome sequencing, comparative genomic analysis, and phenotypic experiments, including the Galleria mellonella infection model, to reveal its genetic and phenotypic features. Meanwhile, we discovered two MDR-hvKp isolates (22122315 and 22091569) that showed a wide range of hypervirulence and hypermucoviscosity without rmpA and rmpA2 and any virulence factors. In phenotypic experiments, isolate 22122315 showed the highest hypervirulence (infection model) with significant mucoviscosity, and conversely, isolate 22091569 exhibited the highest mucoviscosity (string test) with higher virulence compared to control. These two isolates carried carbapenemase (blaKPC - 2), ß-lactamase (blaOXA - 1, blaTEM - 1B), extended-spectrum ß-lactamase (ESBL) genes (blaCTX - M - 15, blaSHV - 106), outer membrane protein-coding genes (ompA), fimbriae encoding genes (ecpABCDER), and enterobactin coding genes (entAB, fepC). In addition, single nucleotide polymorphism analysis indicated that both isolates, 22122315 and 22091569, were found to have novel mutations in loci FEBNDAKP_03184 (c. 2084A > C, p. Asn695Thr), and EOFMAFIB_02276 (c. 1930C > A, p. Pro644Thr), respectively. Finally, NCBI blast analysis suggested these mutations are located in the wzc of the capsule polysaccharide (cps) region and are responsible for putative tyrosine kinase. This study would be a strong reference for enhancing the current understanding of identifying the MDR-hvKp isolates that lacked both mucoid regulators and virulence factors.

17.
mSphere ; 8(5): e0028823, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37610214

RESUMO

Klebsiella pneumoniae is a hospital-associated pathogen primarily causing urinary tract infections (UTIs), pneumonia, and septicemia. Two challenging lineages include the hypervirulent strains, causing invasive community-acquired infections, and the carbapenem-resistant classical strains, most frequently isolated from UTIs. While hypervirulent strains are often characterized by a hypermucoid phenotype, classical strains usually present with low mucoidy. Since clinical UTI isolates tend to exhibit limited mucoidy, we hypothesized that environmental conditions may drive K. pneumoniae adaptation to the urinary tract and select against mucoid isolates. We found that both hypervirulent K. pneumoniae and classical Klebsiella UTI isolates significantly suppressed mucoidy when cultured in urine without reducing capsule abundance. A genetic screen identified secondary mutations in the wzc tyrosine kinase that overcome urine-suppressed mucoidy. Over-expressing Wzc variants in trans was sufficient to boost mucoidy in both hypervirulent and classical Klebsiella UTI isolates. Wzc is a bacterial tyrosine kinase that regulates capsule polymerization and extrusion. Although some Wzc variants reduced Wzc phospho-status, urine did not alter Wzc phospho-status. Urine does, however, increase K. pneumoniae capsule chain length diversity and enhance cell-surface attachment. The identified Wzc variants counteract urine-mediated effects on capsule chain length and cell attachment. Combined, these data indicate that capsule chain length correlates with K. pneumoniae mucoidy and that this extracellular feature can be fine-tuned by spontaneous Wzc mutations, which alter host interactions. Spontaneous Wzc mutation represents a global mechanism that could fine-tune K. pneumoniae niche-specific fitness in both classical and hypervirulent isolates. IMPORTANCE Klebsiella pneumoniae is high-priority pathogen causing both hospital-associated infections, such as urinary tract infections, and community-acquired infections. Clinical isolates from community-acquired infection are often characterized by a tacky, hypermucoid phenotype, while urinary tract isolates are usually not mucoid. Historically, mucoidy was attributed to capsule overproduction; however, recent reports have demonstrated that K. pneumoniae capsule abundance and mucoidy are not always correlated. Here, we report that human urine suppresses K. pneumoniae mucoidy, diversifies capsule polysaccharide chain length, and increases cell surface association. Moreover, specific mutations in the capsule biosynthesis gene, wzc, are sufficient to overcome urine-mediated suppression of mucoidy. These Wzc variants cause constitutive production of more uniform capsular polysaccharide chains and increased release of capsule from the cell surface, even in urine. These data demonstrate that K. pneumoniae regulates capsule chain length and cell surface attachment in response host cues, which can alter bacteria-host interactions.


Assuntos
Infecções Comunitárias Adquiridas , Infecção Hospitalar , Infecções por Klebsiella , Infecções Urinárias , Humanos , Klebsiella pneumoniae , Virulência/genética , Infecções Comunitárias Adquiridas/microbiologia , Infecções Urinárias/microbiologia , Infecções por Klebsiella/microbiologia , Polissacarídeos/metabolismo , Proteínas Tirosina Quinases/metabolismo
18.
mBio ; 14(3): e0080023, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37140436

RESUMO

Klebsiella pneumoniae is a leading cause of nosocomial infections, including pneumonia, bacteremia, and urinary tract infections. Treatment options are increasingly restricted by the high prevalence of resistance to frontline antibiotics, including carbapenems, and the recently identified plasmid-conferred colistin resistance. The classical pathotype (cKp) is responsible for most of the nosocomial infections observed globally, and these isolates are often multidrug resistant. The hypervirulent pathotype (hvKp) is a primary pathogen capable of causing community-acquired infections in immunocompetent hosts. The hypermucoviscosity (HMV) phenotype is strongly associated with the increased virulence of hvKp isolates. Recent studies demonstrated that HMV requires capsule (CPS) synthesis and the small protein RmpD but is not dependent on the increased amount of capsule associated with hvKp. Here, we identified the structure of the capsular and extracellular polysaccharide isolated from hvKp strain KPPR1S (serotype K2) with and without RmpD. We found that the polymer repeat unit structure is the same in both strains and that it is identical to the K2 capsule. However, the chain length of CPS produced by strains expressing rmpD demonstrates more uniform length. This property was reconstituted in CPS from Escherichia coli isolates that possess the same CPS biosynthesis pathway as K. pneumoniae but naturally lack rmpD. Furthermore, we demonstrate that RmpD binds Wzc, a conserved capsule biosynthesis protein required for CPS polymerization and export. Based on these observations, we present a model for how the interaction of RmpD with Wzc could impact CPS chain length and HMV. IMPORTANCE Infections caused by Klebsiella pneumoniae continue to be a global public health threat; the treatment of these infections is complicated by the high frequency of multidrug resistance. K. pneumoniae produces a polysaccharide capsule required for virulence. Hypervirulent isolates also have a hypermucoviscous (HMV) phenotype that increases virulence, and we recently demonstrated that a horizontally acquired gene, rmpD, is required for HMV and hypervirulence but that the identity of the polymeric product(s) in HMV isolates is uncertain. Here, we demonstrate that RmpD regulates capsule chain length and interacts with Wzc, a part of the capsule polymerization and export machinery shared by many pathogens. We further show that RmpD confers HMV and regulates capsule chain length in a heterologous host (E. coli). As Wzc is a conserved protein found in many pathogens, it is possible that RmpD-mediated HMV and increased virulence may not be restricted to K. pneumoniae.


Assuntos
Infecção Hospitalar , Infecções por Klebsiella , Humanos , Escherichia coli , Virulência/genética , Fatores de Virulência/genética , Klebsiella pneumoniae , Antibacterianos , Polissacarídeos , Infecções por Klebsiella/epidemiologia
19.
Microbiol Spectr ; 11(3): e0419722, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37212684

RESUMO

Carbapenem-resistant Klebsiella pneumoniae (CRKP) has disseminated globally and is difficult to treat, causing increased morbidity and mortality rates in critically ill patients. We conducted a multicenter cross-sectional study of intensive care unit (ICU) inpatients in 78 hospitals to investigate the prevalence and molecular characteristics of CRKP in Henan Province, China, a hyperepidemic region. A total of 327 isolates were collected and downsampled to 189 for whole-genome sequencing. Molecular typing revealed that sequence type 11 (ST11) of clonal group 258 (CG258) was predominant (88.9%, n = 168), followed by ST2237 (5.8%, n = 11) and ST15 (2.6%, n = 5). We used core genome multilocus sequence typing (cgMLST) to further classified the population into 13 subtypes. Capsule polysaccharide (K-antigen) and lipopolysaccharide (LPS; O-antigen) typing revealed that K64 (48.1%, n = 91) and O2a (49.2%, n = 93) were the most common. We studied isolates collected from both the airway and the gut of the same patients and showed that intestinal carriage was associated with respiratory colonization (odds ratio = 10.80, P < 0.0001). Most isolates (95.2%, n = 180) showed multiple drug resistance (MDR), while 59.8% (n = 113) exhibited extensive drug resistance (XDR), and all isolates harbored either blaKPC-2 (98.9%, n = 187) or blaCTX-M and blaSHV extended-spectrum beta-lactamases (ESBLs) (75.7%, n = 143). However, most were susceptible to ceftazidime-avibactam (CZA) (94.7%, n = 179) and colistin (97.9%, n = 185). We found mgrB truncations in isolates conferring resistance to colistin and mutations in blaSHV and OmpK35 and OmpK36 osmoporins in CZA-resistant isolates. Using a regularized regression model, we found that the aerobactin sequence type and the salmochelin sequence type, among others, were predictors of the hypermucoviscosity phenotype. IMPORTANCE In this study, we address the ongoing epidemic of carbapenem-resistant Klebsiella pneumoniae, a critical threat to public health. The alarming genotypic and phenotypic convergence of multidrug resistance and virulence highlights the increasingly aggravated threat posed by K. pneumoniae. This calls for a combined effort of physicians and scientists to study the potential mechanisms and establish guidelines for antimicrobial therapies and interventions. To this end, we have conducted a genomic epidemiology and characterization study using isolates collected in a coordinated effort of multiple hospitals. Innovative biological discoveries of clinical importance are made and brought to the attention of clinical researchers and practitioners. This study presents an important advance in the application of genomics and statistics to recognize, understand, and control an infectious disease of concern.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Klebsiella pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Colistina , Estudos Transversais , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/tratamento farmacológico , beta-Lactamases/genética , Pacientes Internados , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Unidades de Terapia Intensiva , Genômica , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética
20.
Microbiol Spectr ; 11(3): e0308122, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37092989

RESUMO

Expression of the hypermucoviscosity (HMV) phenotype and capsular polysaccharide (CPS) biosynthesis in Klebsiella pneumoniae were reported to be encoded by genes located in the chromosomal rmp locus. However, the functions of the rmp locus in the virulence plasmid remained unclear, and most of the rmp loci in clinical K. pneumoniae are plasmid carried. In this study, we investigated the functional characteristics of plasmid-borne rmp homologues in clinical hypervirulent K. pneumoniae (hvKP) strains by cloning and introducing such gene homologues into K. pneumoniae strains of different capsule types, followed by the evaluation of phenotypic changes in these strains. Acquisition of the plasmid-borne prmpADC and prmpA2D2 loci were found to result in an increase in mucoviscosity and CPS production in K1 and K2 K. pneumoniae, while only the prmpA2D2 locus contributed to phenotypic changes in the ST11/KL64 strain. Consistently, both rmpD and rmpD2 increased HMV in K1 and K2 K. pneumoniae, while only rmpD2 contributed to HMV in the ST11/KL64 strain; rmpC contributed to CPS overproduction in K1 and K2 strains but not in the ST11/KL64 strain. Furthermore, we proposed a logistic molecular basis of the HMV phenotype of K. pneumoniae on which prmpD2-mediated HMV is attributed to the increase of cell-free CPS production. Our data confirm that the rmp homologues carried by the virulence plasmid play a key role in virulence expression in K. pneumoniae, but the phenotype is highly dependent on the genetic background of the host strain and explained why most of the clinical ST11 strains carry only the prmpA2D2 locus. IMPORTANCE Klebsiella pneumoniae has become the most frequently isolated bacterial pathogen in hospital settings, with a very high mortality rate worldwide. Factors contributing to the virulence of K. pneumoniae are the overproduction of capsular polysaccharide (CPS) as well as the hypermucoviscosity (HMV) phenotype. These two phenotypes were reported to be regulated by rmpA/A2 homologues, which are often carried by virulence plasmids. Here, we determined the functional role of two plasmid-borne rmpA in mediating expression of the HMV phenotype and CPS production in K. pneumoniae. Different capsule types exhibited differences in the expression of HMV and CPS production although they harbored an identical plasmid-borne rmpA or rmpA2 locus, indicating that these virulence-related phenotypes are strongly related to the genetic background of the host strains. Our study provides a novel understanding of the regulation of virulence-related phenotypes and clinical management of K. pneumoniae infections.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Plasmídeos/genética , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Infecções por Klebsiella/microbiologia , Antibacterianos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA