RESUMO
Type 2 diabetes (T2D) is associated with insulin resistance and progressive dysfunction of ß-pancreatic cells, leading to persistent hyperglycemia. Macrophages play a crucial role in this context, influencing both the development and progression of insulin resistance. These innate immune cells respond to inflammatory stimuli and reprogram their metabolism, directly impacting the pathophysiology of T2D. Macrophages are highly plastic and can adopt either pro-inflammatory or pro-resolutive phenotypic profiles. In T2D, pro-inflammatory macrophages, which rely on glycolysis, exacerbate insulin resistance through increased production of pro-inflammatory cytokines and nitric oxide. In contrast, pro-resolutive macrophages, which prioritize fatty acid metabolism, have different effects on glucose homeostasis. Metaflammation, a chronic low-grade inflammation, is induced by pro-inflammatory macrophages and significantly contributes to the progression of T2D, creating an environment conducive to metabolic dysfunction. This review aims to clarify the contribution of macrophages to the progression of T2D by detailing how their inflammatory responses and metabolic reprogramming influence insulin resistance and the disease's pathophysiology. The review seeks to deepen the understanding of the biochemical and metabolic mechanisms involved, offering broader insights into the impact on the quality of life for millions of patients worldwide.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Macrófagos , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Inflamação/metabolismo , Animais , Reprogramação Celular , Reprogramação MetabólicaRESUMO
In recent years, mostly spanning the past decade, the concept of immunometabolism has ushered with a novel perspective on carcinogenesis, tumor progression, and tumor response to therapy. It has become clear that the metabolic state of immune cells plays a significant role in shaping their antitumor or protumor activities within the cancer microenvironment. Consequently, the examination of tumor metabolic heterogeneity, including an exploration of immunometabolism, proves indispensable for enhancing prognostic tools and advancing the quest for personalized treatments. Here we have delved into how metabolic reprogramming profoundly influences the acquisition and maintenance of functional states, spanning from effector and cytotoxic profiles to regulatory and immunosuppressive phenotypes in both innate and adaptive immunity. These alterations wield considerable influence over tumor evolution and affect the outcome of cancer. Furthermore, we explore some of the cellular signaling mechanisms that underpin the metabolic and phenotypic flexibility of immune cells in response to external stimuli.
RESUMO
Since the discovery of specific immune memory in invertebrates, researchers have investigated its immune response to diverse microbial and environmental stimuli. Nevertheless, the extent of the immune system's interaction with metabolism, remains relatively enigmatic. In this mini review, we propose a comprehensive investigation into the intricate interplay between metabolism and specific immune memory. Our hypothesis is that cellular endocycles and epigenetic modifications play pivotal roles in shaping this relationship. Furthermore, we underscore the importance of the crosstalk between metabolism and specific immune memory for understanding the evolutionary costs. By evaluating these costs, we can gain deeper insights into the adaptive strategies employed by invertebrates in response to pathogenic challenges. Lastly, we outline future research directions aimed at unraveling the crosstalk between metabolism and specific immune memory. These avenues of inquiry promise to illuminate fundamental principles governing host-pathogen interactions and evolutionary trade-offs, thus advancing our understanding of invertebrate immunology.
Assuntos
Epigênese Genética , Interações Hospedeiro-Patógeno , Memória Imunológica , Invertebrados , Animais , Invertebrados/imunologia , Interações Hospedeiro-Patógeno/imunologia , Evolução Biológica , Imunidade InataRESUMO
CD4+ T lymphocytes play a key role in the modulation of the immune response by orchestrating both effector and regulatory functions. The effect of metformin on the immunometabolism of CD4+ T lymphocytes has been scarcely studied, and its impact under high glucose conditions, particularly concerning effector responses and glucose metabolism, remains unknown. This study aims to evaluate the effect of metformin on the modulation of the effector functions and glucose metabolism of CD4+ T lymphocytes under normo- and hyperglycemic conditions. CD4+ T lymphocytes, obtained from peripheral blood from healthy volunteers, were anti-CD3/CD28-activated and cultured for 4 days with three concentrations of metformin (0.1 mM, 1 mM, and 5 mM) under normoglycemic (5.5 mM) and hyperglycemic (25 mM) conditions. Effector functions such as proliferation, cell count, cell cycle analysis, activation markers and cytokine secretion were analyzed by flow cytometry. Glucose uptake was determined using the 2-NBDG assay, and levels of glucose, lactate, and phosphofructokinase (PFK) activity were assessed by colorimetric assays. Metformin at 5 mM restrained the cell counts and proliferation of CD4+ T lymphocytes by arresting the cell cycle in the S/G2 phase at the beginning of the cell culture, without affecting cell activation, cytokine production, and glucose metabolism. In fact, CD69 expression and IL4 secretion by CD4+ T lymphocytes was higher in the presence of 5 mM than the untreated cells in both glucose conditions. Overall, metformin inhibited proliferation through mechanisms associated with cell cycle arrest, leading to an increase in the S/G2 phases at the expense of G1 in activated CD4+ T lymphocytes in normo- and hyperglycemic conditions. Despite the cell cycle arrest, activated CD4+ T lymphocytes remained metabolically, functionally, and phenotypically activated.
Assuntos
Linfócitos T CD4-Positivos , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Hiperglicemia , Metformina , Metformina/farmacologia , Humanos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Células Cultivadas , Masculino , AdultoRESUMO
During tuberculosis (TB), migration of dendritic cells (DCs) from the site of infection to the draining lymph nodes is known to be impaired, hindering the rapid development of protective T-cell-mediated immunity. However, the mechanisms involved in the delayed migration of DCs during TB are still poorly defined. Here, we found that infection of DCs with Mycobacterium tuberculosis (Mtb) triggers HIF1A-mediated aerobic glycolysis in a TLR2-dependent manner, and that this metabolic profile is essential for DC migration. In particular, the lactate dehydrogenase inhibitor oxamate and the HIF1A inhibitor PX-478 abrogated Mtb-induced DC migration in vitro to the lymphoid tissue-specific chemokine CCL21, and in vivo to lymph nodes in mice. Strikingly, we found that although monocytes from TB patients are inherently biased toward glycolysis metabolism, they differentiate into poorly glycolytic and poorly migratory DCs compared with healthy subjects. Taken together, these data suggest that because of their preexisting glycolytic state, circulating monocytes from TB patients are refractory to differentiation into migratory DCs, which may explain the delayed migration of these cells during the disease and opens avenues for host-directed therapies for TB.
Assuntos
Movimento Celular , Células Dendríticas , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia , Monócitos , Mycobacterium tuberculosis , Tuberculose , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Monócitos/metabolismo , Monócitos/imunologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mycobacterium tuberculosis/imunologia , Animais , Tuberculose/imunologia , Tuberculose/metabolismo , Tuberculose/microbiologia , Camundongos , Receptor 2 Toll-Like/metabolismo , Camundongos Endogâmicos C57BL , FemininoRESUMO
Listeriosis, caused by Listeria monocytogenes (L.m.), poses a significant public health concern as one of the most severe foodborne diseases. The pathogenesis of L.m. involves critical steps such as phagosome rupture and escape upon internalization. Throughout infection, L.m. influences various host processes, including lipid metabolism pathways, yet the role of lipid droplets (LDs) remains unclear. Here, we reported a rapid, time-dependent increase in LD formation in macrophages induced by L.m. LD biogenesis was found to be dependent on L.m. viability and virulence genes, particularly on the activity of the pore-forming protein listeriolysin O (LLO). The prevention of LD formation by inhibiting diacylglycerol O-acyltransferase 1 (DGAT1) and cytosolic phospholipase A2 (cPLA2) significantly reduced intracellular bacterial survival, impaired prostaglandin E2 (PGE2) synthesis, and decreased IL-10 production. Additionally, inhibiting LD formation led to increased levels of TNF-α and IFN-ß. Collectively, our data suggest a role for LDs in promoting L.m. cell survival and evasion within macrophages.
RESUMO
UNASSIGNED: Excess body weight has become a global epidemic and a significant risk factor for developing chronic diseases, which are the leading causes of worldwide morbidities. Adipose tissue (AT), primarily composed of adipocytes, stores substantial amounts of energy and plays a crucial role in maintaining whole-body glucose and lipid metabolism. This helps prevent excessive body fat accumulation and lipotoxicity in peripheral tissues. In addition, AT contains endothelial cells and a substantial population of immune cells (constituting 60-70% of non-adipocyte cells), including macrophages, T and B lymphocytes, and natural killer cells. These resident immune cells engage in crosstalk with adipocytes, contributing to the maintenance of metabolic and immune homeostasis in AT. An exacerbated inflammatory response or inadequate immune resolution can lead to chronic systemic low-grade inflammation, triggering the development of metabolic alterations and the onset of chronic diseases. This review aims to elucidate the regulatory mechanisms through which immune cells influence AT function and energy homeostasis. We also focus on the interactions and functional dynamics of immune cell populations, highlighting their role in maintaining the delicate balance between metabolic health and obesity-related inflammation. Finally, understanding immunometabolism is crucial for unraveling the pathogenesis of metabolic diseases and developing targeted immunotherapeutic strategies. These strategies may offer innovative avenues in the rapidly evolving field of immunometabolism. (Rev Invest Clin. 2024;76(2):65-79).
Assuntos
Tecido Adiposo , Inflamação , Doenças Metabólicas , Obesidade , Humanos , Tecido Adiposo/metabolismo , Tecido Adiposo/imunologia , Obesidade/imunologia , Obesidade/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Doenças Metabólicas/imunologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/etiologia , Metabolismo Energético/fisiologia , Adipócitos/metabolismo , Adipócitos/imunologia , Metabolismo dos Lipídeos/fisiologia , Animais , HomeostaseRESUMO
The innate immune system, a cornerstone for organismal resilience against environmental and microbial insults, is highly conserved across the evolutionary spectrum, underpinning its pivotal role in maintaining homeostasis and ensuring survival. This review explores the evolutionary parallels between mammalian and insect innate immune systems, illuminating how investigations into these disparate immune landscapes have been reciprocally enlightening. We further delve into how advancements in mammalian immunology have enriched our understanding of insect immune responses, highlighting the intertwined evolutionary narratives and the shared molecular lexicon of immunity across these organisms. Therefore, this review posits a holistic understanding of innate immune mechanisms, including immunometabolism, autophagy and cell death. The examination of how emerging insights into mammalian and vertebrate immunity inform our understanding of insect immune responses and their implications for vector-borne disease transmission showcases the imperative for a nuanced comprehension of innate immunity's evolutionary tale. This understanding is quintessential for harnessing innate immune mechanisms' potential in devising innovative disease mitigation strategies and promoting organismal health across the animal kingdom.
Assuntos
Evolução Biológica , Imunidade Inata , Insetos , Mamíferos , Animais , Insetos/imunologia , Mamíferos/imunologia , Autofagia/imunologiaRESUMO
Wolbachia pipientis is a maternally transmitted symbiotic bacterium that mainly colonizes arthropods, potentially affecting different aspects of the host's physiology, e.g., reproduction, immunity, and metabolism. It has been shown that Wolbachia modulates glycogen metabolism in mosquito Aedes fluviatilis (Ae. fluviatilis). Glycogen synthesis is controlled by the enzyme GSK3, which is also involved in immune responses in both vertebrate and invertebrate organisms. Here we investigated the mechanisms behind immune changes mediated by glycogen synthase kinase ß (GSK3ß) in the symbiosis between Ae. fluviatilis and W. pipientis using a GSK3ß inhibitor or RNAi-mediated gene silencing. GSK3ß inhibition or knockdown increased glycogen content and Wolbachia population, together with a reduction in Relish2 and gambicin transcripts. Furthermore, knockdown of Relish2 or Caspar revealed that the immunodeficiency pathway acts to control Wolbachia numbers in the host. In conclusion, we describe for the first time the involvement of GSK3ß in Ae. fluviatilis immune response, acting to control the Wolbachia endosymbiotic population.
Assuntos
Aedes , Simbiose , Wolbachia , Wolbachia/fisiologia , Wolbachia/metabolismo , Aedes/microbiologia , Aedes/imunologia , Aedes/metabolismo , Animais , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Glicogênio/metabolismoRESUMO
ABSTRACT Excess body weight has become a global epidemic and a significant risk factor for developing chronic diseases, which are the leading causes of worldwide morbidities. Adipose tissue (AT), primarily composed of adipocytes, stores substantial amounts of energy and plays a crucial role in maintaining whole-body glucose and lipid metabolism. This helps prevent excessive body fat accumulation and lipotoxicity in peripheral tissues. In addition, AT contains endothelial cells and a substantial population of immune cells (constituting 60-70% of non-adipocyte cells), including macrophages, T and B lymphocytes, and natural killer cells. These resident immune cells engage in crosstalk with adipocytes, contributing to the maintenance of metabolic and immune homeostasis in AT. An exacerbated inflammatory response or inadequate immune resolution can lead to chronic systemic low-grade inflammation, triggering the development of metabolic alterations and the onset of chronic diseases. This review aims to elucidate the regulatory mechanisms through which immune cells influence AT function and energy homeostasis. We also focus on the interactions and functional dynamics of immune cell populations, highlighting their role in maintaining the delicate balance between metabolic health and obesity-related inflammation. Finally, understanding immunometabolism is crucial for unraveling the pathogenesis of metabolic diseases and developing targeted immunotherapeutic strategies. These strategies may offer innovative avenues in the rapidly evolving field of immunometabolism. (Rev Invest Clin. 2024;76(2):65-79)
RESUMO
Background & Aims: Lipid droplet (LD) accumulation in cells and tissues is understood to be an evolutionarily conserved tissue tolerance mechanism to prevent lipotoxicity caused by excess lipids; however, the presence of excess LDs has been associated with numerous diseases. Sepsis triggers the reprogramming of lipid metabolism and LD accumulation in cells and tissues, including the liver. The functions and consequences of sepsis-triggered liver LD accumulation are not well known. Methods: Experimental sepsis was induced by CLP (caecal ligation and puncture) in mice. Markers of hepatic steatosis, liver injury, hepatic oxidative stress, and inflammation were analysed using a combination of functional, imaging, lipidomic, protein expression and immune-enzymatic assays. To prevent LD formation, mice were treated orally with A922500, a pharmacological inhibitor of DGAT1. Results: We identified that liver LD overload correlates with liver injury and sepsis severity. Moreover, the progression of steatosis from 24 h to 48 h post-CLP occurs in parallel with increased cytokine expression, inflammatory cell recruitment and oxidative stress. Lipidomic analysis of purified LDs demonstrated that sepsis leads LDs to harbour increased amounts of unsaturated fatty acids, mostly 18:1 and 18:2. An increased content of lipoperoxides within LDs was also observed. Conversely, the impairment of LD formation by inhibition of the DGAT1 enzyme reduces levels of hepatic inflammation and lipid peroxidation markers and ameliorates sepsis-induced liver injury. Conclusions: Our results indicate that sepsis triggers lipid metabolism alterations that culminate in increased liver LD accumulation. Increased LDs are associated with disease severity and liver injury. Moreover, inhibition of LD accumulation decreased the production of inflammatory mediators and lipid peroxidation while improving tissue function, suggesting that LDs contribute to the pathogenesis of liver injury triggered by sepsis. Impact and Implications: Sepsis is a complex life-threatening syndrome caused by dysregulated inflammatory and metabolic host responses to infection. The observation that lipid droplets may contribute to sepsis-associated organ injury by amplifying lipid peroxidation and inflammation provides a rationale for therapeutically targeting lipid droplets and lipid metabolism in sepsis.
RESUMO
BACKGROUND: The high prevalence of metabolic syndrome in low- and middle-income countries is linked to an increase in Western diet consumption, characterized by a high intake of processed foods, which impacts the levels of blood sugar and lipids, hormones, and cytokines. Hematophagous insect vectors, such as the yellow fever mosquito Aedes aegypti, rely on blood meals for reproduction and development and are therefore exposed to the components of blood plasma. However, the impact of the alteration of blood composition due to malnutrition and metabolic conditions on mosquito biology remains understudied. METHODS: In this study, we investigated the impact of whole-blood alterations resulting from a Western-type diet on the biology of Ae. aegypti. We kept C57Bl6/J mice on a high-fat, high-sucrose (HFHS) diet for 20 weeks and followed biological parameters, including plasma insulin and lipid levels, insulin tolerance, and weight gain, to validate the development of metabolic syndrome. We further allowed Ae. aegypti mosquitoes to feed on mice and tracked how altered host blood composition modulated parameters of vector capacity. RESULTS: Our findings identified that HFHS-fed mice resulted in reduced mosquito longevity and increased fecundity upon mosquito feeding, which correlated with alteration in the gene expression profile of nutrient sensing and physiological and metabolic markers as studied up to several days after blood ingestion. CONCLUSIONS: Our study provides new insights into the overall effect of alterations of blood components on mosquito biology and its implications for the transmission of infectious diseases in conditions where the frequency of Western diet-induced metabolic syndromes is becoming more frequent. These findings highlight the importance of addressing metabolic health to further understand the spread of mosquito-borne illnesses in endemic areas.
Assuntos
Aedes , Insulinas , Síndrome Metabólica , Doenças dos Roedores , Animais , Camundongos , Longevidade , Aedes/genética , Dieta Ocidental , Mosquitos Vetores/genética , Fertilidade , Vertebrados , Expressão GênicaRESUMO
Immunometabolism research is uncovering the relationship between metabolic features and immune cell functions in physiological and pathological conditions. Normal pregnancy entails a fine immune and metabolic regulation of the maternal-fetal interaction to assist the energetic demands of the fetus with immune homeostasis maintenance. Here, we determined the immunometabolic status of monocytes of pregnant women compared with nonpregnant controls and its impact on monocyte anti-inflammatory functions such as efferocytosis. Monocytes from pregnant women (16-20 wk) and nonpregnant age-matched controls were studied. Single cell-based metabolic assays using freshly isolated monocytes from both groups were carried out in parallel with functional assays ex vivo to evaluate monocyte efferocytic capacity. On the other hand, various in vitro metabolic assays with human monocytes or monocyte-derived macrophages were designed to explore the effect of trophoblast cells in the profiles observed. We found that pregnancy alters monocyte metabolism and function. An increased glucose dependency and enhanced efferocytosis were detected in monocytes from pregnant women at resting states, compared with nonpregnant controls. Furthermore, monocytes display a reduced glycolytic response when stimulated with lipopolysaccharide (LPS). The metabolic profiling of monocytes at this stage of pregnancy was comparable with the immunometabolic phenotypes of human monocytes treated in vitro with human first trimester trophoblast cell conditioned media. These findings suggest that immunometabolic mechanisms are involved in the functional shaping of monocytes during pregnancy with a contribution of trophoblast cells. Results provide new clues for future hypotheses regarding pregnancies complicated by metabolic disorders.NEW & NOTEWORTHY Immunometabolism stands as a novel perspective to understand the complex regulation of the immune response and to provide small molecule-based therapies. By applying this approach to study monocytes during pregnancy, we found that these cells have a unique activation pattern. They rely more on glycolysis and show increased efferocytosis/IL-10 production, but they do not have the typical proinflammatory responses. We also present evidence that trophoblast cells can shape monocytes into this distinct immunometabolic profile.
Assuntos
Monócitos , Trofoblastos , Gravidez , Humanos , Feminino , Monócitos/metabolismo , Trofoblastos/metabolismo , Macrófagos/metabolismo , Primeiro Trimestre da GravidezRESUMO
Energetic and nutritional requirements play a crucial role in shaping the immune cells that infiltrate tumor and parasite infection sites. The dynamic interaction between immune cells and the microenvironment, whether in the context of tumor or helminth infection, is essential for understanding the mechanisms of immunological polarization and developing strategies to manipulate them in order to promote a functional and efficient immune response that could aid in the treatment of these conditions. In this review, we present an overview of the immune response triggered during tumorigenesis and establishment of helminth infections, highlighting the transition to chronicity in both cases. We discuss the energetic demands of immune cells under normal conditions and in the presence of tumors and helminths. Additionally, we compare the metabolic changes that occur in the tumor microenvironment and the infection site, emphasizing the alterations that are induced to redirect the immune response, thereby promoting the survival of cancer cells or helminths. This emerging discipline provides valuable insights into disease pathogenesis. We also provide examples of novel strategies to enhance immune activity by targeting metabolic pathways that shape immune phenotypes, with the aim of achieving positive outcomes in cancer and helminth infections.
RESUMO
Paracoccidioides spp. is the etiologic agent of Paracoccidioidomycosis (PCM), a systemic disease with wide distribution in Latin America. Macrophages are very important cells during the response to infection by P. brasiliensis. In this study, we performed a proteomic analysis to evaluate the consequences of P. brasiliensis yeast cells on the human THP-1 macrophage proteome. We have identified 443 and 2247 upregulated or downregulated proteins, respectively, in macrophages co-cultured with yeast cells of P. brasiliensis in comparison to control macrophages unexposed to the fungus. Proteomic analysis revealed that interaction with P. brasiliensis caused metabolic changes in macrophages that drastically affected energy production pathways. In addition, these macrophages presented regulated many factors related to epigenetic modifications and gene transcription as well as a decrease of many proteins associated to the immune system activity. This is the first human macrophage proteome derived from interactions with P. brasiliensis, which contributes to elucidating the changes that occur during the host response to this fungus. Furthermore, it highlights proteins that may be targets for the development of new therapeutic approaches to PCM.
Assuntos
Paracoccidioides , Humanos , Proteoma/metabolismo , Saccharomyces cerevisiae , Proteômica , Macrófagos/microbiologiaRESUMO
The enzyme glucose-6-phosphate dehydrogenase (G6PDH) plays crucial roles in glucose homeostasis and the pentose phosphate pathway (PPP), being also involved in redox metabolism. The PPP is an important metabolic pathway that produces ribose and nicotinamide adenine dinucleotide phosphate (NADPH), which are essential for several physiologic and biochemical processes, such as the synthesis of fatty acids and nucleic acids. As a rate-limiting step in PPP, G6PDH is a highly conserved enzyme and its deficiency can lead to severe consequences for the organism, in particular for cell growth. Insufficient G6PDH activity can lead to cell growth arrest, impaired embryonic development, as well as a reduction in insulin sensitivity, inflammation, diabetes, and hypertension. While research on G6PDH and PPP has historically focused on mammalian models, particularly human disorders, recent studies have shed light on the regulation of this enzyme in arthropods, where new functions were discovered. This review will discuss the role of arthropod G6PDH in regulating redox homeostasis and immunometabolism and explore potential avenues for further research on this enzyme in various metabolic adaptations.
RESUMO
OBJECTIVE: To investigate the role of central obesity on immunometabolic response in peripheral blood mononuclear cells (PBMCs) from normal weight and overweight/obese young men. METHODS: Eighteen individuals were classified as normal weight (NW; n = 9 - age: 25 ± 5 and BMI: 21.4 ± 1.7) and overweight/obese (OW; n = 9 - age: 29 ± 7 and BMI: 29.2 ± 2.7). The body composition was evaluated by dual-energy x-ray absorptiometry (DXA), waist circumference, and visceral and subcutaneous fat depots by ultrasound. Physical activity levels, metabolic parameters, immune phenotypic characterization, cytokine production by lipopolysaccharide (LPS) -stimulated whole blood cells and LPS or phorbol 12-myristate 13-acetate (PMA)-stimulated PBMC, and mitochondrial respiration in PBMCs were evaluated. Expression of AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma (PPAR-γ), nuclear factor-kappa B (NF-κB), toll-like receptor 4 (TLR-4), hypoxia-inducible factor-1 alpha (HIF-1α), and adrenergic receptor beta 1 and 2 (AR-ß1 and ß2) genes were evaluated in cultured PBMC using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: Individuals with overweight/obese (OW) presented higher glucose (P = 0.009) and leptin (P = 0.010) than individuals with normal weight (NW). PBMCs of OW under stimulation with LPS presented a lower production of interleukin-10 (IL-10) (P = 0.011) and macrophage inflammatory protein-1alpha (MIP-1α) (P = 0.048) than NW. Mitochondrial respiration rates were not different between NW and OW subjects. Cultured PBMCs in LPS-stimulated condition indicated higher gene expression of AR-ß2 in OW, while PMA-stimulated PBMCs presented lower expression of AMPK (P = 0.002) and higher expression of NF-κB (P=<0.0001) than NW. OW presented higher numbers of CD3+CD4+ T cells (P = 0.009) and higher expression of programmed cell death protein 1 (PD-1) in CD8+ T cells (P = 0.001) than NW. CONCLUSION: Central obesity promoted reductions in interleukin 10 production response and increase in AR-ß2 expressions in mitogen-stimulated PBMCs. Furthermore, central obesity altered the phenotype of PBMCs, also increasing the expression of PD-1 exhaustion markers in young adults.
Assuntos
Leucócitos Mononucleares , NF-kappa B , Masculino , Adulto Jovem , Humanos , Adulto , NF-kappa B/metabolismo , Leucócitos Mononucleares/metabolismo , Sobrepeso , Estudos Transversais , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Obesidade Abdominal/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Obesidade/metabolismo , Anti-Inflamatórios , FenótipoRESUMO
The complex interplay between dietary factors, inflammation, and macrophage polarization is pivotal in the pathogenesis and progression of chronic liver diseases (CLDs). Omega-3 fatty acids (FAs) have brought in attention due to their potential to modulate inflammation and exert protective effects in various pathological conditions. Omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have shown promise in mitigating inflammation and enhancing the resolution of inflammatory responses. They influence the M1/M2 macrophage phenotype balance, promoting a shift towards the M2 anti-inflammatory phenotype. Specialized pro-resolving mediators (SPMs), such as resolvins (Rvs), protectins (PDs), and maresins (MaRs), have emerged as potent regulators of inflammation and macrophage polarization. They show anti-inflammatory and pro-resolving properties, by modulating the expression of cytokines, facilitate the phagocytosis of apoptotic cells, and promote tissue repair. MaR1, in particular, has demonstrated significant hepatoprotective effects by promoting M2 macrophage polarization, reducing oxidative stress, and inhibiting key inflammatory pathways such as NF-κB. In the context of CLDs, such as nonalcoholic fatty liver disease (NAFLD) and cirrhosis, omega-3s and their SPMs have shown promise in attenuating liver injury, promoting tissue regeneration, and modulating macrophage phenotypes. The aim of this article was to analyze the emerging role of omega-3 FAs and their SPMs in the context of macrophage polarization, with special interest in the mechanisms underlying their effects and their interactions with other cell types within the liver microenvironment, focused on CLDs and the development of novel therapeutic strategies.
Assuntos
Ácidos Graxos Ômega-3 , Hepatopatias , Humanos , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Anti-Inflamatórios/uso terapêutico , Hepatopatias/metabolismo , Fenótipo , Mediadores da Inflamação/metabolismoRESUMO
Emerging evidence suggests that immune receptors may participate in many aging-related processes such as energy metabolism, inflammation, and cognitive decline. CD300f, a TREM2-like lipid-sensing immune receptor, is an exceptional receptor as it integrates activating and inhibitory cell-signaling pathways that modulate inflammation, efferocytosis, and microglial metabolic fitness. We hypothesize that CD300f can regulate systemic aging-related processes and ultimately healthy lifespan. We closely followed several cohorts of two strains of CD300f-/- and WT mice of both sexes for 30 months and observed an important reduction in lifespan and healthspan in knockout mice. This was associated with systemic inflammaging, increased cognitive decline, reduced brain glucose uptake observed by 18FDG PET scans, enrichment in microglial aging/neurodegeneration phenotypes, proteostasis alterations, senescence, increased frailty, and sex-dependent systemic metabolic changes. Moreover, the absence of CD300f altered macrophage immunometabolic phenotype. Taken together, we provide strong evidence suggesting that myeloid cell CD300f immune receptor contributes to healthy aging.