Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.818
Filtrar
1.
Poult Sci ; 103(10): 104068, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39096825

RESUMO

Avian influenza virus (AIV) subtype H9N2 has significantly threatened the poultry business in recent years by having become the predominant subtype in flocks of chickens, ducks, and pigeons. In addition, the public health aspects of H9N2 AIV pose a significant threat to humans. Early and rapid diagnosis of H9N2 AIV is therefore of great importance. In this study, a new method for the detection of H9N2 AIV based on fluorescence intensity was successfully established using CRISPR/Cas13a technology. The Cas13a protein was first expressed in a prokaryotic system and purified using nickel ion affinity chromatography, resulting in a high-purity Cas13a protein. The best RPA (recombinase polymerase amplification) primer pairs and crRNA were designed and screened, successfully constructing the detection of H9N2 AIV based on CRISPR/Cas13a technology. Optimal concentration of Cas13a and crRNA was determined to optimize the constructed assay. The sensitivity of the optimized detection system is excellent, with a minimum detection limit of 10° copies/µL and didn't react with other avian susceptible viruses, with excellent specificity. The detection method provides the basis for the field detection of the H9N2 AIV.

2.
Emerg Infect Dis ; 30(9)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106453

RESUMO

We isolated highly pathogenic avian influenza (HPAI) H5N5 and H5N1 viruses from crows in Hokkaido, Japan, during winter 2023-24. They shared genetic similarity with HPAI H5N5 viruses from northern Europe but differed from those in Asia. Continuous monitoring and rapid information sharing between countries are needed to prevent HPAI virus transmission.

3.
Front Microbiol ; 15: 1442163, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104583

RESUMO

Given the intimate relationship between humans and dogs, the H3N2 canine influenza viruses (CIVs) pose a threat to public health. In our study, we isolated four H3N2 CIVs from 3,758 dog nasal swabs in China between 2018 and 2020, followed by genetic and biological analysis. Phylogenetic analysis revealed 15 genotypes among all available H3N2 CIVs, with genotype 15 prevailing among dogs since around 2017, indicating the establishment of a stable virus lineage in dogs. Molecular characterization identified many mammalian adaptive substitutions, including HA-G146S, HA-N188D, PB2-I292T, PB2-G590S, PB2-S714I, PB1-D154G, and NP-R293K, present across the four isolates. Notably, analysis of HA sequences uncovered a newly emerged adaptive mutation, HA-V223I, which is predominantly found in human and swine H3N2 viruses, suggesting its role in mammalian adaptation. Receptor-binding analysis revealed that the four H3N2 viruses bind both avian and human-type receptors. However, HA-V223I decreases the H3N2 virus's affinity for human-type receptors but enhances its thermal stability. Furthermore, attachment analysis confirmed the H3N2 virus binding to human tracheal tissues, albeit with reduced affinity when the virus carries HA-V223I. Antigenic analysis indicated that the current human H3N2 vaccines do not confer protection against H3N2 CIVs. Collectively, these findings underscore that the potential threat posed by H3N2 CIVs to human health still exists, emphasizing the necessity of close surveillance and monitoring of H3N2 CIVs in dogs.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38949757

RESUMO

Influenza virus infection is an important public-health concern because of its high transmissibility and potential for severe complications. To mitigate the severity and complications of influenza, probiotics containing Lactobacillus are used and generally recognized as safe. We evaluated the anti-influenza effect of Limosilactobacillus reuteri (L. reuteri) KBL346, isolated from the fecel sample of healthy South Koreans, in mice. BALB/c mice were orally administered live and heat-inactivated L. reuteri KBL346. After infection with influenza virus (A/Puerto Rico/8/34) 0.5 times the 50% lethal dose (LD50), body weight loss was improved and recovery was accelerated. Furthermore, L. reuteri KBL346 improved body weight loss and survival rate of mice infected with 4 times the LD50 of influenza virus. Heat-inactivated L. reuteri KBL346 reduced the viral titer in the lung and the plasma immunoglobulin G level. Expression levels of genes encoding inflammatory cytokines, such as interferon-γ and toll-like receptor 2 (Tlr2), were decreased in the lung tissues of mice administered L. reuteri KBL346. Live and heat-inactivated L. reuteri KBL346 increased the expression level of Adamts4, which promotes recovery after infection, and decreased that of Tlr2. The α-diversity of the gut microbiome was modulated by the administration of L. reuteri KBL346. In addition, the structure of the gut microbial community differed according to the degree of weight loss. L. reuteri KBL346 has the potential to alleviate disease severity and improve histopathological changes in mice infected with influenza A/PR8, suggesting its efficacy as a probiotic against influenza infection.

5.
Virol J ; 21(1): 151, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965616

RESUMO

BACKGROUND: The canine influenza virus (CIV) outbreak has garnered considerable attention as it poses a significant threat to dog health. During the H3N2 CIV evolution in beagles, the virus formed a new clade after 2019 and gradually became more adaptable to other mammals. Therefore, successfully elucidating the biological characteristics and constructing a canine influenza infection model is required for CIV characterization. METHODS: We performed genetic analyses to examine the biological characteristics and infection dynamics of CIV. RESULTS: The genotype of our H3N2 CIV strain (from 2019 in Shanghai) belonged to the 5.1 clade, which is now prevalent in China. Using MDCK cells, we investigated viral cytopathic effects. Virus size and morphology were observed using transmission electron microscopy. Beagles were also infected with 104, 105, and 106 50% egg-infectious doses (EID50). When compared with the other groups, the 106 EID50 group showed the most obvious clinical symptoms, the highest virus titers, and typical lung pathological changes. Our results suggested that the other two treatments caused mild clinical manifestations and pathological changes. Subsequently, CIV distribution in the 106 EID50 group was detected by hematoxylin and eosin (H&E) and immunofluorescence (IF) staining, which indicated that CIV primarily infected the lungs. CONCLUSIONS: The framework established in this study will guide further CIV prevention strategies.


Assuntos
Doenças do Cão , Genótipo , Vírus da Influenza A Subtipo H3N2 , Infecções por Orthomyxoviridae , Animais , Cães , Vírus da Influenza A Subtipo H3N2/genética , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/patologia , Doenças do Cão/virologia , Células Madin Darby de Rim Canino , China/epidemiologia , Pulmão/virologia , Pulmão/patologia , Filogenia , Carga Viral , Modelos Animais de Doenças
6.
J Infect Dis ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970327

RESUMO

BACKGROUND: A single-dose investigational respiratory syncytial virus (RSV) vaccine, RSV prefusion protein F3 (RSVPreF3), was co-administered with a single-dose quadrivalent influenza vaccine (FLU-D-QIV) in a phase 3, randomized, controlled, multicenter study in healthy, non-pregnant women aged 18-49 years. METHODS: The study was observer-blind to evaluate the lot-to-lot consistency of RSVPreF3, and single-blind to evaluate the immune response, safety, and reactogenicity of RSVPreF3 co-administered with FLU-D-QIV. RESULTS: A total of 1415 participants were included in the per-protocol set. There was a robust immune response at day 31 across each of the 3 RSVPreF3 vaccine lots; adjusted geometric mean concentration ratios (95% confidence interval [CI]) were 1.01 (0.91, 1.12), 0.93 (0.84, 1.03), and 0.92 (0.83, 1.02) for RSV1/RSV2, RSV1/RSV3, and RSV2/RSV3, respectively. For FLU-D-QIV co-administered with RSVPreF3, versus FLU-D-QIV alone at day 31, noninferiority was satisfied for 3 of 4 strains assessed, with the lower limit of the 95% CI for geometric mean ratio >0.67. CONCLUSIONS: Immunogenic consistency was demonstrated for 3 separate lots of RSVPreF3. Immunogenic noninferiority was demonstrated when comparing FLU-D-QIV administered alone, versus co-administered with RSVPreF3, for 3 strains of FLU-D-QIV. Co-administration was well tolerated, and both vaccines had clinically acceptable safety and reactogenicity profiles. CLINICAL TRIALS REGISTRATION: NCT05045144; EudraCT, 2021-000357-26.


This was a phase 3 study that compared antibodies against respiratory syncytial virus (or RSV for short) between women who were given 3 different production batches of RSV prefusion protein F3 (known as RSVPreF3) vaccine. The study also compared the antibodies between women who received either an RSV vaccine together with a flu vaccine (known as FLU-D-QIV), or a flu vaccine alone. The flu vaccine contained 4 different strains of flu virus. The study involved 1415 healthy, non-pregnant women aged 18­49 years. The antibodies checked after 31 days showed strong immune responses for all 3 RSV vaccine production batches, and similar immune responses between each of the 3 RSV vaccine production batches. The immune response of 3 of the 4 flu strains was not less when the flu vaccine was given together with the RSV vaccine than the immune response when flu vaccine was given alone and both vaccines were well tolerated.

7.
Infect Drug Resist ; 17: 3199-3208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39070720

RESUMO

Acute respiratory infections contribute to morbidity and mortality worldwide. The common cause of this deadly disease is a virus, and one of the most commonly found is the influenza virus. Influenza viruses have several capabilities in infection, including utilizing the host's machinery to survive within cells and replicate safely. This review aims to examine the literature on how influenza viruses use host machinery, including endocytosis and autophagy, for their internalization and replication within cells. This review method involves a literature search by examining articles published in the PubMed and Scopus databases. The keywords used were "Endocytosis" OR "Autophagy" AND "Influenza Virus". Eighteen articles were included due to inclusion and exclusion criteria. GTPases switch, and V-ATPase plays a key role in the endocytic machinery hijacked by influenza viruses to enter host cells. On the other hand, LC3 and Atg5 facilitate influenza-induced apoptosis via the autophagic pathway. In conclusion, influenza viruses primarily use clathrin-mediated endocytosis to enter cells and avoid degradation during endosomal maturation by exiting endosomes for transfer to the nucleus for replication. It also uses autophagy to induce apoptosis to continue replication. The capability of the influenza viruses to hijack endocytosis and autophagy mechanisms could be critical points for further research. Therefore, we discuss how the influenza virus utilizes both endocytosis and autophagy and the approach for a new strategic therapy targeting those mechanisms.

8.
Heliyon ; 10(13): e34055, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071618

RESUMO

Background: Rujin Jiedu decoction (RJJDD) is a classical prescription of Traditional Chinese Medicine that has long been applied to treat pneumonia caused by external infection, but whether and how it benefits influenza virus therapy remains largely unclear. The aim of this study was to investigate the anti-inflammatory effect of RJJDD on the mouse model of influenza and to explore its potential mechanism. Methods: The mice were mock-infected with PBS or infected with PR8 virus followed by treatment with RJJDD or antiviral oseltamivir. The weight loss and morbidity of mice were monitored daily. Network pharmacology is used to explore the potential pathways that RJJDD may modulate. qRT-PCR and ELISA were performed to assess the expression of inflammatory cytokines in the lung tissue and macrophages. The intestinal feces were collected for 16S rDNA sequencing to assess the changes in gut microbiota. Results: We demonstrate that RJJDD protects against IAV-induced pneumonia. Comprehensive network pharmacology analyses of the Mass Spec-identified components of RJJDD suggest that RJJDD may act through down-regulating key signaling pathways producing inflammatory cytokines, which was experimentally confirmed by cytokine expression analysis in IAV-infected mouse lung tissues and IAV single-strand RNA mimic R837-induced macrophages. Furthermore, gut microbiota analysis indicates that RJJDD prevented IAV-induced dysbiosis of host intestinal flora, thereby offering a mechanistic explanation for RJJDD's efficacy in influenza pneumonia. Conclusion: This study defines a previously uncharacterized role for RJJDD in protecting against influenza likely by maintaining homeostasis of gut microbiota, and provides a new therapeutic option for severe influenza.

9.
Virusdisease ; 35(2): 321-328, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39071868

RESUMO

H9N2 avian Influenza virus subtype is highly neglected but have the potential to emerge as a next pandemic influenza virus, by either itself evolution or through the donation of genes to other subtype. So to understand the extent of H9N2 virus prevalence and associated risk factors in poultry of retail shops and their surrounding environment a cross sectional study was carried out. A total of 500 poultry tissue and 700 environmental samples were collected from 20 district of Madhya Pradesh. Virus isolation was carried out in egg inoculation and harvested allantoic fluid was tested for HA and further molecular confirmation of subtypes by RT-PCR using H9 specific primers. Prevalence was calculated and positive samples were statistically associated with observed risk factors using univariate and multivariate logistic regression analysis. A total of 9.4% and 9.7% prevalence in tissue samples and environmental samples has been reported respectively and out of 20 districts 10 (50%) were found positive for the virus. Out of 21 studied risk factors only two risk factors named as "keeping total number birds slaughtered per day" and "procuring birds from wholesaler" were found significantly associated with the H9N2 positivity in multivariate logistic regression analysis. This high level of H9N2 positivity in birds with no clinical manifestations providing a great opportunity for avian influenza virus for amplification, co-infection in other animals like dogs, cats, pigs and in human through genetic re-assortment that may lead to emergence of a novel influenza virus with high zoonotic potential. Supplementary Information: The online version contains supplementary material available at 10.1007/s13337-024-00865-y.

10.
Virusdisease ; 35(2): 231-242, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39071870

RESUMO

Influenza viruses are known to cause severe respiratory infections in humans, often associated with significant morbidity and mortality rates. Virus replication relies on various host factors and pathways, which also determine the virus's infectious potential. Nonetheless, achieving a comprehensive understanding of how the virus interacts with host cellular components is essential for developing effective therapeutic strategies. One of the key components among host factors, the nuclear pore complex (NPC), profoundly affects both the Influenza virus life cycle and the host's antiviral defenses. Serving as the sole gateway connecting the cytoplasm and nucleoplasm, the NPC plays a vital role as a mediator in nucleocytoplasmic trafficking. Upon infection, the virus hijacks and alters the nuclear pore complex and the nuclear receptors. This enables the virus to infiltrate the nucleus and promotes the movement of viral components between the nucleus and cytoplasm. While the nucleus and cytoplasm play pivotal roles in cellular functions, the nuclear pore complex serves as a crucial component in the host's innate immune system, acting as a defense mechanism against virus infection. This review provides a comprehensive overview of the intricate relationship between the Influenza virus and the nuclear pore complex. Furthermore, we emphasize their mutual influence on viral replication and the host's immune responses.

11.
J Med Microbiol ; 73(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39073070

RESUMO

Introduction. After two seasons of absence and low circulation, influenza activity increased significantly in the winter of 2022-2023. This study aims to characterize virological and epidemiological aspects of influenza infection in Bulgaria during the 2022-2023 season and perform a phylogenetic/molecular analysis of the hemagglutinin (HA) and neuraminidase (NA) sequences of representative influenza strains.Hypothesis/Gap Statement. Influenza A and B viruses generate new genetic groups/clades each season, replacing previously circulating variants. This results in increased antigenic distances from current vaccine strains. Strengthening existing influenza surveillance is essential to meet the challenges posed by the co-circulation of influenza and SARS-CoV-2.Methodology. We tested 2713 clinical samples from patients with acute respiratory illnesses using a multiplex real-time RT-PCR kit (FluSC2) to detect influenza A/B and Severe acute respiratory syndrome coronavirus-2(SARS-CoV-2) simultaneously. Representative Bulgarian influenza strains were sequenced at the WHO Collaborating Centres in London, UK, and Atlanta, USA.Results. Influenza virus was detected in 694 (25.6 %) patients. Of these, 364 (52.4 %), 213 (30.7 %) and 117 (16.9 %) were positive for influenza A(H1N1)pdm09, A(H3N2) and B/Victoria lineage virus, respectively. HA genes of the 47 influenza A(H1N1)pdm09 viruses fell into clades 5a.2. and 5a.2a.1 within the 6B.5A.1A.5a.2 group. Twenty-seven A(H3N2) viruses belonging to subclades 2b, 2a.1, 2a.1b and 2a.3a.1 within the 3C.2a1b.2a.2 group were analysed. All 23 sequenced B/Victoria lineage viruses were classified into the V1A.3a.2 group. We identified amino acid substitutions in HA and NA compared with the vaccine strains, including several substitutions in the HA antigenic sites.Conclusion. The study's findings showed genetic diversity among the influenza A viruses and, to a lesser extent, among B viruses, circulating in the first season after the lifting of anti-COVID-19 measures.


Assuntos
Variação Genética , Vírus da Influenza B , Influenza Humana , Neuraminidase , Filogenia , SARS-CoV-2 , Humanos , Influenza Humana/virologia , Influenza Humana/epidemiologia , Vírus da Influenza B/genética , Vírus da Influenza B/classificação , Vírus da Influenza B/isolamento & purificação , SARS-CoV-2/genética , SARS-CoV-2/classificação , Neuraminidase/genética , Adulto , Masculino , Pessoa de Meia-Idade , Feminino , Bulgária/epidemiologia , Adulto Jovem , Idoso , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Pré-Escolar , Criança , Adolescente , COVID-19/epidemiologia , COVID-19/virologia , Lactente , Estações do Ano , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/classificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação
12.
Microorganisms ; 12(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39065055

RESUMO

Domestic ducks (Anas platyrhynchos domesticus) are resistant to most of the highly pathogenic avian influenza virus (HPAIV) infections. In this study, we characterized the lung proteome and phosphoproteome of ducks infected with the HPAI H5N1 virus (A/duck/India/02CA10/2011/Agartala) at 12 h, 48 h, and 5 days post-infection. A total of 2082 proteins were differentially expressed and 320 phosphorylation sites mapping to 199 phosphopeptides, corresponding to 129 proteins were identified. The functional annotation of the proteome data analysis revealed the activation of the RIG-I-like receptor and Jak-STAT signaling pathways, which led to the induction of interferon-stimulated gene (ISG) expression. The pathway analysis of the phosphoproteome datasets also confirmed the activation of RIG-I, Jak-STAT signaling, NF-kappa B signaling, and MAPK signaling pathways in the lung tissues. The induction of ISG proteins (STAT1, STAT3, STAT5B, STAT6, IFIT5, and PKR) established a protective anti-viral immune response in duck lung tissue. Further, the protein-protein interaction network analysis identified proteins like AKT1, STAT3, JAK2, RAC1, STAT1, PTPN11, RPS27A, NFKB1, and MAPK1 as the main hub proteins that might play important roles in disease progression in ducks. Together, the functional annotation of the proteome and phosphoproteome datasets revealed the molecular basis of the disease progression and disease resistance mechanism in ducks infected with the HPAI H5N1 virus.

13.
Viruses ; 16(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39066264

RESUMO

The avian influenza virus, particularly the H5N1 strain, poses a significant and ongoing threat to both human and animal health. Recent outbreaks have affected domestic and wild birds on a massive scale, raising concerns about the virus' spread to mammals. This review focuses on the critical role of microRNAs (miRNAs) in modulating pro-inflammatory signaling pathways during the pathogenesis of influenza A virus (IAV), with an emphasis on highly pathogenic avian influenza (HPAI) H5 viral infections. Current research indicates that miRNAs play a significant role in HPAI H5 infections, influencing various aspects of the disease process. This review aims to synthesize recent findings on the impact of different miRNAs on immune function, viral cytopathogenicity, and respiratory viral replication. Understanding these mechanisms is essential for developing new therapeutic strategies to combat avian influenza and mitigate its effects on both human and animal populations.


Assuntos
Galinhas , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , MicroRNAs , Replicação Viral , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Influenza Aviária/virologia , Influenza Aviária/imunologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Galinhas/virologia , Humanos , Modelos Animais de Doenças , Influenza Humana/virologia , Influenza Humana/imunologia , Influenza Humana/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia
14.
Viruses ; 16(7)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39066308

RESUMO

In January 2020, increased mortality was reported in a small broiler breeder flock in County Fermanagh, Northern Ireland. Gross pathological findings included coelomitis, oophoritis, salpingitis, visceral gout, splenomegaly, and renomegaly. Clinical presentation included inappetence, pronounced diarrhoea, and increased egg deformation. These signs, in combination with increased mortality, triggered a notifiable avian disease investigation. High pathogenicity avian influenza virus (HPAIV) was not suspected, as mortality levels and clinical signs were not consistent with HPAIV. Laboratory investigation demonstrated the causative agent to be a low-pathogenicity avian influenza virus (LPAIV), subtype H6N1, resulting in an outbreak that affected 15 premises in Northern Ireland. The H6N1 virus was also associated with infection on 13 premises in the Republic of Ireland and six in Great Britain. The close genetic relationship between the viruses in Ireland and Northern Ireland suggested a direct causal link whereas those in Great Britain were associated with exposure to a common ancestral virus. Overall, this rapidly spreading outbreak required the culling of over 2 million birds across the United Kingdom and the Republic of Ireland to stamp out the incursion. This report demonstrates the importance of investigating LPAIV outbreaks promptly, given their substantial economic impacts.


Assuntos
Galinhas , Surtos de Doenças , Fazendas , Vírus da Influenza A , Influenza Aviária , Doenças das Aves Domésticas , Aves Domésticas , Animais , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Surtos de Doenças/veterinária , Reino Unido/epidemiologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Irlanda/epidemiologia , Galinhas/virologia , Vírus da Influenza A/patogenicidade , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Aves Domésticas/virologia , Filogenia
15.
Vaccines (Basel) ; 12(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39066364

RESUMO

The influenza vaccines currently approved for clinical use mainly include inactivated influenza virus vaccines and live attenuated influenza vaccines (LAIVs). LAIVs have multiple advantages, such as ease of use and strong immunogenicity, and can provide cross-protection. In this study, the M gene of the PR8 virus was mutated as follows (G11T, C79G, G82C, C85G, and C1016A), and a live attenuated influenza virus containing the mutated M gene was rescued and obtained using reverse genetic technology as a vaccine candidate. The replication ability of the rescued virus was significantly weakened in both MDCK cells and mice with attenuated virulence. Studies on immunogenicity found that 1000 TCID50 of mutated PR8 (mPR8) can prime strong humoral and cellular immune responses. Single-dose immunization of 1000 TCID50 mPR8 was not only able to counter the challenge of the homologous PR8 virus but also provided cross-protection against the heterologous H9N2 virus.

16.
J Hazard Mater ; 477: 135180, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39067289

RESUMO

Reliable and sensitive virus detection is essential to prevent airborne virus transmission. The polymerase chain reaction (PCR) is one of the most compelling and effective diagnostic techniques for detecting airborne pathogens. However, most PCR diagnostics rely on thermocycling, which involves a time-consuming Peltier block heating methodology. Plasmonic PCR is based on light-driven photothermal heating of plasmonic nanostructures to address the key drawbacks of traditional PCR. This study introduces a methodology for plasmonic PCR detection of air-sampled influenza virus (H1N1). An electrostatic air sampler was used to collect the aerosolized virus in a carrier liquid for 10 min. Simultaneously, the viruses collected in the liquid were transferred to a tube containing gold (Au) nanorods (aspect ratio = 3.6). H1N1 viruses were detected in 12 min, which is the total time required for reverse transcription, fast thermocycling via plasmonic heating through gold nanorods, and in situ fluorescence detection. This methodology showed a limit of detection of three RNA copies/µL liquid for H1N1 influenza virus, which is comparable to that of commercially available PCR devices. This methodology can be used for the rapid and precise identification of pathogens on-site, while significantly reducing the time required for monitoring airborne viruses.

17.
J Food Prot ; 87(8): 100325, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964610

RESUMO

With the emergence of clade 2.3.4.4b H5N1 highly pathogenic avian influenza virus (AIV) infection of dairy cattle and its subsequent detection in raw milk, coupled with recent AIV infections affecting dairy farm workers, experiments were conducted to affirm the safety of cooked ground beef related to AIV because such meat is often derived from cull dairy cows. Specifically, retail ground beef (percent lean:fat = ca. 80:20) was inoculated with a low pathogenic AIV (LPAIV) isolate to an initial level of 5.6 log10 50% egg infectious doses (EID50)  per 300 g patty. The inoculated meat was pressed into patties (ca. 2.54 cm thick, ca. 300 g each) and then held at 4 °C for up to 60 min. In each of the two trials, two patties for each of the following three treatments were cooked on a commercial open-flame gas grill to internal instantaneous temperatures of 48.9 °C (120°F), 62.8 °C (145°F), or 71.1 °C (160°F), but without any dwell time. Cooking inoculated ground beef patties to 48.9 °C (ave. cooking time of ca. 15 min) resulted in a mean reduction of ≥2.5 ± 0.9 log10 EID50 per 300 g of ground beef as assessed via quantification of virus in embryonating chicken eggs (ECEs). Likewise, cooking patties on a gas grill to 62.8 °C (ave. cooking time of ca. 21 min) or to the USDA FSIS recommended minimum internal temperature for ground beef of 71.1 °C (ave. cooking time of ca. 24 min) resulted in a reduction to nondetectable levels from initial levels of ≥5.6 log10 EID50 per 300 g. These data establish that levels of infectious AIV are substantially reduced within inoculated ground beef patties (20% fat) using recommended cooking procedures.


Assuntos
Culinária , Animais , Bovinos , Humanos , Influenza Aviária , Carne Vermelha , Virus da Influenza A Subtipo H5N1 , Carne , Aves
18.
Vet Microbiol ; 295: 110163, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959807

RESUMO

Avian influenza virus (AIV) infection and vaccination against live attenuated infectious bronchitis virus (aIBV) are frequent in poultry worldwide. Here, we evaluated the clinical effect of H9N2 subtype AIV and QX genotype aIBV co-infection in specific-pathogen-free (SPF) white leghorn chickens and explored the potential mechanisms underlying the observed effects using by 4D-FastDIA-based proteomics. The results showed that co-infection of H9N2 AIV and QX aIBV increased mortality and suppressed the growth of SPF chickens. In particular, severe lesions in the kidneys and slight respiratory signs similar to the symptoms of virulent QX IBV infection were observed in some co-infected chickens, with no such clinical signs observed in single-infected chickens. The replication of H9N2 AIV was significantly enhanced in both the trachea and kidneys, whereas there was only a slight effect on the replication of the QX aIBV. Proteomics analysis showed that the IL-17 signaling pathway was one of the unique pathways enriched in co-infected chickens compared to single infected-chickens. A series of metabolism and immune response-related pathways linked with co-infection were also significantly enriched. Moreover, co-infection of the two pathogens resulted in the enrichment of the negative regulation of telomerase activity. Collectively, our study supports the synergistic effect of the two pathogens, and pointed out that aIBV vaccines might increased IBV-associated lesions due to pathogenic co-infections. Exacerbation of the pathogenicity and mortality in H9N2 AIV and QX aIBV co-infected chickens possibly occurred because of an increase in H9N2 AIV replication, the regulation of telomerase activity, and the disturbance of cell metabolism and the immune system.


Assuntos
Galinhas , Coinfecção , Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Doenças das Aves Domésticas , Animais , Galinhas/virologia , Vírus da Influenza A Subtipo H9N2/patogenicidade , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Bronquite Infecciosa/patogenicidade , Vírus da Bronquite Infecciosa/genética , Coinfecção/virologia , Coinfecção/veterinária , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Organismos Livres de Patógenos Específicos , Replicação Viral , Vacinas Atenuadas/imunologia , Genótipo , Virulência , Proteômica , Rim/virologia , Rim/patologia
19.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1070-1078, 2024 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-38977336

RESUMO

OBJECTIVE: To investigate the protective effect of 5-hydroxy-6,7-dimethoxyflavone (5-HDF), a compound extracted from Elsholtzia blanda Benth., against lung injury induced by H1N1 influenza virus and explore its possible mechanism of action. METHODS: 5-HDF was extracted from Elsholtzia blanda Benth. using ethanol reflux extraction and silica gel chromatography and characterized using NMR and MS analyses. In an A549 cell model of H1N1 influenza virus infection (MOI=0.1), the cytotoxicity of 5-HDF was assessed using MTT assay, and its effect on TRAIL and IL-8 expressions was examined using flow cytometry; Western blotting was used to detect the expression levels of inflammatory, apoptosis, and ferroptosis-related proteins. In a mouse model of H1N1 influenza virus infection established by nasal instillation of 50 µL H1N1 virus at the median lethal dose, the effects of 30 and 60 mg/kg 5-HDF by gavage on body weight, lung index, gross lung anatomy and lung histopathology were observed. RESULTS: 5-HDF exhibited no significant cytotoxicity in A549 cells within the concentration range of 0-200 µg/mL. In H1N1-infected A549 cells, treatment with 5-HDF effectively inhibited the activation of phospho-p38 MAPK and phospho-NF-κB p65, lowered the expressions of IL-8, enhanced the expression of anti-ferroptosis proteins (SLC7A11 and GPX4), and inhibited the expressions of apoptosis markers PARP and caspase-3 and the apoptotic factor TRAIL. In H1N1-infected mice, treatment with 5-HDF for 7 days significantly suppressed body weight loss and increment of lung index and obviously alleviated lung tissue pathologies. CONCLUSION: 5-HDF offers protection against H1N1 influenza virus infection in mice possibly by suppressing H1N1-induced ferroptosis, inflammatory responses, and apoptosis via upregulating SLC7A11 and GPX4, inhibiting the activation of phospho-NF-κB p65 and phospho-p38 MAPK, and decreasing the expression of cleaved caspase3 and cleaved PARP.


Assuntos
Ferroptose , Flavonas , Inflamação , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Humanos , Células A549 , Camundongos , Animais , Ferroptose/efeitos dos fármacos , Flavonas/farmacologia , Apoptose/efeitos dos fármacos , Interleucina-8/metabolismo , Pulmão/patologia , Lamiaceae/química , Infecções por Orthomyxoviridae/tratamento farmacológico , Fator de Transcrição RelA/metabolismo , Caspase 3/metabolismo
20.
Antiviral Res ; : 105961, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002800

RESUMO

Baloxavir acid (BXA) is a pan-influenza antiviral that targets the cap-dependent endonuclease of the polymerase acidic (PA) protein required for viral mRNA synthesis. To gain a comprehensive understanding on the molecular changes associated with reduced susceptibility to BXA and their fitness profile, we performed a deep mutational scanning at the PA endonuclease domain of an A(H1N1)pdm09 virus. The recombinant virus libraries were serially passaged in vitro under increasing concentrations of BXA followed by next-generation sequencing to monitor PA amino acid substitutions with increased detection frequencies. Enriched PA amino acid changes were each introduced into a recombinant A(H1N1)pdm09 virus to validate their effect on BXA susceptibility and viral replication fitness in vitro. The I38T/M substitutions known to confer reduced susceptibility to BXA were invariably detected from recombinant virus libraries within 5 serial passages. In addition, we identified a novel L106R substitution that emerged in the third passage and conferred greater than 10-fold reduced susceptibility to BXA. PA-L106 is highly conserved among seasonal influenza A and B viruses. Compared to the wild-type virus, the L106R substitution resulted in reduced polymerase activity and a minor reduction of the peak viral load, suggesting the amino acid change may result in moderate fitness loss. Our results support the use of deep mutational scanning as a practical tool to elucidate genotype-phenotype relationships, including mapping amino acid substitutions with reduced susceptibility to antivirals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA