Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 179: 108856, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39053332

RESUMO

Various studies have emphasized the importance of identifying the optimal Trigger Timing (TT) for the trigger shot in In Vitro Fertilization (IVF), which is crucial for the successful maturation and release of oocytes, especially in minimal ovarian stimulation treatments. Despite its significance for the ultimate success of IVF, determining the precise TT remains a complex challenge for physicians due to the involvement of multiple variables. This study aims to enhance TT by developing a machine learning multi-output model that predicts the expected number of retrieved oocytes, mature oocytes (MII), fertilized oocytes (2 PN), and useable blastocysts within a 48-h window after the trigger shot in minimal stimulation cycles. By utilizing this model, physicians can identify patients with possible early, late, or on-time trigger shots. The study found that approximately 27 % of treatments administered the trigger shot on a suboptimal day, but optimizing the TT using the developed Artificial Intelligence (AI) model can potentially increase useable blastocyst production by 46 %. These findings highlight the potential of predictive models as a supplementary tool for optimizing trigger shot timing and improving IVF outcomes, particularly in minimal ovarian stimulation. The experimental results underwent statistical validation, demonstrating the accuracy and performance of the model. Overall, this study emphasizes the value of AI prediction models in enhancing TT and making the IVF process safer and more efficient.


Assuntos
Fertilização in vitro , Aprendizado de Máquina , Indução da Ovulação , Humanos , Feminino , Indução da Ovulação/métodos , Fertilização in vitro/métodos , Adulto
2.
Int J Mach Learn Cybern ; 14(1): 171-186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35432624

RESUMO

Deep Learning methods have important applications in the building construction image classification field. One challenge of this application is Convolutional Neural Networks adoption in a small datasets. This paper proposes a rigorous methodology for tuning of Data Augmentation hyperparameters in Deep Learning to building construction image classification, especially to vegetation recognition in facades and roofs structure analysis. In order to do that, Logistic Regression models were used to analyze the performance of Convolutional Neural Networks trained from 128 combinations of transformations in the images. Experiments were carried out with three architectures of Deep Learning from the literature using the Keras library. The results show that the recommended configuration (Height Shift Range = 0.2; Width Shift Range = 0.2; Zoom Range =0.2) reached an accuracy of 95.6 % in the test step of first case study. In addition, the hyperparameters recommended by proposed method also achieved the best test results for second case study: 93.3 % .

3.
Appl Soft Comput ; 113: 107878, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34512217

RESUMO

In recent times, COVID-19, has a great impact on the healthcare sector and results in a wide range of respiratory illnesses. It is a type of Ribonucleic acid (RNA) virus, which affects humans as well as animals. Though several artificial intelligence-based COVID-19 diagnosis models have been presented in the literature, most of the works have not focused on the hyperparameter tuning process. Therefore, this paper proposes an intelligent COVID-19 diagnosis model using a barnacle mating optimization (BMO) algorithm with a cascaded recurrent neural network (CRNN) model, named BMO-CRNN. The proposed BMO-CRNN model aims to detect and classify the existence of COVID-19 from Chest X-ray images. Initially, pre-processing is applied to enhance the quality of the image. Next, the CRNN model is used for feature extraction, followed by hyperparameter tuning of CRNN via the BMO algorithm to improve the classification performance. The BMO algorithm determines the optimal values of the CRNN hyperparameters namely learning rate, batch size, activation function, and epoch count. The application of CRNN and hyperparameter tuning using the BMO algorithm shows the novelty of this work. A comprehensive simulation analysis is carried out to ensure the better performance of the BMO-CRNN model, and the experimental outcome is investigated using several performance metrics. The simulation results portrayed that the BMO-CRNN model has showcased optimal performance with an average sensitivity of 97.01%, specificity of 98.15%, accuracy of 97.31%, and F-measure of 97.73% compared to state-of-the-art methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA