Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731994

RESUMO

The mechanism of ethylene (ET)-regulated salinity stress response remains largely unexplained, especially for semi-halophytes and halophytes. Here, we present the results of the multifaceted analysis of the model semi-halophyte Mesembryanthemum crystallinum L. (common ice plant) ET biosynthesis pathway key components' response to prolonged (14 days) salinity stress. Transcriptomic analysis revealed that the expression of 3280 ice plant genes was altered during 14-day long salinity (0.4 M NaCl) stress. A thorough analysis of differentially expressed genes (DEGs) showed that the expression of genes involved in ET biosynthesis and perception (ET receptors), the abscisic acid (ABA) catabolic process, and photosynthetic apparatus was significantly modified with prolonged stressor presence. To some point this result was supported with the expression analysis of the transcript amount (qPCR) of key ET biosynthesis pathway genes, namely ACS6 (1-aminocyclopropane-1-carboxylate synthase) and ACO1 (1-aminocyclopropane-1-carboxylate oxidase) orthologs. However, the pronounced circadian rhythm observed in the expression of both genes in unaffected (control) plants was distorted and an evident downregulation of both orthologs' was induced with prolonged salinity stress. The UPLC-MS analysis of the ET biosynthesis pathway rate-limiting semi-product, namely of 1-aminocyclopropane-1-carboxylic acid (ACC) content, confirmed the results assessed with molecular tools. The circadian rhythm of the ACC production of NaCl-treated semi-halophytes remained largely unaffected by the prolonged salinity stress episode. We speculate that the obtained results represent an image of the steady state established over the past 14 days, while during the first hours of the salinity stress response, the view could be completely different.


Assuntos
Etilenos , Regulação da Expressão Gênica de Plantas , Estresse Salino , Plantas Tolerantes a Sal , Etilenos/biossíntese , Etilenos/metabolismo , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Mesembryanthemum/metabolismo , Mesembryanthemum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vias Biossintéticas , Perfilação da Expressão Gênica/métodos , Ácido Abscísico/metabolismo , Salinidade , Transcriptoma
2.
Plants (Basel) ; 13(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38475526

RESUMO

Nanotechnologies can improve plant growth, protect it from pathogens, and enrich it with bioactive and mineral substances. In order to fill the lack of knowledge about the combined environmental effects of lighting and nanoparticles (NPs) on plants, this study is designed to investigate how different HPS and LED lighting combined with CuO and ZnO NPs influence the elemental composition of ice plants (Mesembryanthemum crystallinum L.). Plants were grown in hydroponic systems with LED and HPS lighting at 250 ± 5 µmol m-2 s-1 intensity, sprayed with aqueous suspensions of CuO (40 nm, 30 ppm) and ZnO (35-45 nm, 800 ppm) NPs; their elemental composition was measured using an ICP-OES spectrometer and hazard quotients were calculated. LED lighting combined with the application of ZnO NPs significantly affected Zn accumulation in plant leaves. Cu accumulation was higher when plants were treated with CuO NPs and HPS illumination combined. The calculated hazard quotients showed that the limits are not exceeded when applying our selected concentrations and growth conditions on ice plants. In conclusion, ice plants had a more significant positive effect on the accumulation of macro- and microelements under LED lighting than HPS. NPs had the strongest effect on the increase in their respective microelements.

3.
Saudi J Biol Sci ; 31(1): 103876, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38161387

RESUMO

Mesembryanthemum crystallinum L. is an annual halophyte that originated from southern Africa. However, little has been reported about factors that modulate the quantity of secondary metabolites in the plant. In this study, the twin effect of different nitrogen concentrations (0.36, 0.6, 0.8 g/L) and growing media (LECA clay, peat, vermiculite and silica sand) on plant growth, chlorophyll contents, minerals, proximate and antioxidant metabolites in hydroponically cultivated M. crystallinum was investigated. This is important to determine the dosage of N fertilizer that will optimize the bio-productivity and biosynthesis of secondary metabolites and antioxidants in M. crystallinum grown in a hydroponic system. The untreated plant (0 g/L N) was taken as the control. At the end of the experiment, optimum yields in leaf number (9.2), fresh weight (50.40 g), Ca, N, and Protein (34.04 %) were recorded in M. crystallinum grown with peat enhanced with different dosages of N-fertilizer. Likewise, chlorophyll level, dry weight, ABTS/TEAC, FRAP, ADF and NDF contents were optimized in LECA clay treated with N-fertilizer. Silica sand with 0.36 g/L dosage of nitrogen fertilizer optimized P, Mn and Zn levels, so also the moisture (9.83 % at 0.8 g/L N), fat (2.38 %, 0 g/L N) and carbohydrates (44.98 and 44.95 %). The highest ash content, Mg and Fe were recorded in the untreated vermiculite as well as polyphenols and K, at 0.6 g/L; Cu and root length (14.60 cm), at 0.8 g/L. In conclusion, different dosages of nitrogen fertilizer and growing media could enhance the growth potential, chlorophyll, phytochemicals, and nutritional properties of M. crystallinum.

4.
Curr Issues Mol Biol ; 45(8): 6415-6431, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37623224

RESUMO

Type 2 diabetes (T2D) is a serious health issue with increasing incidences worldwide. However, current medications have limitations due to side effects such as decreased appetite, stomach pain, diarrhea, and extreme tiredness. Here, we report the effect of fermented ice plant (FMC) in the T2M mouse model of db/db mice. FMC showed a greater inhibition of lipid accumulation compared to unfermented ice plant extract. Two-week oral administration with FMC inhibited body weight gain, lowered fasting blood glucose, and improved glucose tolerance. Serum parameters related to T2D including insulin, glycosylated hemoglobin, adiponectin, and cholesterols were improved as well. Histological analysis confirmed the protective effect of FMC on pancreas and liver destruction. FMC treatment significantly increased the expression and phosphorylation of IRS-1, PI3K, and AKT. Additionally, AMP-activated protein kinase phosphorylation and nuclear factor erythroid 2-related factor 2 were also increased in the liver tissues of db/db mice treated with FMC. Overall, our results indicate the anti-diabetic effect of FMC; therefore, we suggest that FMC may be useful as a therapeutic agent for T2D.

5.
Foods ; 12(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37444220

RESUMO

The ice plant is a species that is grown mainly in the dry regions of the American West and contains various minerals and ingredients beneficial for human health, such as inositol and beta-carotene. With the growing trend towards healthy foods, pasta consumption has also increased. Pasta is a convenient and low-glycemic-index food that is composed mainly of carbohydrates, proteins, lipids, dietary fiber, and trace amounts of minerals. The optimal mixing ratio was evaluated to produce pasta of the highest quality in terms of blood sugar elevation and antioxidant efficacy. The components and minerals of the ice plant, including D-pinitol and inositol, were analyzed, and 20 essential amino acids were identified. In this study, we also investigated the quality and characteristics of ice plant paste and eggs, as well as the quality, antioxidant activity, and formulation of raw materials mixed with ice plant at different ratios. Optimal conditions were found to be 46.73 g of ice plant paste in 100 g of durum wheat flour, 20.23 g of egg, and 2 g of salt, providing a way to develop fresh pasta that enhances the health benefits of ice plant paste without excessive moisture and other ingredients.

6.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37108166

RESUMO

Plant-growth-promoting bacteria (PGPB) help plants thrive in polluted environments and increase crops yield using fewer inputs. Therefore, the design of tailored biofertilizers is of the utmost importance. The purpose of this work was to test two different bacterial synthetic communities (SynComs) from the microbiome of Mesembryanthemum crystallinum, a moderate halophyte with cosmetic, pharmaceutical, and nutraceutical applications. The SynComs were composed of specific metal-resistant plant-growth-promoting rhizobacteria and endophytes. In addition, the possibility of modulating the accumulation of nutraceutical substances by the synergetic effect of metal stress and inoculation with selected bacteria was tested. One of the SynComs was isolated on standard tryptone soy agar (TSA), whereas the other was isolated following a culturomics approach. For that, a culture medium based on M. crystallinum biomass, called Mesem Agar (MA), was elaborated. Bacteria of three compartments (rhizosphere soil, root endophytes, and shoot endophytes) were isolated on standard TSA and MA media, stablishing two independent collections. All bacteria were tested for PGP properties, secreted enzymatic activities, and resistance towards As, Cd, Cu, and Zn. The three best bacteria from each collection were selected in order to produce two different consortiums (denominated TSA- and MA-SynComs, respectively), whose effect on plant growth and physiology, metal accumulation, and metabolomics was evaluated. Both SynComs, particularly MA, improved plant growth and physiological parameters under stress by a mixture of As, Cd, Cu, and Zn. Regarding metal accumulation, the concentrations of all metals/metalloids in plant tissues were below the threshold for plant metal toxicity, indicating that this plant is able to thrive in polluted soils when assisted by metal/metalloid-resistant SynComs and could be safely used for pharmaceutical purposes. Initial metabolomics analyses depict changes in plant metabolome upon exposure to metal stress and inoculation, suggesting the possibility of modulating the concentration of high-value metabolites. In addition, the usefulness of both SynComs was tested in a crop plant, namely Medicago sativa (alfalfa). The results demonstrate the effectiveness of these biofertilizers in alfalfa, improving plant growth, physiology, and metal accumulation.


Assuntos
Arsênio , Mesembryanthemum , Metais Pesados , Poluentes do Solo , Arsênio/metabolismo , Mesembryanthemum/metabolismo , Cádmio/metabolismo , Ágar , Biodegradação Ambiental , Raízes de Plantas/metabolismo , Metais Pesados/metabolismo , Bactérias , Endófitos/metabolismo , Suplementos Nutricionais/análise , Preparações Farmacêuticas/metabolismo , Poluentes do Solo/metabolismo , Solo
7.
F1000Res ; 12: 448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38618020

RESUMO

Background: The common ice plant ( Mesembryanthemum crystallinum L.) is an annual herb belonging to the genus Mesembryanthemum of the family Aizoaceae, native to Southern Africa. Methods: We performed shotgun genome paired-end sequencing using the Illumina platform to determine the genome sequence of the ice plants. We assembled the whole genome sequences using the genome assembler "ALGA" and "Redundans", then released them as available genomic information. Finally, we mainly estimated the potential genomic function by the homology search method. Results: A draft genome was generated with a total length of 286 Mb corresponding to 79.2% of the estimated genome size (361 Mb), consisting of 49,782 contigs. It encompassed 93.49% of the genes of terrestrial higher plants, 99.5% of the ice plant transcriptome, and 100% of known DNA sequences. In addition, 110.9 Mb (38.8%) of repetitive sequences and untranslated regions, 971 tRNA, and 100 miRNA loci were identified, and their effects on stress tolerance and photosynthesis were investigated. Molecular phylogenetic analysis based on ribosomal DNA among 26 kinds of plant species revealed genetic similarity between the ice plant and poplar, which have salt tolerance. Overall, 35,702 protein-coding regions were identified in the genome, of which 56.05% to 82.59% were annotated and submitted to domain searches and gene ontology (GO) analyses, which found that eighteen GO terms stood out among five plant species. These terms were related to biological defense, growth, reproduction, transcription, post-transcription, and intermembrane transportation, regarded as one of the fundamental results of using the utilized ice plant genome. Conclusions: The information that we characterized is useful for elucidation of the mechanism of growth promotion under salinity and reversible conversion of the photosynthetic type from C3 to Crassulacean Acid Metabolism (CAM).

8.
Methods Enzymol ; 676: 347-368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36280357

RESUMO

Among all post-translational modifications of proteins, phosphorylation is one of the most common and most studied. Since plants are sessile organisms, many physiological processes on which their survival depends are regulated by phosphorylation and dephosphorylation. Understanding the extent to which a plant proteome is phosphorylated at specific developmental stages and/or under certain environmental conditions is essential for identifying molecular switches that regulate physiological processes and responses. While most phosphoproteomic workflows proposed in the literature provide tools to exclusively analyze phosphorylated proteins, it is imperative to examine both the proteome and the phosphoproteome to reveal the true complexity of a biological process. Here we describe a mass spectrometry-based phosphoproteomics workflow to analyze both total and phosphorylated proteins. Our method includes phenol-based protein extraction, as well as techniques to measure the quantity and quality of protein extracts. In addition, we compare in detail the efficiency and suitability of in-gel and in-solution trypsin digestion methods. A metal oxide affinity chromatography technique for rapid and efficient enrichment of phosphorylated peptides and an LC-MS/MS method for analysis of the phosphorylated peptides are described. Finally, we present and discuss the results generated by applying this workflow to our study of the C3 to CAM transition in the common ice plant (Mesembryanthemum crystallinum). Overall, our workflow provides robust methods for the identification of phosphoproteins and total proteins. It can be broadly applied to many other organisms and sample types, and the results provide a more accurate picture of the molecular switches that regulate different biological processes.


Assuntos
Mesembryanthemum , Proteômica , Proteômica/métodos , Cromatografia Líquida/métodos , Proteoma/análise , Mesembryanthemum/metabolismo , Espectrometria de Massas em Tandem/métodos , Tripsina/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Óxidos , Fenóis/análise , Fosfopeptídeos/metabolismo
9.
Foods ; 11(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36140917

RESUMO

Common ice plant (Mesembryanthemum crystallinum L.) is a novel edible plant with a succulent and savory flavor. The plants display prominent epidermal bladder cells (EBCs) on the surface of the leaves that store water and sodium chloride (NaCl). The plants have high nutritional value and are adapted to saline soils. Previous research has determined the impact of NaCl on the growth and mineral content of ice plant, but as NaCl has an impact on a food's sensory properties, an interesting question is whether saline growth media can affect the plant's taste and texture, and if this alters consumers' sensory response to ice plant. The objective of this study was to evaluate the sensory aspects of ice plant, as well as consumer liking in response to increasing NaCl concentration in hydroponic nutrient solution. Four-week-old seedlings of ice plant were transplanted into deep water culture (DWC) hydroponic systems and treated with five NaCl concentrations (0 M [control], 0.05 M, 0.10 M, 0.20 M, and 0.40 M NaCl). Eight-week-old plants (after four weeks of NaCl treatment) were harvested, and the middle leaves of each plant were sampled for consumer testing. A total of 115 participants evaluated various flavor, texture, and appearance aspects of ice plant and provided their liking ratings. The consumers were able to discriminate differences in salt intensity from the plants based on NaCl treatment in the hydroponic nutrient solution. Low NaCl concentrations (0.05-0.10 M) did not have obvious adverse effect on consumer liking, which aligns with the result of previous research that 0.05-0.10 M NaCl could largely stimulate the growth of ice plant. NaCl concentrations higher than 0.20 M are not recommended from both a production and consumer perspective. With increased NaCl level in plant samples, the consumers detected more saltiness, sourness, and fishiness, less green flavor, and similar levels of bitterness and sweetness. NaCl treatment had no effects on leaf appearance and texture, and the consumers' overall liking was mainly determined by flavor. Overall, ice plant presents some unique attributes (salty and juicy) compared to other edible salad greens; however, consumer awareness of ice plant is very low, and purchase intent is relatively low as well. Consumers picture ice plant being used mainly in salads and in restaurants.

10.
Plant Biotechnol J ; 20(11): 2107-2122, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35838009

RESUMO

Ice plant (Mesembryanthemum crystallinum), a member of the Aizoaceae family, is a typical halophyte crop and a model plant for studying the mechanism of transition from C3 photosynthesis to crassulacean acid metabolism (CAM). Here, we report a high-quality chromosome-level ice plant genome sequence. This 98.05% genome sequence is anchored to nine chromosomes, with a total length of 377.97 Mb and an N50 scaffold of 40.45 Mb. Almost half of the genome (48.04%) is composed of repetitive sequences, and 24 234 genes have been annotated. Subsequent to the ancient whole-genome triplication (WGT) that occurred in eudicots, there has been no recent whole-genome duplication (WGD) or WGT in ice plants. However, we detected a novel WGT event that occurred in the same order in Simmondsia chinensis, which was previously overlooked. Our findings revealed that ice plants have undergone chromosome rearrangements and gene removal during evolution. Combined with transcriptome and comparative genomic data and expression verification, we identified several key genes involved in the CAM pathway and constructed a comprehensive network. As the first genome of the Aizoaceae family to be released, this report will provide a rich data resource for comparative and functional genomic studies of Aizoaceae, especially for studies on salt tolerance and C3-to-CAM transitions to improve crop yield and resistance.


Assuntos
Mesembryanthemum , Mesembryanthemum/genética , Metabolismo Ácido das Crassuláceas , Fotossíntese , Genoma de Planta/genética , Plantas Tolerantes a Sal/genética , Evolução Molecular
11.
Front Plant Sci ; 13: 888391, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783928

RESUMO

Despite the recent discoveries on how DNA methylation could help plants to adapt to changing environments, the relationship between epigenetics and climate change or invasion in new areas is still poorly known. Here, we investigated, through a field experiment, how the new expected climate scenarios for Southern Europe, i.e., increased temperature and decreased rainfall, might affect global DNA methylation in relation to phenotypic variation in individuals of clonal plant, Carpobrotus edulis, from its native (Southern African) and invaded (northwestern Iberian Peninsula) area. Our results showed that changes in temperature and rainfall induced phenotypic but not global DNA methylation differences among plants, and the climatic effects were similar for plants coming from the native or invaded areas. The individuals from the Iberian Peninsula showed higher levels of global methylation than their native counterparts from South Africa. We also observed differences between natives and invasive phenotypes in traits related to the pattern of biomass partitioning and to the strategies for water uptake and use and found an epigenetic contribution to phenotypic changes in some leaf traits, especially on the nitrogen isotopic composition. We conclude that the increased temperature and decreased rainfall projected for Southern Europe during the course of the twenty-first century may foster phenotypic changes in C. edulis, possibly endowing this species with a higher ability to successful cope the rapid environmental shifts. The epigenetic and phenotypic divergence that we observed between native and invasive plants suggests an intraspecific functional variation during the process of invasion. This result could indicate that phenotypic plasticity and global DNA methylation are related to the colonization of new habitats. Our findings reinforce the importance of epigenetic plasticity on rapid adaptation of invasive clonal plants.

12.
Foods ; 11(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35681331

RESUMO

This study aims to determine the potential antioxidant, antihypertensive, hypoglycaemic and nootropic activity of a purified polyphenolic extract from the halophyte ice plant (Mesembryanthemum crystallinum). The ice plant extract showed good antioxidant activity measured by DPPH, ORAC, TEAC, FRAP and ferrous ion chelating activity. Moreover, the extract showed potent ACE, DPP-IV and PEP-inhibitory activity (90.5%, 98.6% and 73.1%, respectively, at a final concentration of 1 mg/mL). The extract was fractionated and the fraction with the highest content of total phenolic compounds showed the highest bioactivity, suggesting that polyphenols could be mainly responsible for the abovementioned activities. The tentative polyphenol identification by HPLC-ESI-QTOF-MS in this fraction revealed that flavones (>65%) are the major group, with apigenin (38%) predominating, followed by diosmin (17.7%) and luteolin (11.9%). They could presumably be the main elements responsible for the enzymatic inhibition activity. Additionally, 4-hydroxybenzoic acid, p-coumaric acid and a hydroxycinnamic acid derivative (2-O-(p-cumaroyl)-l-malic acid) were found in the extract. To our knowledge, this is the first time that some of these activities have been reported for halophyte extracts.

13.
Front Plant Sci ; 13: 820097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350303

RESUMO

The common ice plant, Mesembryanthemum crystallinum L., has recently been found as a good candidate for phytoremediation of heavy-metal polluted soils. This semi-halophyte is a C3/CAM (Crassulacean acid metabolism) intermediate plant capable of tolerating extreme levels of cadmium in the soil. The aim of the work was to obtain and characterize novel, Cd-tolerant microbial strains that populate the root zone of M. crystallinum performing different types of photosynthetic metabolism and growing in Cd-contaminated substrates. The plants exhibiting either C3 or CAM photosynthesis were treated for 8 days with different CdCl2 doses to obtain final Cd concentrations ranging from 0.82 to 818 mg⋅kg-1 of soil d.w. The CAM phase was induced by highly saline conditions. After treatment, eighteen bacterial and three yeast strains were isolated from the rhizosphere and, after preliminary Cd-resistance in vitro test, five bacterial strains were selected and identified with a molecular proteomics technique. Two strains of the species Providencia rettgeri (W6 and W7) were obtained from the C3 phase and three (one Paenibacillus glucanolyticus S7 and two Rhodococcus erythropolis strains: S4 and S10) from the CAM performing plants. The isolates were further tested for Cd-resistance (treatment with either 1 mM or 10 mM CdCl2) and salinity tolerance (0.5 M NaCl) in model liquid cultures (incubation for 14 days). Providencia rettgeri W7 culture remained fully viable at 1 mM Cd, whereas Rh. erythropolis S4 and S10 together with P. glucanolyticus S7 were found to be resistant to 10 mM Cd in the presence of 0.5 M NaCl. It is suggested that the high tolerance of the common ice plant toward cadmium may result from the synergic action of the plant together with the Cd/salt-resistant strains occurring within rhizospheral microbiota. Moreover, the isolated bacteria appear as promising robust microorganisms for biotechnological applications in bio- and phytoremediation projects.

14.
Am J Bot ; 108(10): 1902-1916, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34636413

RESUMO

PREMISE: Biological invasions and climate change are major threats to biodiversity. It is therefore important to anticipate how the climate changes projected for Southern Europe would affect the ecophysiological performance of the invasive South African plant, Carpobrotus edulis (ice plant or sour fig), and its capacity to undergo rapid adaptive evolution. METHODS: We manipulated the climate conditions in a field plot located on the island of Sálvora (northwest of the Iberian Peninsula) to establish a full factorial experiment with C. edulis plants transplanted from four native (southern African) and four invasive (northwestern Iberian Peninsula) populations. Throughout 14 months we measured growth and functional traits of this species under two temperatures (control vs. increased), and two rainfall levels (control vs. reduced). RESULTS: Temperature increased photochemical efficiency and relative growth rate of C. edulis. Rainfall modulated some of the effects of temperature on C and N isotopic composition, and pigment contents. Invasive populations showed lower root mass allocation and higher survival rates, as well as increased water use efficiency, lipid peroxidation, chlorophyll, and xanthophyll cycle pigment contents than native populations. CONCLUSIONS: The increased growth and physiological performances observed under our experimental conditions suggest that the expected climate changes would further promote the invasion of C. edulis. Differences between native and invasive genotypes in survival and functional traits revealed that populations have diverged during the process of invasion, what gives support to the invasiveness hypothesis. Our findings highlight the importance of analyzing intraspecific variability in functional responses to better predict how invasive species will respond to environmental changes.


Assuntos
Aizoaceae , Mudança Climática , Espécies Introduzidas , Plantas , Temperatura
15.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445127

RESUMO

The common ice plant (Mesembryanthemum crystallinum L.) is a facultative crassulacean acid metabolism (CAM) plant, and its ability to recover from stress-induced CAM has been confirmed. We analysed the photosynthetic metabolism of this plant during the 72-h response period following salinity stress removal from three perspectives. In plants under salinity stress (CAM) we found a decline of the quantum efficiencies of PSII (Y(II)) and PSI (Y(I)) by 17% and 15%, respectively, and an increase in nonphotochemical quenching (NPQ) by almost 25% in comparison to untreated control. However, 48 h after salinity stress removal, the PSII and PSI efficiencies, specifically Y(II) and Y(I), elevated nonphotochemical quenching (NPQ) and donor side limitation of PSI (YND), were restored to the level observed in control (C3 plants). Swelling of the thylakoid membranes, as well as changes in starch grain quantity and size, have been found to be components of the salinity stress response in CAM plants. Salinity stress induced an over 3-fold increase in average starch area and over 50% decline of average seed number in comparison to untreated control. However, in plants withdrawn from salinity stress, during the first 24 h of recovery, we observed chloroplast ultrastructures closely resembling those found in intact (control) ice plants. Rapid changes in photosystem functionality and chloroplast ultrastructure were accompanied by the induction of the expression (within 24 h) of structural genes related to the PSI and PSII reaction centres, including PSAA, PSAB, PSBA (D1), PSBD (D2) and cp43. Our findings describe one of the most flexible photosynthetic metabolic pathways among facultative CAM plants and reveal the extent of the plasticity of the photosynthetic metabolism and related structures in the common ice plant.


Assuntos
Metabolismo Ácido das Crassuláceas/genética , Mesembryanthemum/genética , Fotossíntese/genética , Estresse Salino/genética , Cloroplastos/efeitos dos fármacos , Cloroplastos/genética , Metabolismo Ácido das Crassuláceas/efeitos dos fármacos , Mesembryanthemum/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Plastídeos/efeitos dos fármacos , Plastídeos/genética , Salinidade , Estresse Salino/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Amido/genética , Tilacoides/efeitos dos fármacos , Tilacoides/genética
16.
J Plant Physiol ; 262: 153448, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34058643

RESUMO

The halophyte ice plant (Mesembryanthemum crystallinum) converts its mode of photosynthesis from C3 to crassulacean acid metabolism (CAM) during severe water stress. During the transition to CAM, the plant induces CAM-related genes and changes its diurnal stomatal behavior to take up CO2 efficiently at night. However, limited information concerning this signaling exists. Here, we investigated the changes in the diurnal stomatal behavior of M. crystallinum during its shift in photosynthesis using a detached epidermis. M. crystallinum plants grown under C3 conditions opened their stomata during the day and closed them at night. However, CAM-induced plants closed their stomata during the day and opened them at night. Quantitative analysis of endogenous phytohormones revealed that trans-zeatin levels were high in CAM-induced plants. In contrast, the levels of jasmonic acid (JA) and JA-isoleucine were severely reduced in CAM-induced plants, specifically at night. CAM induction did not alter the levels of abscisic acid; however, inhibitors of abscisic acid synthesis suppressed CAM-induced stomatal closure. These results indicate that M. crystallinum regulates the diurnal balance of cytokinin and JA during CAM transition to alter stomatal behavior.


Assuntos
Metabolismo Ácido das Crassuláceas , Mesembryanthemum/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Estômatos de Plantas/fisiologia , Plantas Tolerantes a Sal/metabolismo , Ácido Abscísico/metabolismo , Ritmo Circadiano , Metabolismo Ácido das Crassuláceas/fisiologia , Ciclopentanos/metabolismo , Citocininas/metabolismo , Citocininas/fisiologia , Regulação da Expressão Gênica de Plantas , Mesembryanthemum/fisiologia , Oxilipinas/metabolismo , Epiderme Vegetal/metabolismo , Folhas de Planta/metabolismo , Estômatos de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Plantas Tolerantes a Sal/fisiologia
17.
Sci Total Environ ; 775: 144893, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33618299

RESUMO

Coastal soil is an important land reserve that may be used to alleviate the shortage of cultivated land; however, this soil is stressed by saline conditions and nutrient deficiency. Biochar offers the potential to reclaim coastal soil, but the response of plant growth to biochar addition in salt-affected soil is species-dependent. In this study, the response of ice plant (Mesembryanthemum crystallinum L.), an economically valuable halophyte that grows in the coastal soil of the Yellow River Delta, to wood chip biochar (WBC) either alone or in combination with chemical fertilizer was investigated using a 90-day pot experiment. The WBC enhanced the growth of ice plants in the coastal soil, but combining it with chemical fertilizer did not increase its effect. The nutritional quality of the plants was improved by the addition of WBC, regardless of whether chemical fertilizer was applied; moreover, WBC amendment enhanced photosynthesis and reduced the oxidative stress of the plants. The ameliorated soil properties (e.g., soil organic matter and water holding capacity) and increased contents of available macronutrients (e.g., P and K) and micronutrients (e.g., Mg, Mn, B and Zn) resulting from soil amendment with WBC may have contributed to the enhanced growth and quality of the ice plants. Additionally, in soil modified with WBC, an increased abundance of beneficial taxa (e.g., Erythrobacter, Sphingomonas and Lysobacter) and a shift in the microbial community may also have helped to improve the growth and quality of the ice plants. The results of our study provide useful information for developing a biochar-based technology to use in combination with valuable halophytes to reclaim degraded coastal soil and enhance food security.


Assuntos
Mesembryanthemum , Solo , Carvão Vegetal , China , Fertilizantes , Rios
18.
Plant Mol Biol ; 103(6): 653-667, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32468353

RESUMO

ABSTARCT: KEY MESSAGE: The timing and transcriptomic changes during the C3 to CAM transition of common ice plant support the notion that guard cells themselves can shift from C3 to CAM. Crassulacean acid metabolism (CAM) is a specialized type of photosynthesis: stomata close during the day, enhancing water conservation, and open at night, allowing CO2 uptake. Mesembryanthemum crystallinum (common ice plant) is a facultative CAM species that can shift from C3 photosynthesis to CAM under salt or drought stresses. However, the molecular mechanisms underlying the stress induced transition from C3 to CAM remain unknown. Here we determined the transition time from C3 to CAM in M. crystallinum under salt stress. In parallel, single-cell-type transcriptomic profiling by 3'-mRNA sequencing was conducted in isolated stomatal guard cells to determine the molecular changes in this key cell type during the transition. In total, 495 transcripts showed differential expression between control and salt-treated samples during the transition, including 285 known guard cell genes, seven CAM-related genes, 18 transcription factors, and 185 other genes previously not found to be expressed in guard cells. PEPC1 and PPCK1, which encode key enzymes of CAM photosynthesis, were up-regulated in guard cells after seven days of salt treatment, indicating that guard cells themselves can shift from C3 to CAM. This study provides important information towards introducing CAM stomatal behavior into C3 crops to enhance water use efficiency.


Assuntos
Mesembryanthemum/genética , Perfilação da Expressão Gênica , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Mesembryanthemum/fisiologia , Fotossíntese/genética , Fotossíntese/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Am J Bot ; 106(11): 1454-1465, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31658373

RESUMO

PREMISE: Hybridization between the South African invasive species Carpobrotus edulis and C. acinaciformis in Europe has led to the formation of highly aggressive morphotypes referred to in the scientific literature as the new large "hybrid swarm" C. aff. acinaciformis. In the present study, we aimed to determine whether the taxonomic differentiation between taxa coincides with ecophysiological differentiation. With this aim, we tested for differences between both morphotypes in functional traits related to competitive ability and resource-use efficiency. Assuming that the complex hybrid C. aff. acinaciformis is more vigorous, depends more strongly on vegetative reproduction, and invests less in sexual reproduction than C. edulis, we predicted that the hybrid would show higher competitive ability and better physiological performance compared with the species. METHODS: We used a comparative ecophysiological approach to assess the extent to which two Carpobrotus morphotypes coexisting in northwestern Spain differ in physiological, reproductive, and growth traits when competing under different soil nutrients in controlled greenhouse conditions. RESULTS: C. aff. acinaciformis had a greater relative growth rate and water-use and photochemical efficiencies compared to C. edulis. However, C. edulis appeared to be more responsive to incremental change in soil nutrients than C. aff. acinaciformis. They also differed in the amount of resources invested in reproduction. CONCLUSIONS: The study findings demonstrate that the taxonomic differentiation between taxa corresponds to ecophysiological differentiation, warranting a detailed examination of all existing trades-offs to predict the long-term outcomes of the interaction between these taxa.


Assuntos
Aizoaceae , Espécies Introduzidas , Europa (Continente) , Nutrientes , Espanha
20.
J Plant Physiol ; 240: 153005, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31271976

RESUMO

Many areas exhibiting increased concentrations of soluble salts are simultaneously polluted with heavy metals (HM), and halophytes with extended tolerance to heavy metal toxicity seem to represent a promising tool for their phytoremediation. In this study, the response of the soil-grown C3-CAM (Crassulacean acid metabolism) intermediate halophyte Mesembryanthemum crystallinum (common ice plant) to increased concentrations of Cd (0.01-1 mM) was investigated. None of the tested Cd treatments affected growth parameters or tissue water content of either C3 or CAM-performing plants. Chlorophyll a fluorescence confirmed high tolerance of the photosynthetic apparatus of both metabolic states towards Cd. Plants performing both photosynthesis types accumulated significant Cd amounts only under the highest (1 mM) treatment, and the metal was primarily deposited in the roots, which are features typical of an excluding strategy. Upon the application of 1 mM Cd solution CAM-performing plants, due to the NaCl pre-treatment applied for CAM induction, were exposed to significantly higher amounts of bioavailable Cd in comparison with those of C3-performing plants. As a result, roots of CAM plants accumulated over 4-fold higher Cd amounts when compared with C3 plants. In our opinion, enhanced Cd-accumulating potential observed in CAM-performing plants was the effect of osmotic stress episode and resulting modifications e.g. in the detoxifying capacity of the antioxidative system. Increased antioxidative potential of NaCl pre-treated plants was pronounced with significantly higher activity of CuZnSOD (copper-zinc superoxide dismutase), not achievable in C3 plants subjected to high Cd concentrations. Moreover, the applied Cd doses induced SOD activity in a compartment-dependent manner only in C3 plants. We confirmed that none of the applied Cd concentrations initiated the metabolic shift from C3 to CAM.


Assuntos
Cádmio/efeitos adversos , Mesembryanthemum/efeitos dos fármacos , Plantas Tolerantes a Sal/efeitos dos fármacos , Poluentes do Solo/efeitos adversos , Relação Dose-Resposta a Droga , Mesembryanthemum/enzimologia , Mesembryanthemum/crescimento & desenvolvimento , Mesembryanthemum/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/enzimologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plantas Tolerantes a Sal/enzimologia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA