Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38981667

RESUMO

OBJECTIVE: The metabolic characteristics of liver cancer drive considerable hurdles to immune cells function and cancer immunotherapy. However, how metabolic reprograming in the tumour microenvironment impairs the antitumour immune response remains unclear. DESIGN: Human samples and multiple murine models were employed to evaluate the correlation between GPR109A and liver cancer progression. GPR109A knockout mice, immune cells depletion and primary cell coculture models were used to determine the regulation of GPR109A on tumour microenvironment and identify the underlying mechanism responsible for the formation of intratumour GPR109A+myeloid cells. RESULTS: We demonstrate that glutamine shortage in liver cancer tumour microenvironment drives an immunosuppressive GPR109A+myeloid cells infiltration, leading to the evasion of immune surveillance. Blockade of GPR109A decreases G-MDSCs and M2-like TAMs abundance to trigger the antitumour responses of CD8+ T cells and further improves the immunotherapy efficacy against liver cancer. Mechanistically, tumour cells and tumour-infiltrated myeloid cells compete for glutamine uptake via the transporter SLC1A5 to control antitumour immunity, which disrupts the endoplasmic reticulum (ER) homoeostasis and induces unfolded protein response of myeloid cells to promote GPR109A expression through IRE1α/XBP1 pathway. The restriction of glutamine uptake in liver cancer cells, as well as the blockade of IRE1α/XBP1 signalling or glutamine supplementation, can eliminate the immunosuppressive effects of GPR109A+ myeloid cells and slow down tumour progression. CONCLUSION: Our findings identify the immunometabolic crosstalk between liver cancer cells and myeloid cells facilitates tumour progression via a glutamine metabolism/ER stress/GPR109A axis, suggesting that GPR109A can be exploited as an immunometabolic checkpoint and putative target for cancer treatment.

2.
Gut ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724220

RESUMO

OBJECTIVE: Previous studies indicate that eosinophils are recruited into the allograft following orthotopic liver transplantation and protect from ischaemia reperfusion (IR) injury. In the current studies, we aim to explore whether their protective function could outlast during liver repair. DESIGN: Eosinophil-deficient mice and adoptive transfer of bone marrow-derived eosinophils (bmEos) were employed to investigate the effects of eosinophils on tissue repair and regeneration after hepatic IR injury. Aside from exogenous cytokine or neutralising antibody treatments, mechanistic studies made use of a panel of mouse models of eosinophil-specific IL-4/IL-13-deletion, cell-specific IL-4rα-deletion in liver macrophages and hepatocytes and macrophage-specific deletion of heparin-binding epidermal growth factor-like growth factor (hb-egf). RESULT: We observed that eosinophils persisted over a week following hepatic IR injury. Their peak accumulation coincided with that of hepatocyte proliferation. Functional studies showed that eosinophil deficiency was associated with a dramatic delay in liver repair, which was normalised by the adoptive transfer of bmEos. Mechanistic studies demonstrated that eosinophil-derived IL-4, but not IL-13, was critically involved in the reparative function of these cells. The data further revealed a selective role of macrophage-dependent IL-4 signalling in liver regeneration. Eosinophil-derived IL-4 stimulated macrophages to produce HB-EGF. Moreover, macrophage-specific hb-egf deletion impaired hepatocyte regeneration after IR injury. CONCLUSION: Together, these studies uncovered an indispensable role of eosinophils in liver repair after acute injury and identified a novel crosstalk between eosinophils and macrophages through the IL-4/HB-EGF axis.

3.
Gut ; 73(2): 325-337, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37788895

RESUMO

OBJECTIVE: Primary sclerosing cholangitis (PSC) is characterised by bile duct strictures and progressive liver disease, eventually requiring liver transplantation. Although the pathogenesis of PSC remains incompletely understood, strong associations with HLA-class II haplotypes have been described. As specific HLA-DP molecules can bind the activating NK-cell receptor NKp44, we investigated the role of HLA-DP/NKp44-interactions in PSC. DESIGN: Liver tissue, intrahepatic and peripheral blood lymphocytes of individuals with PSC and control individuals were characterised using flow cytometry, immunohistochemical and immunofluorescence analyses. HLA-DPA1 and HLA-DPB1 imputation and association analyses were performed in 3408 individuals with PSC and 34 213 controls. NK cell activation on NKp44/HLA-DP interactions was assessed in vitro using plate-bound HLA-DP molecules and HLA-DPB wildtype versus knock-out human cholangiocyte organoids. RESULTS: NKp44+NK cells were enriched in livers, and intrahepatic bile ducts of individuals with PSC showed higher expression of HLA-DP. HLA-DP haplotype analysis revealed a highly elevated PSC risk for HLA-DPA1*02:01~B1*01:01 (OR 1.99, p=6.7×10-50). Primary NKp44+NK cells exhibited significantly higher degranulation in response to plate-bound HLA-DPA1*02:01-DPB1*01:01 compared with control HLA-DP molecules, which were inhibited by anti-NKp44-blocking. Human cholangiocyte organoids expressing HLA-DPA1*02:01-DPB1*01:01 after IFN-γ-exposure demonstrated significantly increased binding to NKp44-Fc constructs compared with unstimulated controls. Importantly, HLA-DPA1*02:01-DPB1*01:01-expressing organoids increased degranulation of NKp44+NK cells compared with HLA-DPB1-KO organoids. CONCLUSION: Our studies identify a novel PSC risk haplotype HLA-DP A1*02:01~DPB1*01:01 and provide clinical and functional data implicating NKp44+NK cells that recognise HLA-DPA1*02:01-DPB1*01:01 expressed on cholangiocytes in PSC pathogenesis.


Assuntos
Colangite Esclerosante , Humanos , Haplótipos , Colangite Esclerosante/genética , Cadeias alfa de HLA-DP/genética , Células Matadoras Naturais
4.
Gut ; 72(10): 1971-1984, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37541771

RESUMO

OBJECTIVE: Exhausted T cells with limited effector function are enriched in chronic hepatitis B and C virus (HBV and HCV) infection. Metabolic regulation contributes to exhaustion, but it remains unclear how metabolism relates to different exhaustion states, is impacted by antiviral therapy, and if metabolic checkpoints regulate dysfunction. DESIGN: Metabolic state, exhaustion and transcriptome of virus-specific CD8+ T cells from chronic HBV-infected (n=31) and HCV-infected patients (n=52) were determined ex vivo and during direct-acting antiviral (DAA) therapy. Metabolic flux and metabolic checkpoints were tested in vitro. Intrahepatic virus-specific CD8+ T cells were analysed by scRNA-Seq in a HBV-replicating murine in vivo model of acute and chronic infection. RESULTS: HBV-specific (core18-27, polymerase455-463) and HCV-specific (NS31073-1081, NS31406-1415, NS5B2594-2602) CD8+ T cell responses exhibit heterogeneous metabolic profiles connected to their exhaustion states. The metabolic state was connected to the exhaustion profile rather than the aetiology of infection. Mitochondrial impairment despite intact glucose uptake was prominent in severely exhausted T cells linked to elevated liver inflammation in chronic HCV infection and in HBV polymerase455-463 -specific CD8+ T cell responses. In contrast, relative metabolic fitness was observed in HBeAg-negative HBV infection in HBV core18-27-specific responses. DAA therapy partially improved mitochondrial programmes in severely exhausted HCV-specific T cells and enriched metabolically fit precursors. We identified enolase as a metabolic checkpoint in exhausted T cells. Metabolic bypassing improved glycolysis and T cell effector function. Similarly, enolase deficiency was observed in intrahepatic HBV-specific CD8+ T cells in a murine model of chronic infection. CONCLUSION: Metabolism of HBV-specific and HCV-specific T cells is strongly connected to their exhaustion severity. Our results highlight enolase as metabolic regulator of severely exhausted T cells. They connect differential bioenergetic fitness with distinct exhaustion subtypes and varying liver disease, with implications for therapeutic strategies.


Assuntos
Hepatite B Crônica , Hepatite C Crônica , Hepatite C , Humanos , Animais , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Antivirais/uso terapêutico , Infecção Persistente , Hepatite C Crônica/tratamento farmacológico , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/metabolismo , Hepatite C/tratamento farmacológico , Vírus de Hepatite , Vírus da Hepatite B
7.
Gut ; 71(6): 1192-1202, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34344786

RESUMO

OBJECTIVE: Identifying components of immuneparesis, a hallmark of chronic liver failure, is crucial for our understanding of complications in cirrhosis. Various suppressor CD4+ T cells have been established as potent inhibitors of systemic immune activation. Here, we establish the presence, regulation and mechanism of action of a suppressive CD4+ T cell subset expressing human leucocyte antigen G (HLA-G) in patients with acute decompensation of cirrhosis (AD). DESIGN: Flow cytometry was used to determine the proportion and immunophenotype of CD4+HLA-G+ T cells from peripheral blood of 20 healthy controls (HCs) and 98 patients with cirrhosis (28 with stable cirrhosis (SC), 20 with chronic decompensated cirrhosis (CD) and 50 with AD). Transcriptional and functional signatures of cell-sorted CD4+HLA-G+ cells were delineated by NanoString technology and suppression assays, respectively. The role of immunosuppressive cytokine interleukin (IL)-35 in inducing this population was investigated through in vitro blockade experiments. Immunohistochemistry (IHC) and cultures of primary human Kupffer cells (KCs) were performed to assess cellular sources of IL-35. HLA-G-mediated T cell suppression was explored using neutralising antibodies targeting co-inhibitory pathways. RESULTS: Patients with AD were distinguished by an expansion of a CD4+HLA-G+CTLA-4+IL-35+ immunosuppressive population associated with disease severity, clinical course of AD, infectious complications and poor outcome. Transcriptomic analyses excluded the possibility that these were thymic-derived regulatory T cells. IHC analyses and in vitro cultures demonstrate that KCs represent a potent source of IL-35 which can induce the observed HLA-G+ phenotype. These exert cytotoxic T lymphocyte antigen-4-mediated impaired responses in T cells paralleled by an HLA-G-driven downregulation of T helper 17-related cytokines. CONCLUSION: We have identified a cytokine-driven peripherally derived suppressive population that may contribute to immuneparesis in AD.


Assuntos
Antígenos HLA-G , Subpopulações de Linfócitos T , Linfócitos T CD4-Positivos , Citocinas/metabolismo , Humanos , Interleucinas , Cirrose Hepática/patologia
8.
Gut ; 70(9): 1782-1794, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34103404

RESUMO

Approximately 5% of individuals infected with hepatitis B virus (HBV) are coinfected with hepatitis D virus (HDV). Chronic HBV/HDV coinfection is associated with an unfavourable outcome, with many patients developing liver cirrhosis, liver failure and eventually hepatocellular carcinoma within 5-10 years. The identification of the HBV/HDV receptor and the development of novel in vitro and animal infection models allowed a more detailed study of the HDV life cycle in recent years, facilitating the development of specific antiviral drugs. The characterisation of HDV-specific CD4+ and CD8+T cell epitopes in untreated and treated patients also permitted a more precise understanding of HDV immunobiology and possibly paves the way for immunotherapeutic strategies to support upcoming specific therapies targeting viral or host factors. Pegylated interferon-α has been used for treating HDV patients for the last 30 years with only limited sustained responses. Here we describe novel treatment options with regard to their mode of action and their clinical effectiveness. Of those, the entry-inhibitor bulevirtide (formerly known as myrcludex B) received conditional marketing authorisation in the European Union (EU) in 2020 (Hepcludex). One additional drug, the prenylation inhibitor lonafarnib, is currently under investigation in phase III clinical trials. Other treatment strategies aim at targeting hepatitis B surface antigen, including the nucleic acid polymer REP2139Ca. These recent advances in HDV virology, immunology and treatment are important steps to make HDV a less difficult-to-treat virus and will be discussed.


Assuntos
Hepatite D/terapia , Vírus Delta da Hepatite/imunologia , Imunidade Adaptativa , Animais , Hepatite D/imunologia , Hepatite D/virologia , Hepatite D Crônica/imunologia , Hepatite D Crônica/terapia , Hepatite D Crônica/virologia , Vírus Delta da Hepatite/genética , Humanos , Imunidade Inata
9.
Gut ; 70(9): 1734-1745, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33323394

RESUMO

OBJECTIVE: Neutralising antibodies are key effectors of infection-induced and vaccine-induced immunity. Quantification of antibodies' breadth and potency is critical for understanding the mechanisms of protection and for prioritisation of vaccines. Here, we used a unique collection of human specimens and HCV strains to develop HCV reference viruses for quantification of neutralising antibodies, and to investigate viral functional diversity. DESIGN: We profiled neutralisation potency of polyclonal immunoglobulins from 104 patients infected with HCV genotype (GT) 1-6 across 13 HCV strains representing five viral GTs. Using metric multidimensional scaling, we plotted HCV neutralisation onto neutralisation maps. We employed K-means clustering to guide virus clustering and selecting representative strains. RESULTS: Viruses differed greatly in neutralisation sensitivity, with J6 (GT2a) being most resistant and SA13 (GT5a) being most sensitive. They mapped to six distinct neutralisation clusters, in part composed of viruses from different GTs. There was no correlation between viral neutralisation and genetic distance, indicating functional neutralisation clustering differs from sequence-based clustering. Calibrating reference viruses representing these clusters against purified antibodies from 496 patients infected by GT1 to GT6 viruses readily identified individuals with extraordinary potent and broadly neutralising antibodies. It revealed comparable antibody cross-neutralisation and diversity between specimens from diverse viral GTs, confirming well-balanced reporting of HCV cross-neutralisation across highly diverse human samples. CONCLUSION: Representative isolates from six neutralisation clusters broadly reconstruct the functional HCV neutralisation space. They enable high resolution profiling of HCV neutralisation and they may reflect viral functional and antigenic properties important to consider in HCV vaccine design.


Assuntos
Anticorpos Neutralizantes/sangue , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/sangue , Hepatite C/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/imunologia , Hepacivirus/genética , Hepatite C/virologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia
10.
Gut ; 70(10): 1954-1964, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33208407

RESUMO

OBJECTIVE: Lipotoxic hepatocyte injury is a primary event in non-alcoholic steatohepatitis (NASH), but the mechanisms of lipotoxicity are not fully defined. Sphingolipids and free cholesterol (FC) mediate hepatocyte injury, but their link in NASH has not been explored. We examined the role of free cholesterol and sphingomyelin synthases (SMSs) that generate sphingomyelin (SM) and diacylglycerol (DAG) in hepatocyte pyroptosis, a specific form of programmed cell death associated with inflammasome activation, and NASH. DESIGN: Wild-type C57BL/6J mice were fed a high fat and high cholesterol diet (HFHCD) to induce NASH. Hepatic SMS1 and SMS2 expressions were examined in various mouse models including HFHCD-fed mice and patients with NASH. Pyroptosis was estimated by the generation of the gasdermin-D N-terminal fragment. NASH susceptibility and pyroptosis were examined following knockdown of SMS1, protein kinase Cδ (PKCδ), or the NLR family CARD domain-containing protein 4 (NLRC4). RESULTS: HFHCD increased the hepatic levels of SM and DAG while decreasing the level of phosphatidylcholine. Hepatic expression of Sms1 but not Sms2 was higher in mouse models and patients with NASH. FC in hepatocytes induced Sms1 expression, and Sms1 knockdown prevented HFHCD-induced NASH. DAG produced by SMS1 activated PKCδ and NLRC4 inflammasome to induce hepatocyte pyroptosis. Depletion of Nlrc4 prevented hepatocyte pyroptosis and the development of NASH. Conditioned media from pyroptotic hepatocytes activated the NOD-like receptor family pyrin domain containing 3 inflammasome (NLRP3) in Kupffer cells, but Nlrp3 knockout mice were not protected against HFHCD-induced hepatocyte pyroptosis. CONCLUSION: SMS1 mediates hepatocyte pyroptosis through a novel DAG-PKCδ-NLRC4 axis and holds promise as a therapeutic target for NASH.


Assuntos
Hepatócitos/enzimologia , Hepatopatia Gordurosa não Alcoólica/enzimologia , Piroptose , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Gut ; 68(11): 2032-2043, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30635406

RESUMO

OBJECTIVE: Chronic hepatitis B (CHB) virus infection is a global health problem. Finding a cure for CHB remains a challenging task. DESIGN: In this study, poly I:C was employed as an adjuvant for HBV therapeutic vaccine (referred to as pHBV-vaccine) and the feasibility and efficiency of pHBV-vaccine in CHB treatment were evaluated in HBV-carrier mice. RESULTS: We found that pHBV-vaccine decreased HBsAg and HBV DNA efficiently and safely in HBV-carrier mice. Further investigation showed that pHBV-vaccine promoted maturation and antigen presentation ability of dendritic cells in vivo and in vitro. This vaccine successfully restored the exhaustion of antigen-specific CD8+ T cells and partly broke the immune tolerance established in HBV-carrier mice. pHBV-vaccine also enhanced the proliferation and polyfunctionality of HBV-specific CD11ahi CD8αlo cells. Importantly, we observed that T cell activation molecule KLRG1 was only expressed on HBV specific CD11ahi CD8αlo cells. Furthermore, pHBV-vaccine reduced the expression of Eomes and increased the serum IL-12 levels, which in turn promoted the generation of effector memory short-lived effector cells (SLECs) to exhibit a critical role in HBV clearance. SLECs induced by pHBV-vaccine might play a crucial role in protecting from HBV reinfection. CONCLUSIONS: Findings from this study provide a new basis for the development of therapeutic pHBV-vaccine, which might be a potential candidate for clinical CHB therapy.


Assuntos
Antivirais/uso terapêutico , Vacinas contra Hepatite B/uso terapêutico , Hepatite B Crônica/tratamento farmacológico , Poli I-C/uso terapêutico , Animais , Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Hepatite B Crônica/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Gut ; 68(10): 1872-1883, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30580251

RESUMO

OBJECTIVE: Acute-on-chronic liver failure (ACLF) is associated with dysfunctional circulating monocytes whereby patients become highly susceptible to bacterial infections. Here, we identify the pathways underlying monocyte dysfunction in ACLF and we investigate whether metabolic rewiring reinstates their phagocytic and inflammatory capacity. DESIGN: Following phenotypic characterisation, we performed RNA sequencing on CD14+CD16- monocytes from patients with ACLF and decompensated alcoholic cirrhosis. Additionally, an in vitro model mimicking ACLF patient-derived features was implemented to investigate the efficacy of metabolic regulators on monocyte function. RESULTS: Monocytes from patients with ACLF featured elevated frequencies of interleukin (IL)-10-producing cells, reduced human leucocyte antigen DR isotype (HLA-DR) expression and impaired phagocytic and oxidative burst capacity. Transcriptional profiling of isolated CD14+CD16- monocytes in ACLF revealed upregulation of an array of immunosuppressive parameters and compromised antibacterial and antigen presentation machinery. In contrast, monocytes in decompensated cirrhosis showed intact capacity to respond to inflammatory triggers. Culturing healthy monocytes in ACLF plasma mimicked the immunosuppressive characteristics observed in patients, inducing a blunted phagocytic response and metabolic program associated with a tolerant state. Metabolic rewiring of the cells using a pharmacological inhibitor of glutamine synthetase, partially restored the phagocytic and inflammatory capacity of in vitro generated- as well as ACLF patient-derived monocytes. Highlighting its biological relevance, the glutamine synthetase/glutaminase ratio of ACLF patient-derived monocytes positively correlated with disease severity scores. CONCLUSION: In ACLF, monocytes feature a distinct transcriptional profile, polarised towards an immunotolerant state and altered metabolism. We demonstrated that metabolic rewiring of ACLF monocytes partially revives their function, opening up new options for therapeutic targeting in these patients.


Assuntos
Insuficiência Hepática Crônica Agudizada/tratamento farmacológico , Infecções Bacterianas/tratamento farmacológico , Glutamato-Amônia Ligase/antagonistas & inibidores , Imunossupressores/uso terapêutico , Monócitos/enzimologia , Insuficiência Hepática Crônica Agudizada/imunologia , Insuficiência Hepática Crônica Agudizada/metabolismo , Adulto , Infecções Bacterianas/metabolismo , Infecções Bacterianas/patologia , Células Cultivadas , Citocinas/metabolismo , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Fagocitose , Estudos Retrospectivos
13.
Gut ; 67(7): 1317-1327, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29074725

RESUMO

OBJECTIVE: Obesity is a risk factor for non-alcoholic steatohepatitis (NASH). This risk has been attributed to visceral adipose tissue (vAT) expansion associated with increased proinflammatory mediators. Accumulation of CD11c+ proinflammatory adipose tissue macrophages (ATM) is an important driver of vAT inflammation. We investigated the role of ATMs in hepatic inflammation during NASH development. DESIGN: vAT isolated from lean, obese or ATM-depleted (using clodronate liposomes) obese mice was transplanted to lean ldlr-/- acceptor mice. Systemic and hepatic inflammation was assessed either after 2 weeks on standard chow or after 8 weeks on high cholesterol diet (HCD) to induce NASH. RESULTS: Transplanting donor vAT from obese mice increased HCD-induced hepatic macrophage content compared with lean-transplanted mice, worsening liver damage. ATM depletion prior to vAT transplantation reduced this increased hepatic macrophage accumulation. On chow, vAT transplantation induced a more pronounced increase in circulating and hepatic neutrophil numbers in obese-transplanted than lean-transplanted mice, while ATM depletion prior to vAT transplantation reversed this effect. Microarray analysis of fluorescence-activated cell sorting of CD11c+ and CD11c- macrophages isolated from donor adipose tissue showed that obesity resulted in enhanced expression of neutrophil chemotaxis genes specifically in CD11c+ ATMs. Involvement of the neutrophil chemotaxis proteins, CXCL14 and CXCL16, was confirmed by culturing vAT. In humans, CD11c expression in vAT of obese individuals correlated with vAT expression of neutrophil chemotactic genes and with hepatic expression of neutrophil and macrophage marker genes. CONCLUSION: ATMs from obese vAT induce hepatic macrophage accumulation during NASH development, possibly by enhancing neutrophil recruitment.


Assuntos
Tecido Adiposo/patologia , Macrófagos/fisiologia , Infiltração de Neutrófilos/fisiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/complicações , Tecido Adiposo/metabolismo , Animais , Antígenos CD11/metabolismo , Citocinas/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Obesidade/patologia
14.
Gut ; 66(1): 157-167, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26452628

RESUMO

OBJECTIVE: Hepatocellular carcinoma (HCC) is an aggressive malignancy with limited effective treatment options. An alternative strategy is to target cells, such as tumour-infiltrating macrophages, in the HCC tumour microenvironment. The CCL2/CCR2 axis is required for recruitment of monocytes/macrophages and is implicated in various aspects of liver pathology, including HCC. We investigated the feasibility of CCL2/CCR2 as a therapeutic target against HCC. DESIGN: CCL2 expression was analysed in two independent HCC cohorts. Growth of three murine HCC cells was evaluated in an orthotopic model, a postsurgical recurrence model and a subcutaneous model in mice after blocking CCL2/CCR2 axis by a novel CCR2 antagonist or knocking out of host CCR2. In vivo macrophage or T cell depletion and in vitro cell coculture were further conducted to investigate CCL2/CCR2-mediated crosstalk between tumour-associated macrophages (TAMs) and tumour cells. RESULT: CCL2 is overexpressed in human liver cancers and is prognostic for patients with HCC. Blockade of CCL2/CCR2 signalling with knockout of CCR2 or with a CCR2 antagonist inhibits malignant growth and metastasis, reduces postsurgical recurrence, and enhances survival. Further, therapeutic blocking of the CCL2/CCR2 axis inhibits the recruitment of inflammatory monocytes, infiltration and M2-polarisation of TAMs, resulting in reversal of the immunosuppression status of the tumour microenvironment and activation of an antitumorous CD8+ T cell response. CONCLUSIONS: In patients with liver cancer, CCL2 is highly expressed and is a prognostic factor. Blockade of CCL2/CCR2 signalling suppresses murine liver tumour growth via activating T cell antitumour immune response. The results demonstrate the translational potential of CCL2/CCR2 blockade for treatment of HCCs.


Assuntos
Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Quimiocina CCL2/metabolismo , Neoplasias Hepáticas Experimentais/imunologia , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Macrófagos/imunologia , Recidiva Local de Neoplasia/prevenção & controle , Receptores CCR2/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Carcinoma Hepatocelular/tratamento farmacológico , Comunicação Celular , Linhagem Celular Tumoral , Quimiocina CCL2/genética , Técnicas de Cocultura , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Ativação Linfocitária/efeitos dos fármacos , Depleção Linfocítica , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Camundongos , Prognóstico , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/genética , Estudos Retrospectivos , Transdução de Sinais/efeitos dos fármacos , Evasão Tumoral , Microambiente Tumoral
15.
Gut ; 66(3): 519-529, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26860769

RESUMO

OBJECTIVE: In order to explain the increased susceptibility to serious infection in alcoholic hepatitis, we evaluated monocyte phagocytosis, aberrations of associated signalling pathways and their reversibility, and whether phagocytic defects could predict subsequent infection. DESIGN: Monocytes were identified from blood samples of 42 patients with severe alcoholic hepatitis using monoclonal antibody to CD14. Phagocytosis and monocyte oxidative burst (MOB) were measured ex vivo using flow cytometry, luminometry and bacterial killing assays. Defects were related to the subsequent development of infection. Intracellular signalling pathways were investigated using western blotting and PCR. Interferon-γ (IFN-γ) was evaluated for its therapeutic potential in reversing phagocytic defects. Paired longitudinal samples were used to evaluate the effect of in vivo prednisolone therapy. RESULTS: MOB, production of superoxide and bacterial killing in response to Escherichia coli were markedly impaired in patients with alcoholic hepatitis. Pretreatment MOB predicted development of infection within two weeks with sensitivity and specificity that were superior to available clinical markers. Accordingly, defective MOB was associated with death at 28 and 90 days. Expression of the gp91 phox subunit of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase was reduced in patients with alcoholic hepatitis demonstrating defective MOB. Monocytes were refractory to IFN-γ stimulation and showed high levels of a negative regulator of cytokine signalling, suppressor of cytokine signalling-1. MOB was unaffected by 7 days in vivo prednisolone therapy. CONCLUSIONS: Monocyte oxidative burst and bacterial killing is impaired in alcoholic hepatitis while bacterial uptake by phagocytosis is preserved. Defective MOB is associated with reduced expression of NADPH oxidase in these patients and predicts the development of infection and death.


Assuntos
Infecções Bacterianas/imunologia , Hepatite Alcoólica/fisiopatologia , Monócitos/fisiologia , NADPH Oxidases/metabolismo , Fagocitose , Explosão Respiratória , Adulto , Anti-Inflamatórios/uso terapêutico , Estudos de Casos e Controles , Células Cultivadas , Técnicas de Cocultura , Contagem de Colônia Microbiana , Escherichia coli/imunologia , Feminino , Hepatite Alcoólica/tratamento farmacológico , Hepatite Alcoólica/enzimologia , Humanos , Interferon gama/farmacologia , Masculino , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , NADPH Oxidase 2 , Valor Preditivo dos Testes , Prednisolona/uso terapêutico , Explosão Respiratória/efeitos dos fármacos , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina/metabolismo
16.
Gut ; 66(2): 352-361, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26887815

RESUMO

OBJECTIVE: Natural killer (NK) cells are important mediators of liver inflammation in chronic liver disease. The aim of this study was to investigate why liver transplants (LTs) are not rejected by NK cells in the absence of human leukocyte antigen (HLA) matching, and to identify a tolerogenic NK cell phenotype. DESIGN: Phenotypic and functional analyses on NK cells from 54 LT recipients were performed, and comparisons made with healthy controls. Further investigation was performed using gene expression analysis and donor:recipient HLA typing. RESULTS: NK cells from non-HCV LT recipients were hypofunctional, with reduced expression of NKp46 (p<0.05) and NKp30 (p<0.001), reduced cytotoxicity (p<0.001) and interferon (IFN)-γ secretion (p<0.025). There was no segregation of this effect with HLA-C, and these functional changes were not observed in individuals with HCV. Microarray and RT-qPCR analysis demonstrated downregulation of STAT4 in NK cells from LT recipients (p<0.0001). Changes in the expression levels of the transcription factors Helios (p=0.06) and Hobit (p=0.07), which control NKp46 and IFNγ expression, respectively, were also detected. Hypofunctionality of NK cells was associated with impaired STAT4 phosphorylation and downregulation of the STAT4 target microRNA-155. Conversely in HCV-LT NK cell tolerance was reversed, consistent with the more aggressive outcome of LT for HCV. CONCLUSIONS: LT is associated with transcriptional and functional changes in NK cells, resulting in reduced activation. NK cell tolerance occurs upstream of major histocompatibility complex (MHC) class I mediated education, and is associated with deficient STAT4 phosphorylation. STAT4 therefore represents a potential therapeutic target to induce NK cell tolerance in liver disease.


Assuntos
Tolerância Imunológica/genética , Células Matadoras Naturais/imunologia , Transplante de Fígado , Ativação Linfocitária/genética , Fator de Transcrição STAT4/genética , Fator de Transcrição STAT4/imunologia , Adulto , Idoso , Estudos de Casos e Controles , Estudos Transversais , Regulação para Baixo , Feminino , Antígenos HLA-C/imunologia , Hepatite C Crônica/complicações , Hepatite C Crônica/imunologia , Teste de Histocompatibilidade , Humanos , Fator de Transcrição Ikaros/genética , Células Matadoras Naturais/química , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/imunologia , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Receptor 1 Desencadeador da Citotoxicidade Natural/análise , Receptor 3 Desencadeador da Citotoxicidade Natural/análise , Fenótipo , Fosforilação , Fator de Transcrição STAT4/metabolismo
17.
Gut ; 66(4): 724-735, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-26733671

RESUMO

OBJECTIVE: Chronic HCV infection is characterised by innate immune activation with increased interferon-stimulated genes (ISG) expression and by an altered phenotype of interferon-responsive natural killer (NK) cells. Here, we asked whether a rapid reduction in viremia by daclatasvir (DCV) and asunaprevir (ASV) improves the response to pegylated interferon (PegIFN) in patients who had previously failed a standard course of PegIFN/ribavirin (RBV) therapy. DESIGN: Twenty-two HCV-infected non-responders to previous PegIFN/RBV therapy were studied for IFN-responsiveness of NK cells during quadruple (QUAD) therapy with DCV, ASV, PegIFN and RBV. A direct comparison of early NK cell responses in PegIFN/RBV therapy and QUAD therapy was performed for seven patients using paired cryopreserved peripheral blood mononuclear cells (PBMC) from both treatment courses. As a validation cohort, nine DCV/ASV-treated patients were studied for their NK cell response to in vitro stimulation with IFNα. RESULTS: The 24 h virological response to QUAD therapy correlated with an increase in signal transducer and activator of transcription 1 (STAT1), phosphorylated STAT1 (pSTAT1) and tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) expression in NK cells, and the STAT1/pSTAT1/TRAIL induction was greater during QUAD therapy than during previous PegIFN/RBV therapy. Successful QUAD therapy as well as successful IFN-free DCV/ASV regimen resulted in an improved functional NK cell response (degranulation and TRAIL expression) to in vitro stimulation with IFNα. CONCLUSIONS: IFN-responsiveness can be improved by inhibiting HCV replication and reducing the HCV-induced activation of the innate immune response. This may provide a rationale for clinical trials of a brief period of direct acting antiviral therapy followed by PegIFN/RBV therapy to reduce the overall treatment costs in low-income and middle-income countries. TRIAL REGISTRATION NUMBERS: NCT01888900 and NCT00718172.


Assuntos
Antivirais/uso terapêutico , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/imunologia , Imidazóis/uso terapêutico , Interferon-alfa/uso terapêutico , Isoquinolinas/uso terapêutico , Células Matadoras Naturais/imunologia , Sulfonamidas/uso terapêutico , Adulto , Idoso , Carbamatos , Degranulação Celular/efeitos dos fármacos , Células Cultivadas , Quimioterapia Combinada , Feminino , Hepacivirus/genética , Hepatite C Crônica/sangue , Humanos , Interferon-alfa/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Masculino , Pessoa de Meia-Idade , Fosforilação , Pirrolidinas , Retratamento , Ribavirina/uso terapêutico , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Resposta Viral Sustentada , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Valina/análogos & derivados , Carga Viral
18.
BMJ Open Gastroenterol ; 3(1): e000079, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27252881

RESUMO

Hepatic macrophages account for the largest non-parenchymal cell population in the liver. Recent studies have found that hepatic macrophages have different functions in different stages of experimental liver fibrosis. Some studies found that there are different types of hepatic macrophages in the liver, although others have suggested that hepatic macrophages could switch to different phenotypes in different environments. Many studies demonstrated that while hepatic macrophages promoted fibrosis through the recruitment of proinflammatory immune cells, and the secretion of proinflammatory cytokines and chemokines in the early stages, these also promoted the resolution of hepatic fibrosis through the secretion of matrix metalloproteinases in the late stages. This article will review the current role played by hepatic macrophages in liver fibrosis and the potential therapeutic targets that modulate hepatic macrophages.

20.
Gut ; 65(3): 512-23, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25661083

RESUMO

OBJECTIVE: The recent availability of novel antiviral drugs has raised new hope for a more effective treatment of hepatitis C virus (HCV) infection and its severe sequelae. However, in the case of non-responding or relapsing patients, alternative strategies are needed. To this end we have used chimeric antigen receptors (CARs), a very promising approach recently used in several clinical trials to redirect primary human T cells against different tumours. In particular, we designed the first CARs against HCV targeting the HCV/E2 glycoprotein (HCV/E2). DESIGN: Anti-HCV/E2 CARs were composed of single-chain variable fragments (scFvs) obtained from a broadly cross-reactive and cross-neutralising human monoclonal antibody (mAb), e137, fused to the intracellular signalling motif of the costimulatory CD28 molecule and the CD3ζ domain. Activity of CAR-grafted T cells was evaluated in vitro against HCV/E2-transfected cells as well as hepatocytes infected with cell culture-derived HCV (HCVcc). RESULTS: In this proof-of-concept study, retrovirus-transduced human T cells expressing anti-HCV/E2 CARs were endowed with specific antigen recognition accompanied by degranulation and secretion of proinflammatory and antiviral cytokines, such as interferon γ, interleukin 2 and tumour necrosis factor α. Moreover, CAR-grafted T cells were capable of lysing target cells of both hepatic and non-hepatic origin expressing on their surface the HCV/E2 glycoproteins of the most clinically relevant genotypes, including 1a, 1b, 2a, 3a, 4 and 5. Finally, and more importantly, they were capable of lysing HCVcc-infected hepatocytes. CONCLUSIONS: Clearance of HCV-infected cells is a major therapeutic goal in chronic HCV infection, and adoptive transfer of anti-HCV/E2 CARs-grafted T cells represents a promising new therapeutic tool.


Assuntos
Engenharia Celular/métodos , Hepacivirus/imunologia , Hepatite C/terapia , Imunoterapia/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Proteínas do Envelope Viral/imunologia , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Células Cultivadas , Hepatite C/imunologia , Hepatite C/virologia , Hepatócitos/imunologia , Hepatócitos/virologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA