Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
1.
ACS Nano ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373010

RESUMO

Myocardial ischemia-reperfusion (IR) injury is a severe rhythmic disease with a high prevalence in the early morning. IR injury has a significant circadian rhythm in reactive oxygen species (ROS) and inflammation levels. The development of rhythmic drugs has become a priority in myocardial IR injury. In this study, resveratrol (RES) and proanthocyanidins (OPC) were utilized to design nanoparticles (NPs), with hyaluronic acid (HA) as the core, grafted with MMP-targeting peptides to improve delivery to injured myocardial regions (HA-RES-OPC-MMP NPs). NPs significantly scavenged ROS, attenuated inflammation, and activated the rhythm gene. Notably, the difference in therapeutic effects on myocardial IR injury in mice at Zeitgeber time (ZT)1 and ZT13 confirms that NPs are rhythm-dependent drugs. At ZT13, echocardiographic and MRI confirm that IR injury in mice was not as severe as at ZT1, yet NPs were also less effective in treatment. Further, Per1/2 knockout mice confirmed the rhythm-dependent treatment of myocardial IR injury by NPs. Molecular studies have shown that rhythmic characteristics of inflammation and Sirt1 transcript levels are the main reasons for the different rhythmic therapeutic effects of NPs. Circadian rhythm-dependent treatment of HA-RES-OPC-MMP NPs has excellent potential for more precise treatment of myocardial IR injury in the future.

2.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(9): 967-973, 2024.
Artigo em Chinês | MEDLINE | ID: mdl-39267513

RESUMO

OBJECTIVES: To study the effects and mechanisms of tetramethylpyrazine (TMP) on tumor necrosis factor-α (TNF-α)-induced inflammatory injury in human coronary artery endothelial cells (HCAEC). METHODS: HCAEC were randomly divided into four groups: the control group (no treatment), the model group (treated with TNF-α, 50 ng/mL for 24 hours), the TMP group (pre-treated with TMP, 80 µg/mL for 12 hours followed by TNF-α treatment for 24 hours), and the SIRT1 inhibitor group (pre-treated with TMP and the specific SIRT1 inhibitor EX527 for 12 hours followed by TNF-α treatment for 24 hours). Cell viability was assessed using the CCK-8 method, lactate dehydrogenase (LDH) activity was measured using an LDH assay kit, reactive oxygen species (ROS) levels were observed using DCFH-DA staining, expression of pyroptosis-related proteins was detected by Western blot, and SIRT1 expression was analyzed using immunofluorescence staining. RESULTS: Compared to the control group, the model group showed decreased cell viability, increased LDH activity, ROS level and expression of pyroptosis-related proteins, and decreased SIRT1 expression (P<0.05). Compared to the model group, the TMP group exhibited increased cell viability, decreased LDH activity, ROS level and expression of pyroptosis-related proteins, and increased SIRT1 expression (P<0.05). In comparison to the TMP group, the SIRT1 inhibitor group showed decreased cell viability, increased LDH activity, ROS level and expression of pyroptosis-related proteins, and decreased SIRT1 expression (P<0.05). CONCLUSIONS: TMP may attenuate TNF-α-induced inflammatory injury in HCAEC, which is associated with the inhibition of pyroptosis and activation of the SIRT1 signaling pathway.


Assuntos
Células Endoteliais , Pirazinas , Espécies Reativas de Oxigênio , Transdução de Sinais , Sirtuína 1 , Fator de Necrose Tumoral alfa , Sirtuína 1/metabolismo , Sirtuína 1/fisiologia , Humanos , Pirazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Células Cultivadas , Inflamação/tratamento farmacológico
3.
Ecotoxicol Environ Saf ; 283: 116784, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39088896

RESUMO

2-ethylhexyl diphenyl phosphate (EHDPHP) is a widely used organophosphorus flame retardant and plasticizer, which is commonly found in the environment. EHDPHP not only potentially harms the environment but also causes different degrees of damage to the organism. In this study, the duodenum of chicks was selected as the potential toxic target organ to explore the mechanism of duodenal injury induced by EHDPHP exposure. Ninety one-day-old healthy male chicks were selected and randomly divided into C1(control group), C2(solvent control group), L(800 mg/kg), M(1600 mg/kg), H(3200 mg/kg) according to different doses of EHDPHP after one week of environmental adaptation. The chicks were given continuous gavage for 14 d, 28 d, and 42 d. It was found that constant exposure to EHDPHP caused an increase in duodenal MDA content, a decrease in P-gp, SOD, GSH-Px activities, and a decrease in duodenal mucosal immune factor (sIgA, GSH-Px). The expression of sIgM and mucosal link proteins (CLDN, OCLN, ZO-1, JAM) decreased, and the expression of the inflammatory protein (NF-κB, COX2) in duodenal tissues was up-regulated. The results showed that continuous exposure to EHDPHP could cause duodenal oxidative stress, inflammation, and mucosal barrier damage in chicks, which provided a basis for studying the mechanism of toxic damage caused by EHDPHP in poultry.


Assuntos
Galinhas , Duodeno , Retardadores de Chama , Estresse Oxidativo , Animais , Estresse Oxidativo/efeitos dos fármacos , Duodeno/efeitos dos fármacos , Duodeno/patologia , Duodeno/metabolismo , Masculino , Retardadores de Chama/toxicidade , Inflamação/induzido quimicamente , Inflamação/patologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , Compostos Organofosforados/toxicidade , Organofosfatos/toxicidade
4.
Front Vet Sci ; 11: 1446366, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39071779

RESUMO

Breast infection is the primary etiology of mastitis in dairy cows, leading to a reduction in the quality of dairy products and resulting in substantial economic losses for animal husbandry. Although antibiotic treatment can eliminate the pathogenic microorganisms that induce mastitis, it cannot repair the inflammatory damage of mammary epithelial cells and blood milk barrier. Mas1 is a G protein-coupled receptor, and its role in lipopolysaccharide (LPS) -induced inflammatory injury to mammary epithelial cells has not been studied. LPS treatment of EpH4 EV cells led to a significant downregulation of Mas1 transcript levels, which attracted our great interest, suggesting that Mas1 may be an important target for the treatment of mastitis. Therefore, this study intends to verify the role of Mas1 in the inflammatory injury of EpH4 EV cells by gene overexpression technology and gene silencing technology. The findings demonstrated that the overexpression of the Mas1 gene effectively reversed the activation of the nuclear factor-κB/mitogen-activated protein kinase (NF-κB/MAPK) signaling pathways induced by LPS, while also suppressing the upregulation of pro-inflammatory mediators. Furthermore, overexpression of the Mas1 gene reversed the downregulation of zonula occludens 1 (ZO-1), Occludin, and Claudin-3 caused by LPS, suggesting that Mas1 could promote to repair the blood-milk barrier. However, the silencing of the Mas1 gene using siRNA resulted in a contrasting effect. These results indicated that Mas1 alleviated the inflammatory injury of mammary epithelial cells induced by LPS.

5.
Int Immunopharmacol ; 139: 112782, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39074416

RESUMO

Platycodin D (PLD), a major bioactive component of triterpene saponins found in Platycodon grandiflora, is renowned for its anti-inflammatory and antioxidant properties. This study aims to explore the protective effects and regulatory mechanisms of PLD in an LPS-induced inflammation injury model of BEAS-2B cells. Initially, PLD was identified from Platycodon grandiflora extracts utilizing UPLC-Q-TOF-MS/MS technology. The effects of PLD on the viability, morphology, ROS levels, and inflammatory factors of LPS-induced BEAS-2B cells were then investigated. The results showed that PLD significantly alleviated LPS-induced oxidative stress and inflammatory injury. Further analysis revealed that PLD positively influenced apoptosis levels, mitochondrial morphology, and related gene expression, indicating its potential to mitigate LPS-induced apoptosis and alleviate mitochondrial dysfunction. Using molecular docking technology, we predicted the binding sites of PLD with mitochondrial autophagy protein. Gene expression levels of autophagy-related proteins were measured to determine the impact of PLD on mitochondrial autophagy. Additionally, the study examined whether the mitochondrial autophagy agonists rapamycin (RAPA) could modulate the upregulation of inflammasome-related factors NLRP3 and Caspase-1 in LPS-induced BEAS-2B cells. This was done to evaluate the regulator mechanisms of PLD in pulmonary inflammatory injury. Our findings suggest that PLD's mechanism of action involves the regulation of mitochondrial autophagy, which in turn modulates inflammatory responses.


Assuntos
Anti-Inflamatórios , Apoptose , Autofagia , Lipopolissacarídeos , Platycodon , Saponinas , Triterpenos , Humanos , Saponinas/farmacologia , Saponinas/uso terapêutico , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Platycodon/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Linhagem Celular , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Simulação de Acoplamento Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Espécies Reativas de Oxigênio/metabolismo
6.
J Microbiol Biotechnol ; 34(7): 1511-1521, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-38934781

RESUMO

This study aimed to determine the function of LINC00511 in Nod-Like Receptor Pyrin Domain 3 inflammasome-mediated chondrocyte pyroptosis via the regulation of miR-9-5p and FUT 1. Chondrocyte inflammatory injury was induced by treating chondrocytes with LPS. Afterwards, the levels of IL-1ß and IL-18, the expression of NLRP3, ASC, Caspase-1, and GSDMD, cell viability, and LDH activity in chondrocytes were assessed. LINC00511 expression in LPS-treated chondrocytes was detected, and LINC00511 was subsequently silenced to analyse its role in chondrocyte pyroptosis. The subcellular localization of LINC00511 was predicted and verified. Furthermore, the binding relationships between LINC00511 and miR-9-5p and between miR-9-5p and FUT1 were validated. LINC00511 regulated NLRP3 inflammasome-mediated chondrocyte pyroptosis through the miR-9-5p/FUT1 axis. LPS-treated ATDC5 cells exhibited elevated levels of inflammatory injury; increased levels of NLRP3, ASC, Caspase-1, and GSDMD; reduced cell viability; increased LDH activity; and increased LINC00511 expression, while LINC00511 silencing inhibited the NLRP3 inflammasome to restrict LPS-induced chondrocyte pyroptosis. Next, LINC00511 sponged miR-9-5p, which targeted FUT1. Silencing LINC00511 suppressed FUT1 by upregulating miR-9-5p. Additionally, downregulation of miR-9-5p or overexpression of FUT1 neutralized the suppressive effect of LINC00511 knockdown on LPS-induced chondrocyte pyroptosis. Silencing LINC00511 inhibited the NLRP3 inflammasome to quench Caspase-1-dependent chondrocyte pyroptosis in OA by promoting miR-9-5p and downregulating FUT1.


Assuntos
Condrócitos , Fucosiltransferases , MicroRNAs , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , RNA Longo não Codificante , Condrócitos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Inflamassomos/metabolismo , Lipopolissacarídeos , Humanos , Linhagem Celular , Animais , Camundongos , Sobrevivência Celular , Interleucina-1beta/metabolismo , Interleucina-18/metabolismo , Interleucina-18/genética , Caspase 1/metabolismo , Caspase 1/genética
7.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38619320

RESUMO

The present study aimed to investigate the effects of deoxynivalenol (DON) stimulation on inflammatory injury and the expression of the glucose transporters sodium-dependent glucose transporter 1 (SGLT1) and glucose transporter protein 2 (GLU2) in porcine small intestinal epithelial cells (IPEC-J2). Additionally, the study aimed to provide initial insights into the connection between the expression of glucose transporters and the inflammatory injury of IPEC-J2 cells. DON concentration and DON treatment time were determined using the CCK­8 assay. Accordingly, 1.0 µg/mL DON and treatment for 24 h were chosen for subsequent experiments. Then IPEC-J2 cells were treated without DON (CON, N = 6) or with 1 µg/mL DON (DON, N = 6). Lactate dehydrogenase (LDH) content, apoptosis rate, and proinflammatory cytokines including interleukin (IL)-1ß, Il-6, and tumor necrosis factor α (TNF-α) were measured. Additionally, the expression of AMP-activated protein kinase α1 (AMPK-α1), the content of glucose, intestinal alkaline phosphatase (AKP), and sodium/potassium-transporting adenosine triphosphatase (Na+/K+-ATPase) activity, and the expression of SGLT1 and GLU2 of IPEC-J2 cells were also analyzed. The results showed that DON exposure significantly increased LDH release and apoptosis rate of IPEC-J2 cells. Stimulation with DON resulted in significant cellular inflammatory damage, as evidenced by a significant increase in proinflammatory cytokines (IL-1ß, IL-6, and TNF-α). Additionally, DON caused damage to the glucose absorption capacity of IPEC-J2 cells, indicated by decreased levels of glucose content, AKP activity, Na+/K+-ATPase activity, AMPK-α1 protein expression, and SGLT1 expression. Correlation analysis revealed that glucose absorption capacity was negatively correlated with cell inflammatory cytokines. Based on the findings of this study, it can be preliminarily concluded that the cell inflammatory damage caused by DON may be associated with decreased glucose absorption.


Glucose is one of the most basic nutrients necessary to sustain animal life and plays a crucial role in animal body composition and energy metabolism. Previous studies suggested a link between glucose absorption and inflammatory injury. In the present study, deoxynivalenol (DON) stimulation caused severe inflammatory injury and reduced the glucose absorption capacity of IPEC-J2 cells. Pearson's correlation analysis revealed a negative correlation between glucose absorption capacity and cell inflammatory cytokines. Ultimately, it can be speculated that the cellular inflammatory response triggered by DON may be related to the altered expression of glucose transporters.


Assuntos
Células Epiteliais , Glucose , Intestino Delgado , Transportador 1 de Glucose-Sódio , Tricotecenos , Animais , Tricotecenos/toxicidade , Suínos , Glucose/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 1 de Glucose-Sódio/genética , Linhagem Celular , Intestino Delgado/efeitos dos fármacos , Inflamação/induzido quimicamente , Citocinas/metabolismo , Citocinas/genética , Transporte Biológico/efeitos dos fármacos , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 2/genética , Apoptose/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo
8.
Front Cell Infect Microbiol ; 14: 1322113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585654

RESUMO

Background: Dopamine, a frequently used therapeutic agent for critically ill patients, has been shown to be implicated in clinical infections recently, however, the precise mechanisms underlying this association remain elusive. Klebsiella quasivariicola, a novel strain belonging to the Klebsiella species, exhibits potential pathogenic attributes. The impact of dopamine on K. quasivariicola infection has aroused our interest. Objective: Considering the contribution of host immune factors during infection, this study aimed to investigate the intricate interactions between K. quasivariicola, dopamine, and macrophages were explored. Methods: RAW264.7 cells and C57/BL6 mice were infected with K. quasivariicola, and the bacterial growth within macrophage, the production of inflammatory cytokines and the pathological changes in mice lungs were detected, in the absence or presence of dopamine. Results: Dopamine inhibited the growth of K. quasivariicola in the medium, but promoted bacterial growth when co-cultured with macrophages. The expression of proinflammatory cytokines increased in RAW 264.7 cells infected with K. quasivariicola, and a significant rise was observed upon the addition of dopamine. The infection of K. quasivariicola in mice induced an inflammatory response and lung injury, which were exacerbated by the administration of dopamine. Conclusions: Our findings suggest that dopamine may be one of the potential risk factors associated with K. quasivariicola infection. This empirical insight provides solid references for clinical precision medicine. Furthermore, an in vitro model of microbes-drugs-host immune cells for inhibitor screening was proposed to more accurately replicate the complex in vivo environment. This fundamental work had contributed to the present understanding of the crosstalk between pathogen, dopamine and host immune cells.


Assuntos
Infecções por Klebsiella , Pulmão , Humanos , Camundongos , Animais , Pulmão/patologia , Dopamina , Klebsiella pneumoniae/metabolismo , Macrófagos/microbiologia , Citocinas/metabolismo , Klebsiella/metabolismo , Proliferação de Células , Infecções por Klebsiella/microbiologia , Camundongos Endogâmicos C57BL
9.
Noncoding RNA Res ; 9(2): 536-546, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38511052

RESUMO

PRKAG2 is required for the maintenance of cellular energy balance. PRKAG2-AS1, a long non-coding RNA (lncRNA), was found within the promoter region of PRKAG2. Despite the extensive expression of PRKAG2-AS1 in endothelial cells, the precise function and mechanism of this gene in endothelial cells have yet to be elucidated. The localization of PRKAG2-AS1 was predominantly observed in the nucleus, as revealed using nuclear and cytoplasmic fractionation and fluorescence in situ hybridization. The manipulation of PRKAG2-AS1 by knockdown and overexpression within the nucleus significantly altered PRKAG2 expression in a cis-regulatory manner. The expression of PRKAG2-AS1 and its target genes, PRKAG2b and PRKAG2d, was down-regulated in endothelial cells subjected to oxLDL and Hcy-induced injury. This finding suggests that PRKAG2-AS1 may be involved in the mechanism behind endothelial injury. The suppression of PRKAG2-AS1 specifically in the nucleus led to an upregulation of inflammatory molecules such as cytokines, adhesion molecules, and chemokines in endothelial cells. Additionally, this nuclear suppression of PRKAG2-AS1 facilitated the adherence of THP1 cells to endothelial cells. We confirmed the role of nuclear knockdown PRKAG2-AS1 in the induction of apoptosis and inhibition of cell proliferation, migration, and lumen formation through flow cytometry, TUNEL test, CCK8 assay, and cell scratching. Finally, it was determined that PRKAG2-AS1 exerts direct control over the transcription of PRKAG2 by its binding to their promoters. In conclusion, downregulation of PRKAG2-AS1 suppressed the proliferation and migration, promoted inflammation and apoptosis of endothelial cells, and thus contributed to the development of atherosclerosis resulting from endothelial cell injury.

10.
Clin Immunol ; 262: 110178, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460892

RESUMO

Controlling the excessive inflammatory response is one of the key ways to reduce the severity and mortality of severe influenza virus infections. RAGE is involved in inflammatory responses and acute lung injuries. Here, we investigated the role of RAGE and its potential application as a target for severe influenza treatment through serological correlation analysis for influenza patients, and treatment with the RAGE inhibitor FPS-ZM1 on A549 cells or mice with influenza A (H1N1) infection. The results showed high levels of RAGE were correlated with immunopathological injury and severity of influenza, and FPS-ZM1 treatment increased the viability of A549 cells with influenza A infection and decreased morbidity and mortality of influenza A virus infection in mice. The RAGE/NF-κb inflammatory signaling pathway is a major targeting pathway for FPS-ZM1 treatment in severe influenza. These findings provide further insights into the immune injury of severe influenza and a potential targeting candidate for the disease treatment.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Camundongos , Animais , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Benzamidas/farmacologia
11.
Curr Neurovasc Res ; 21(1): 74-85, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38409729

RESUMO

BACKGROUND: Intracerebral hemorrhage (ICH) is one of the most common subtypes of stroke. OBJECTIVES: This study aimed to investigate the mechanism of Astragaloside IV (AS-IV) on inflammatory injury after ICH. METHODS: The ICH model was established by the injection of collagenase and treated with ASIV (20 mg/kg or 40 mg/kg). The neurological function, water content of the bilateral cerebral hemisphere and cerebellum, and pathological changes in brain tissue were assessed. The levels of interleukin-1 beta (IL-1ß), IL-18, tumor necrosis factor-alpha, interferon-gamma, and IL-10 were detected by enzyme-linked immunosorbent assay. The levels of Kruppel-like factor 2 (KLF2), NOD-like receptor family pyrin domain containing 3 (NLRP3), GSDMD-N, and cleaved-caspase-1 were detected by reverse transcription-quantitative polymerase chain reaction and Western blot assay. The binding relationship between KLF2 and NLRP3 was verified by chromatin-immunoprecipitation and dual-luciferase assays. KLF2 inhibition or NLRP3 overexpression was achieved in mice to observe pathological changes. RESULTS: The decreased neurological function, increased water content, severe pathological damage, and inflammatory response were observed in mice after ICH, with increased levels of NLRP3/GSDMD-N/cleaved-caspase-1/IL-1ß/IL-18 and poorly-expressed KLF2 in brain tissue. After AS-IV treatment, the neurological dysfunction, high brain water content, inflammatory response, and pyroptosis were alleviated, while KLF2 expression was increased. KLF2 bonded to the NLRP3 promoter region and inhibited its transcription. Down-regulation of KLF2 or upregulation of NLRP3 reversed the effect of AS-IV on inhibiting pyroptosis and reducing inflammatory injury in mice after ICH. CONCLUSION: AS-IV inhibited NLRP3-mediated pyroptosis by promoting KLF2 expression and alleviated inflammatory injury in mice after ICH.


Assuntos
Hemorragia Cerebral , Inflamassomos , Fatores de Transcrição Kruppel-Like , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Saponinas , Triterpenos , Animais , Saponinas/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/patologia , Camundongos , Piroptose/efeitos dos fármacos , Piroptose/fisiologia , Triterpenos/farmacologia , Masculino , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Camundongos Endogâmicos C57BL
12.
Int J Biol Macromol ; 261(Pt 2): 129733, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307433

RESUMO

The function of miRNAs in intestinal inflammatory injury regulation has been studied extensively. However, the targeted delivery of these functional nucleic acid molecules to specific organs through encapsulation carriers and exerting their functional effects remain critical challenges for further research. Here, we constructed miR-146a-5p overexpression plasmid and validated the anti-inflammatory properties in the cell model. Then, the plasmid was encapsulated by the Pickering double emulsion system to investigate the role of Pickering double emulsion system in LPS-induced acute intestinal inflammatory injury. The results showed that the Pickering double emulsion system could effectively protect the integrity of plasmids in the intestinal tract, alleviate intestinal inflammatory injury, and upregulate the relative abundance of Lactobacillus reuteri. Mechanically, in vivo and in vitro experiments have shown that miR-146a-5p inhibits TLR4/NF-κB pathway to alleviate intestinal inflammation. In addition, miR-146a-5p can also regulate intestinal homeostasis by targeting the RNA polymerase sigma factor RpoD and α-galactosidase A, thereby affecting the growth of Lactobacillus reuteri. Above all, this study reveals a potential mechanism for miR-146a-5p to treat intestinal inflammation and provides a new delivery strategy for miRNAs to regulate intestinal homeostasis.


Assuntos
Microbioma Gastrointestinal , MicroRNAs , Humanos , Emulsões , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Inflamação/genética
13.
Int J Mol Sci ; 25(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38256101

RESUMO

Actinobacillus pleuropneumoniae (APP) is responsible for causing Porcine pleuropneumonia (PCP) in pigs. However, using vaccines and antibiotics to prevent and control this disease has become more difficult due to increased bacterial resistance and weak cross-immunity between different APP types. Naringin (NAR), a dihydroflavonoid found in citrus fruit peels, has been recognized as having significant therapeutic effects on inflammatory diseases of the respiratory system. In this study, we investigated the effects of NAR on the inflammatory response caused by APP through both in vivo and in vitro models. The results showed that NAR reduced the number of neutrophils (NEs) in the bronchoalveolar lavage fluid (BALF), and decreased lung injury and the expression of proteins related to the NLRP3 inflammasome after exposure to APP. In addition, NAR inhibited the nuclear translocation of nuclear factor kappa-B (NF-κB) P65 in porcine alveolar macrophage (PAMs), reduced protein expression of NLRP3 and Caspase-1, and reduced the secretion of pro-inflammatory cytokines induced by APP. Furthermore, NAR prevented the assembly of the NLRP3 inflammasome complex by reducing protein interaction between NLRP3, Caspase-1, and ASC. NAR also inhibited the potassium (K+) efflux induced by APP. Overall, these findings suggest that NAR can effectively reduce the lung inflammation caused by APP by inhibiting the over-activated NF-κB/NLRP3 signalling pathway, providing a basis for further exploration of NAR as a potential natural product for preventing and treating APP.


Assuntos
Actinobacillus pleuropneumoniae , Flavanonas , NF-kappa B , Animais , Suínos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamassomos , Caspase 1
14.
Toxicon ; 239: 107612, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38211803

RESUMO

Bacterial lipopolysaccharide (LPS) exposure is a key inducer of intestinal inflammatory injury in weaned piglets, resulting in decreased growth performance of pigs and causing severe economic losses to the swine industry; however, the mechanism of intestinal inflammatory injury is still unclear. Baicalin is one of the main active ingredients extracted from the natural plant Scutellaria baicalensis that has biological functions, including anti-inflammatory activity. The aim of this study is to investigate the effect and mechanism of baicalin intervention on intestinal inflammatory injury caused by bacterial LPS exposure. In the present study, network pharmacology, molecular docking and DARTS results identified that baicalin has the potential to target PARP1, thereby potentially regulating a series of inflammation-related pathways, including the MAPK, NF-κB and Toll-like receptor signalling pathways, which play the role of antagonizing LPS-induced intestinal inflammatory injury. Further application of the LPS-induced IPEC-J2 cell model validated the finding that baicalin could alleviate LPS-induced intestinal inflammatory injury by inhibiting the PARP1-mediated NF-κB and NLRP3 signalling pathway. These findings demonstrate that baicalin can regulate the expression of PARP1 and that PARP1 has the potential to serve as an effective therapeutic target in the LPS-induced intestinal inflammatory injury.


Assuntos
Lipopolissacarídeos , NF-kappa B , Animais , Suínos , NF-kappa B/metabolismo , Lipopolissacarídeos/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR , Simulação de Acoplamento Molecular , Flavonoides/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo
15.
Toxicon ; 237: 107531, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013056

RESUMO

Contamination with fumonisin B1 (FB1) represents a global health problem. FB1 exposure may also trigger intestinal injury by activating inflammatory responses, leading to a reduction in production performance and economic benefits. However, the mechanism of FB1-induced intestinal inflammatory injury is still unclear. At the same time, it is urgent to develop antibiotic alternatives and therapeutic targets to alleviate antibiotic resistance and to ensure effective treatment of intestinal inflammatory injury. We combined network pharmacology and in vitro experiments to explore the core therapeutic targets and potential mechanism of luteolin in FB1-induced intestinal inflammatory injury. Network pharmacology and molecular docking revealed that nuclear factor kappa B (NF-κB) p65, extracellular signal-regulated kinase (ERK), interleukin 6 (IL-6) and IL-1ß are the important targets, and the NF-κB and ERK signalling pathways are critical in FB1-induced intestinal inflammatory injury. Besides, in vitro experiments further demonstrated that luteolin can inhibit FB1-induced intestinal inflammatory injury by inhibiting activation of the NF-κB and ERK signalling pathways and reducing the expression of IL-6 and IL-1ß in IPEC-J2 cells. We have comprehensively illustrated the potential targets and molecular mechanism by which luteolin can alleviate FB1-induced intestinal inflammatory injury. Luteolin may be an effective antibiotic alternative to prevent intestinal inflammatory injury.


Assuntos
Luteolina , NF-kappa B , NF-kappa B/metabolismo , Luteolina/farmacologia , Interleucina-6 , Simulação de Acoplamento Molecular , Farmacologia em Rede , Antibacterianos
16.
Biol Trace Elem Res ; 202(3): 1150-1163, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37394681

RESUMO

Selenium (Se) is a trace element essential for the maintenance of normal physiological functions in living organisms. Oxidative stress is a state in which there is an imbalance between oxidative and antioxidant effects in the body. A deficiency of Se can make the body more inclined to oxidation, which can induce related diseases. The aim of this experimental study was to investigate the mechanisms by which Se deficiency affects the digestive system through oxidation. The results showed that Se deficiency treatment led to a decrease in the levels of GPX4 and antioxidant enzymes and an increase in the levels of ROS, MDA, and lipid peroxide (LPO) in the gastric mucosa. Oxidative stress was activated. Triple stimulation of ROS, Fe2+, and LPO induced iron death. The TLR4/NF-κB signaling pathway was activated, inducing an inflammatory response. The expression of the BCL family and caspase family genes was increased, leading to apoptotic cell death. Meanwhile, the RIP3/MLKL signaling pathway was activated, leading to cell necrosis. Taken together, Se deficiency can induce iron death through oxidative stress. Meanwhile, the production of large amounts of ROS activated the TLR4/NF-κB signaling pathway, leading to apoptosis and necrosis of the gastric mucosa.


Assuntos
Desnutrição , Selênio , Animais , Camundongos , Selênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Ferro/farmacologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Apoptose , Necrose
17.
Virus Res ; 340: 199300, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092254

RESUMO

ACE2 has been confirmed to be a functional receptor for SARS-CoV and SARS-CoV-2, but research on animal coronaviruses, especially PEDV, are still unknown. The present study investigated whether ACE2 plays a role in receptor recognition and subsequent infection during PEDV invasion of host cells. IPEC-J2 cells stably expressing porcine ACE2 did not increase the production of PEDV-N but inhibited its expression. Porcine ACE2 knockout cells was generated by CRISPR/Cas9 genome editing in IPEC-J2 cells. The expression of PEDV-N did not decrease but slightly increased. The Co-IP results showed that there was no significant association between ACE2 and PEDV-S. There were no obvious interaction between PEDV-S, PEDV-E, PEDV-M and porcine ACE2 promoters, but PEDV-N could inhibit the activity of ACE2 promoters. PEDV-N degraded STAT1 and prevented its phosphorylation, thereby inhibiting the expression of interferon-stimulated genes. Repeated infection of PEDV further confirmed the above results. PEDV activated ACE-Ang II-AT1R axis, while ACE2-Ang (1-7)-MasR axis activity was decreased and inflammatory response was intensified. However, excess ACE2 can reverse this reaction. These results reveal that ACE2 does not facilitate PEDV entry into cells, but relieves PEDV-induced inflammation by promoting STAT1 phosphorylation.


Assuntos
Vírus da Diarreia Epidêmica Suína , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Chlorocebus aethiops , Suínos , Animais , Células Vero , Linhagem Celular , Vírus da Diarreia Epidêmica Suína/fisiologia , Enzima de Conversão de Angiotensina 2/genética , Fosforilação , SARS-CoV-2 , Células Epiteliais
18.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1030484

RESUMO

Objective To investigate the effect of nobiletin(Nb)on lipopolysaccharide(LPS)-induced inflammatory injury of mesangium cells(HBZY-1)by regulating AMP-activated protein kinase(AMPK)/NOD-like receptor protein 3(NLRP3)signaling pathway.Methods HBZY-1 cells were separated into 5 groups:normal control(NC)group,LPS group(100 ng·mL-1 LPS),and Nb group(100 ng·mL-1 LPS+40 μmol·L-1 Nb),Rapamycin(Rap,AMPK/NLRP3 signaling pathway inhibitor)group[100 ng·mL-1 LPS+0.5 μmol·L-1 Rap],and Nb+Rap group(100 ng·mL-1 LPS+40 μmol·L-1 Nb+0.5 μmol·L-1 Rap).MTT was applied to detect the cytotoxicity and proliferation of HBZY-1 cells.ELISA was applied to detect the contents of interleukin(IL)-1β,IL-6,tumor necrosis factor-α(TNF-α),catalase(CAT),superoxide dismutase(SOD),and glutathione(GSH)in HBZY-1 cells.Flow cytometry was used to detect cell apoptosis.Western Blot was applied to detect the protein levels of AMPK/NLRP3 signaling pathway.Results Compared with the NC group,the levels of CAT,SOD,GSH,cell OD value,and the level of AMPK protein in the LPS group were significantly reduced(P<0.05).The apoptosis rate,contents of IL-1β,IL-6,TNF-α,and the level of NLRP3 protein were significantly increased(P<0.05).Compared with the LPS group,the levels of CAT,SOD,GSH,OD value,and the level of AMPK protein in the Nb group were significantly increased(P<0.05).The apoptosis rate,contents of IL-1β,IL-6,TNF-α,and the level of NLRP3 protein were significantly decreased(P<0.05),while the above indicators in the Rap group showed an opposite trend to the Nb group(P<0.05).Compared with the Nb group,the above indicators in the Nb+Rap group also showed an opposite trend to the Nb group(P<0.05).Conclusion Nb may alleviate LPS-induced inflammatory injury to MC cells by up-regulating the AMPK/NLRP3 signaling pathway.But down-regulation of the AMPK/NLRP3 signaling pathway may eliminate the improvement effect of Nb on LPS-induced inflammatory injury in MC cells.

19.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1003767

RESUMO

ObjectiveTo investigate the effects and mechanism of Zuogui Jiangtang Tongmai prescription (ZJTP) on human umbilical vein endothelial cells (HUVECs) damaged by high glucose combined with lipopolysaccharide (LPS). MethodThe survival rate of cells was determined by cell counting kit-8 (CCK-8), and the level of tumor necrosis factor-α (TNF-α) was determined by enzyme-linked immunosorbent assay (ELISA) to determine the optimal injury concentration and action time of LPS, as well as the optimal action concentration of ZJTP drug-containing serum. HUVECs were divided into a blank control group, a model group, a ZJTP drug-containing serum group, and an SCFA mixed liquid group. ELISA was used to detect the level of endothelin-1 (ET-1), nitric oxide (NO), interleukin-1β (IL-1β), interleukin-6 (IL-6), and TNF-α. Western blot was performed to detect the protein expression of G protein-coupled receptor43 (GPR43), β-suppressor protein-2 (β-arrestin-2), nuclear factor-κB suppressor α (IκBα), and nuclear factor κB p65 (NF-κB p65). The nucleation of NF-κB p65 was observed by immunofluorescence staining (IF). The role of GPR43 in the regulation of inflammatory injury was observed by means of small interfering ribonucleic acid (siRNA). The cells after intervention were divided into an empty carrier group, a ZJTP drug-containing serum group, a Si-GPR43 group, and a Si-GPR43 + ZJTP drug-containing serum group. The content of IL-1β, IL-6, and TNF-α was detected by ELISA. The protein expression of pathways was detected by Western blot. IF was used to observe the nucleation of NF-κB p65. ResultThe optimal molding condition was 1 mg·L-1 LPS for 24 h. The optimal drug intervention condition was 5% ZJTP drug-containing serum for 24 h. Compared with the blank control group, the content of ET-1 in the model group was significantly increased, and the content of NO was significantly decreased (P<0.01). The levels of inflammatory factors were significantly increased (P<0.01). The expressions of GPR43 and IκBα were significantly decreased, while the protein expressions of β-arrestin-2 and NF-κB p65 were significantly increased (P<0.01). NF-κB p65 protein was transferred from the extranuclear to the intranuclear (P<0.01). Compared with the model group, the content of ET-1 in the ZJTP drug-containing serum group was decreased, and the content of NO was increased (P<0.05). The levels of inflammatory factors decreased (P<0.05). The protein expressions of GPR43 and IκBα were increased, while the expressions of β-arrestin-2 and NF-κB p65 were decreased (P<0.05). The amount of NF-κB p65 transferred from the intranuclear to the extranuclear decreased (P<0.01). The mechanism study showed that compared with the Si-GPR43 group, the content of IL-1β, IL-6, and TNF-α were significantly decreased after treatment with ZJTP drug-containing serum (P<0.01). The protein expressions of GPR43 and IκBα were significantly increased (P<0.01), while the protein expressions of β-arrestin-2 and NF-κB p65 were significantly decreased (P<0.01). The amount of NF-κB p65 transferred from the extranuclear to the intranuclear decreased (P<0.01). ConclusionZJTP has a protective effect on HUVECs with high glucose and LPS-induced inflammatory injury, which may be related to the regulation of GPR43/β-arrestin-2/IκBα/NF-κB pathway.

20.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1016463

RESUMO

ObjectiveTo explore the possible mechanism of Osteoking (OK) on postmenopausal osteoporosis (PMOP). MethodForty adult female mice were randomly divided into a sham operation (Sham) group, osteoporosis model (OVX) group, estradiol intervention (E2) group, and OK group, with 10 mice in each group. The modeling was completed by conventional back double incision ovariectomy, and the corresponding drugs were given one week later. After 12 weeks, the body mass and uterine index of mice were measured, and the pathological changes of bone tissue and the number of osteoclasts (OCs) were determined by hematoxylin-eosin (HE) and tartrate-resistant acid phosphatase (TRAP) staining, respectively. Bone mineral density (BMD), trabecular number (Tb.N), trabecular separation (Tb.Sp), and bone volume fraction (BV/TV) were measured by microcomputed tomography (Micro-CT). The maximum load of the femur was detected by a three-point bending test. The contents of tumor necrosis factor-α (TNF-α) and bone resorption marker C-terminal telopeptide of type Ⅰ collagen (CTX-1) were measured by enzyme linked immunosorbent assay (ELISA). The protein expression levels of nuclear factor-kappa B p65 (NF-κB p65), phosphorylated nuclear factor-kappa B p65 (p-NF-κB p65), nuclear factor kappa B inhibitor alpha (IκBα), phosphorylated nuclear factor kappa B alpha (p-IκBα), nuclear factor of activated T cells 1 (NFATc1), and proto-oncogene (c-Fos) were detected by Western blot. The mRNA expressions of OCs-related specific genes matrix metalloproteinase-9 (MMP-9), NFATc1, TRAP, cathepsin K (CTSK), and c-Fos were detected by real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultCompared with the Sham group, the uterine index decreased significantly in the OVX group, and the body mass (BMI) increased significantly. The structure of bone trabeculae was completely damaged, and the number of OCs increased. BMD, Tb.N, BV/TV, and maximum load decreased, while Tb.Sp was up-regulated. The levels of TNF-α and CTX-1 in serum were up-regulated. The protein expressions of c-Fos, p-NF-κB p65/NF-κB p65, NFATc1, and p-IκBα/IκBα were increased. The mRNA expressions of NFATc1, c-Fos, CTSK, TRAP, and MMP-9 were up-regulated (P<0.05, P<0.01). Compared with the OVX group, the body mass of the OK and E2 groups decreased, and the uterine index increased. The bone trabeculae increased, and the number of OCs decreased. BMD, Tb.N, BV/TV, and maximum load increased, while Tb.Sp decreased. The levels of TNF-α and CTX-1 in serum were decreased. The protein expressions of c-Fos, p-NF-κB p65/NF-κB p65, NFATc1, and p-IκBα/IκBα were decreased, and the mRNA expressions of NFATc1, c-Fos, CTSK, TRAP, and MMP-9 were decreased (P<0.05, P<0.01). ConclusionOK can inhibit the NF-κB/NFATc1 signaling pathway and reduce bone mass loss by reducing the level of inflammatory injury factors in PMOP mice, which is one of the mechanisms for treating PMOP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA