Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 25(20)2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33081072

RESUMO

Experimental methods are indispensable for the study of the function of biological macromolecules, not just as static structures, but as dynamic systems that change conformation, bind partners, perform reactions, and respond to different stimulus. However, providing a detailed structural interpretation of the results is often a very challenging task. While experimental and computational methods are often considered as two different and separate approaches, the power and utility of combining both is undeniable. The integration of the experimental data with computational techniques can assist and enrich the interpretation, providing new detailed molecular understanding of the systems. Here, we briefly describe the basic principles of how experimental data can be combined with computational methods to obtain insights into the molecular mechanism and expand the interpretation through the generation of detailed models.


Assuntos
Biologia Computacional , Substâncias Macromoleculares/ultraestrutura , Modelos Moleculares , Humanos
2.
J Proteomics ; 221: 103761, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32247172

RESUMO

Snakebite envenoming affects millions of people worldwide, being officially considered a neglected tropical disease by the World Health Organization. The antivenom is effective in neutralizing the systemic effects of envenomation, but local effects are poorly neutralized, often leading to permanent disability. The natural resistance of the South American pit viper Bothrops jararaca to its venom is partly attributed to BJ46a, a natural snake venom metalloendopeptidase inhibitor. Upon complex formation, BJ46a binds non-covalently to the metalloendopeptidase, rendering it unable to exert its proteolytic activity. However, the structural features that govern this interaction are largely unknown. In this work, we applied structural mass spectrometry techniques (cross-linking-MS and hydrogen-deuterium exchange MS) and in silico analyses (molecular modeling, docking, and dynamics simulations) to understand the interaction between BJ46a and jararhagin, a metalloendopeptidase from B. jararaca venom. We explored the distance restraints generated from XL-MS experiments to guide the modeling of BJ46a and jararhagin, as well as the protein-protein docking simulations. HDX-MS data pinpointed regions of protection/deprotection at the interface of the BJ46a-jararhagin complex which, in addition to the molecular dynamics simulation data, reinforced our proposed interaction model. Ultimately, the structural understanding of snake venom metalloendopeptidases inhibition by BJ46a could lead to the rational design of drugs to improve anti-snake venom therapeutics, alleviating the high morbidity rates currently observed.


Assuntos
Bothrops , Venenos de Crotalídeos , Animais , Espectrometria de Massas , Metaloendopeptidases , Veneno de Bothrops jararaca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA