Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.169
Filtrar
1.
Discov Nano ; 19(1): 110, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954113

RESUMO

Graphene, a 2D nanomaterial, has garnered significant attention in recent years due to its exceptional properties, offering immense potential for revolutionizing various technological applications. In the context of the Internet of Things (IoT), which demands seamless connectivity and efficient data processing, graphene's unique attributes have positioned it as a promising candidate to prevail over challenges and optimize IoT systems. This review paper aims to provide a brief sketch of the diverse applications of graphene in IoT, highlighting its contributions to sensors, communication systems, and energy storage devices. Additionally, it discusses potential challenges and prospects for the integration of graphene in the rapidly evolving IoT landscape.

2.
Comput Biol Med ; 178: 108694, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38870728

RESUMO

Telemedicine is an emerging development in the healthcare domain, where the Internet of Things (IoT) fiber optics technology assists telemedicine applications to improve overall digital healthcare performances for society. Telemedicine applications are bowel disease monitoring based on fiber optics laser endoscopy, gastrointestinal disease fiber optics lights, remote doctor-patient communication, and remote surgeries. However, many existing systems are not effective and their approaches based on deep reinforcement learning have not obtained optimal results. This paper presents the fiber optics IoT healthcare system based on deep reinforcement learning combinatorial constraint scheduling for hybrid telemedicine applications. In the proposed system, we propose the adaptive security deep q-learning network (ASDQN) algorithm methodology to execute all telemedicine applications under their given quality of services (deadline, latency, security, and resources) constraints. For the problem solution, we have exploited different fiber optics endoscopy datasets with images, video, and numeric data for telemedicine applications. The objective is to minimize the overall latency of telemedicine applications (e.g., local, communication, and edge nodes) and maximize the overall rewards during offloading and scheduling on different nodes. The simulation results show that ASDQN outperforms all telemedicine applications with their QoS and objectives compared to existing state action reward state (SARSA) and deep q-learning network (DQN) policy during execution and scheduling on different nodes.

3.
Environ Monit Assess ; 196(7): 621, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879702

RESUMO

This paper is aimed at developing an air quality monitoring system using machine learning (ML), Internet of Things (IoT), and other elements to predict the level of particulate matter and gases in the air based on the air quality index (AQI). It is an air quality assessor and therefore a means of achieving the Sustainable Development Goals (SDGs), in particular, SDG 3.9 (substantial reduction of the health impacts of hazardous substances) and SDG 11.6 (reduction of negative impacts on cities and populations). AQI quantifies and informs the public about air pollutants and their adverse effects on public health. The proposed air quality monitoring device is low-cost and operates in real-time. It consists of a hardware unit that detects various pollutants to assess air quality as well as other airborne particles such as carbon dioxide (CO2), methane (CH4), volatile organic compounds (VOCs), nitrogen dioxide (NO2), carbon monoxide (CO), and particulate matter with an aerodynamic diameter of 2.5 microns or less (PM2.5). To predict air quality, the device was deployed from November 1, 2022, to February 4, 2023, in certain bauxite-rich areas of Adamawa and certain volcanic sites in western Cameroon. Therefore, machine learning algorithm models, namely, multiple linear regression (MLR), support vector regression (SVR), random forest regression (RFR), XGBoost (XGB), and K-nearest neighbors (KNN) were applied to analyze the collected concentrations and predict the future state of air quality. The performance of these models was evaluated using mean absolute error (MAE), coefficient of determination (R-square), and root mean square error (RMSE). The obtained data in this study show that these pollutants are present in selected localities albeit to different extents. Moreover, the AQI values obtained range from 10 to 530, with a mean of 132.380 ± 63.705, corresponding to moderate air quality state but may induce an adverse effect on sensitive members of the population. This study revealed that XGB regression performed better in air quality forecasting with the highest R-squared (test score of 0.9991 and train score of 0.9999) and lowest RMSE (test score of 1.5748 and train score of 0. 0073) and MAE (test score of 0.0872 and train score of 0.0020), while the KNN model had the worst prediction (lowest R-squared and highest RMSE and MAE). This embryonic work is a prototype for projects in Cameroon as measurements are underway for a national spread over a longer period of time.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Aprendizado de Máquina , Material Particulado , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Camarões , Material Particulado/análise , Compostos Orgânicos Voláteis/análise , Dióxido de Nitrogênio/análise , Monóxido de Carbono/análise , Dióxido de Carbono/análise , Metano/análise
4.
Digit Health ; 10: 20552076241258663, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882246

RESUMO

Objective: This study evaluates Artificial intelligence and the Internet of Things-based older adults' healthcare programmes (AI·IoT-OAHPs), which offer non-face-to-face and face-to-face health management to older adults for health promotion. Methods: The study involved 146 participants, adults over 60 who had registered in AI·IoT-OAHPs. This study assessed the health factors as the outcome of pre- and post-health screening and health management through AI·IoT-OAHPs for six months. Results: Preand post-health screening and management through AI·IoT-OAHPs were evaluated as significant outcomes in 14 health factors. Notably, the benefits of post-cognitive function showed a twofold increase in older female adults through AI·IoT-OAHPs. Adults over 70 showed a fourfold increase in post-walking days, a threefold in post-dietary practice, and a twofold in post-cognitive function in the post-effects compared with pre via AI·IoT-OAHPs. Conclusions: AI·IoT-OAHPs seem to be an effective program in the realm of face-to-face and non-face-to-face AI·IoT-based older adults' healthcare initiatives in the era of COVID-19. Consequently, the study suggests that AI·IoT-OAHPs contribute to the upgrade in health promotion of older adults. In future studies, the effectiveness of AI·IoT-OAHPs can be evaluated as a continuous project every year in the short term and every two years in the long term.

5.
Heliyon ; 10(11): e31996, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38882334

RESUMO

Sustainable smart ecotourism, utilizing smart technologies like smartphones, artificial intelligence (AI), and the Internet of Things (IoT), aims to minimize harm to natural and cultural ecosystems, promoting education and environmental conservation. This review aims to examine the concept of sustainable smart ecotourism, analyzing existing literature to gain insights into the significance, components, challenges, and contributions to sustainable development on a global scale. A systematic review was conducted to evaluate sustainable smart ecotourism using PRISMA guidelines. The review focused on scholarly, peer-reviewed studies from developing countries, using databases like ScienceDirect, Jstor, Taylor & Francis, and IEEE. The study used Joanna Briggs Institute and Cochrane Risk of Bias tools to assess study quality. Thematic analysis techniques were used to extract and synthesize data, identifying patterns and trends relevant to smart ecotourism sustainability. Dual analyst verification ensured data integrity and reliability. After conducting a thorough quality evaluation using the Joanna Briggs Institute Checklist and Cochrane Risk of Bias Tool, we identified 29 studies of exceptional quality from an original pool of 9583 records. The use of thematic analysis sheds light on the diverse and important role of the IoT in promoting sustainable ecotourism. This study uncovered both the obstacles and possibilities associated with this technology. The findings provide important insights into the worldwide implementation of smart ecotourism techniques and highlight the significant impact of technology in promoting sustainable tourism models. Smart ecotourism involves multiple stakeholders to enhance environmental impact. Key characteristics include dynamic interactions, co-creation of value, sustainable development, resource sharing, and innovation services. Technology like IoT is crucial for sustainable tourism management. Collaboration with governments, local stakeholders, and organizations is recommended for sustainable policies. As a result of this study, sustainable ecotourism policies result from a collaborative effort between local communities, government agencies, and practitioners in the industry. Smart technologies, including AR/VR and AI, have the potential to enhance operational efficiency while reducing environmental concerns. Ecotourism, partnerships, and education are key to successful implementation and capacity building.

6.
JMIR Biomed Eng ; 9: e50175, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38875671

RESUMO

BACKGROUND: The increasing adoption of telehealth Internet of Things (IoT) devices in health care informatics has led to concerns about energy use and data processing efficiency. OBJECTIVE: This paper introduces an innovative model that integrates telehealth IoT devices with a fog and cloud computing-based platform, aiming to enhance energy efficiency in telehealth IoT systems. METHODS: The proposed model incorporates adaptive energy-saving strategies, localized fog nodes, and a hybrid cloud infrastructure. Simulation analyses were conducted to assess the model's effectiveness in reducing energy consumption and enhancing data processing efficiency. RESULTS: Simulation results demonstrated significant energy savings, with a 2% reduction in energy consumption achieved through adaptive energy-saving strategies. The sample size for the simulation was 10-40, providing statistical robustness to the findings. CONCLUSIONS: The proposed model successfully addresses energy and data processing challenges in telehealth IoT scenarios. By integrating fog computing for local processing and a hybrid cloud infrastructure, substantial energy savings are achieved. Ongoing research will focus on refining the energy conservation model and exploring additional functional enhancements for broader applicability in health care and industrial contexts.

7.
Sensors (Basel) ; 24(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38894057

RESUMO

In this article, a novel cross-domain knowledge transfer method is implemented to optimize the tradeoff between energy consumption and information freshness for all pieces of equipment powered by heterogeneous energy sources within smart factory. Three distinct groups of use cases are considered, each utilizing a different energy source: grid power, green energy source, and mixed energy sources. Differing from mainstream algorithms that require consistency among groups, the proposed method enables knowledge transfer even across varying state and/or action spaces. With the advantage of multiple layers of knowledge extraction, a lightweight knowledge transfer is achieved without the need for neural networks. This facilitates broader applications in self-sustainable wireless networks. Simulation results reveal a notable improvement in the 'warm start' policy for each equipment, manifesting as a 51.32% increase in initial reward compared to a random policy approach.

8.
Sensors (Basel) ; 24(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38894069

RESUMO

In today's world, a significant amount of global energy is used in buildings. Unfortunately, a lot of this energy is wasted, because electrical appliances are not used properly or efficiently. One way to reduce this waste is by detecting, learning, and predicting when people are present in buildings. To do this, buildings need to become "smart" and "cognitive" and use modern technologies to sense when and how people are occupying the buildings. By leveraging this information, buildings can make smart decisions based on recently developed methods. In this paper, we provide a comprehensive overview of recent advancements in Internet of Things (IoT) technologies that have been designed and used for the monitoring of indoor environmental conditions within buildings. Using these technologies is crucial to gathering data about the indoor environment and determining the number and presence of occupants. Furthermore, this paper critically examines both the strengths and limitations of each technology in predicting occupant behavior. In addition, it explores different methods for processing these data and making future occupancy predictions. Moreover, we highlight some challenges, such as determining the optimal number and location of sensors and radars, and provide a detailed explanation and insights into these challenges. Furthermore, the paper explores possible future directions, including the security of occupants' data and the promotion of energy-efficient practices such as localizing occupants and monitoring their activities within a building. With respect to other survey works on similar topics, our work aims to both cover recent sensory approaches and review methods used in the literature for estimating occupancy.

9.
Sensors (Basel) ; 24(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38894093

RESUMO

Pulse oximeters are widely used in hospitals and homes for measurement of blood oxygen saturation level (SpO2) and heart rate (HR). Concern has been raised regarding a possible bias in obtaining pulse oximeter measurements from different fingertips and the potential effect of skin pigmentation (white, brown, and dark). In this study, we obtained 600 SpO2 measurements from 20 volunteers using three UK NHS-approved commercial pulse oximeters alongside our custom-developed sensor, and used the Munsell colour system (5YR and 7.5YR cards) to classify the participants' skin pigmentation into three distinct categories (white, brown, and dark). The statistical analysis using ANOVA post hoc tests (Bonferroni correction), a Bland-Altman plot, and a correlation test were then carried out to determine if there was clinical significance in measuring the SpO2 from different fingertips and to highlight if skin pigmentation affects the accuracy of SpO2 measurement. The results indicate that although the three commercial pulse oximeters had different means and standard deviations, these differences had no clinical significance.


Assuntos
Dedos , Oximetria , Saturação de Oxigênio , Pigmentação da Pele , Humanos , Oximetria/métodos , Oximetria/instrumentação , Pigmentação da Pele/fisiologia , Dedos/irrigação sanguínea , Dedos/fisiologia , Saturação de Oxigênio/fisiologia , Masculino , Adulto , Feminino , Oxigênio/sangue , Oxigênio/metabolismo , Frequência Cardíaca/fisiologia , Adulto Jovem
10.
Sensors (Basel) ; 24(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38894095

RESUMO

The revolution of the Internet of Things (IoT) and the Web of Things (WoT) has brought new opportunities and challenges for the information retrieval (IR) field. The exponential number of interconnected physical objects and real-time data acquisition requires new approaches and architectures for IR systems. Research and prototypes can be crucial in designing and developing new systems and refining architectures for IR in the WoT. This paper proposes a unified and holistic approach for IR in the WoT, called IR.WoT. The proposed system contemplates the critical indexing, scoring, and presentation stages applied to some smart cities' use cases and scenarios. Overall, this paper describes the research, architecture, and vision for advancing the field of IR in the WoT and addresses some of the remaining challenges and opportunities in this exciting area. The article also describes the design considerations, cloud implementation, and experimentation based on a simulated collection of synthetic XML documents with technical efficiency measures. The experimentation results show promising outcomes, whereas further studies are required to improve IR.WoT effectiveness, considering the WoT dynamic characteristics and, more importantly, the heterogeneity and divergence of WoT modeling proposals in the IR domain.

11.
Sensors (Basel) ; 24(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38894109

RESUMO

The adoption of the Internet of Things (IoT) in the mining industry can dramatically enhance the safety of workers while simultaneously decreasing monitoring costs. By implementing an IoT solution consisting of a number of interconnected smart devices and sensors, mining industries can improve response times during emergencies and also reduce the number of accidents, resulting in an overall improvement of the social image of mines. Thus, in this paper, a robust end-to-end IoT system for supporting workers in harsh environments such as in mining industries is presented. The full IoT solution includes both edge devices worn by the workers in the field and a remote cloud IoT platform, which is responsible for storing and efficiently sharing the gathered data in accordance with regulations, ethics, and GDPR rules. Extended experiments conducted to validate the IoT components both in the laboratory and in the field proved the effectiveness of the proposed solution in monitoring the real-time status of workers in mines.

12.
Sensors (Basel) ; 24(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38894262

RESUMO

This paper introduces an Agent-Based Model (ABM) designed to investigate the dynamics of the Internet of Things (IoT) ecosystem, focusing on dynamic coalition formation among IoT Service Providers (SPs). Drawing on insights from our previous research in 5G network modeling, the ABM captures intricate interactions among devices, Mobile Network Operators (MNOs), SPs, and customers, offering a comprehensive framework for analyzing the IoT ecosystem's complexities. In particular, to address the emerging challenge of dynamic coalition formation among SPs, we propose a distributed Multi-Agent Dynamic Coalition Formation (MA-DCF) algorithm aimed at enhancing service provision and fostering collaboration. This algorithm optimizes SP coalitions, dynamically adjusting to changing demands over time. Through extensive experimentation, we evaluate the algorithm's performance, demonstrating its superiority in terms of both payoff and stability compared to three classical coalition formation algorithms: static coalition, non-overlapping coalition, and random coalition. This study significantly contributes to a deeper understanding of the IoT ecosystem's dynamics and highlights the potential benefits of dynamic coalition formation among SPs, providing valuable insights and opening future avenues for exploration.

13.
Sensors (Basel) ; 24(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38894308

RESUMO

The integration of Internet of Things (IoT) technology into agriculture has revolutionized farming practices by using connected devices and sensors to optimize processes and facilitate sustainable execution. Because most IoT devices have limited resources, the vital requirement to efficiently manage data traffic while ensuring data security in agricultural IoT solutions creates several challenges. Therefore, it is important to study the data amount that IoT protocols generate for resource-constrained devices, as it has a direct impact on the device performance and overall usability of the IoT solution. In this paper, we present a comprehensive study that focuses on optimizing data transmission in agricultural IoT solutions with the use of compression algorithms and secure technologies. Through experimentation and analysis, we evaluate different approaches to minimize data traffic while protecting sensitive agricultural data. Our results highlight the effectiveness of compression algorithms, especially Huffman coding, in reducing data size and optimizing resource usage. In addition, the integration of encryption techniques, such as AES, provides the security of the transmitted data without incurring significant overhead. By assessing different communication scenarios, we identify the most efficient approach, a combination of Huffman encoding and AES encryption, to strike a balance between data security and transmission efficiency.

14.
Sensors (Basel) ; 24(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38894363

RESUMO

The inability to see makes moving around very difficult for visually impaired persons. Due to their limited movement, they also struggle to protect themselves against moving and non-moving objects. Given the substantial rise in the population of those with vision impairments in recent years, there has been an increasing amount of research devoted to the development of assistive technologies. This review paper highlights the state-of-the-art assistive technology, tools, and systems for improving the daily lives of visually impaired people. Multi-modal mobility assistance solutions are also evaluated for both indoor and outdoor environments. Lastly, an analysis of several approaches is also provided, along with recommendations for the future.


Assuntos
Tecnologia Assistiva , Pessoas com Deficiência Visual , Humanos , Pessoas com Deficiência Visual/reabilitação
15.
Sensors (Basel) ; 24(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38894377

RESUMO

Reliable testing of aviation components depends on the quality and configuration flexibility of measurement systems. In a typical approach to test instrumentation, there are tens or hundreds of sensors on the test head and test facility, which are connected by wires to measurement cards in control cabinets. The preparation of wiring and the setup of measurement systems are laborious tasks requiring diligence. The use of smart wireless transducers allows for a new approach to test preparation by reducing the number of wires. Moreover, additional functionalities like data processing, alarm-level monitoring, compensation, or self-diagnosis could improve the functionality and accuracy of measurement systems. A combination of low power consumption, wireless communication, and wireless power transfer could speed up the test-rig instrumentation process and bring new test possibilities, e.g., long-term testing of moving or rotating components. This paper presents the design of a wireless smart transducer dedicated for use with sensors typical of aviation laboratories such as thermocouples, RTDs (Resistance Temperature Detectors), strain gauges, and voltage output integrated sensors. The following sections present various design requirements, proposed technical solutions, a study of battery and wireless power supply possibilities, assembly, and test results. All presented tests were carried out in the Components Test Laboratory located at the Lukasiewicz Research Network-Institute of Aviation.

16.
Sensors (Basel) ; 24(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38894400

RESUMO

Dynamic liquid level monitoring and measurement in oil wells is essential in ensuring the safe and efficient operation of oil extraction machinery and formulating rational extraction policies that enhance the productivity of oilfields. This paper presents an intelligent infrasound-based measurement method for oil wells' dynamic liquid levels; it is designed to address the challenges of conventional measurement methods, including high costs, low precision, low robustness and inadequate real-time performance. Firstly, a novel noise reduction algorithm is introduced to effectively mitigate both periodic and stochastic noise, thereby significantly improving the accuracy of dynamic liquid level detection. Additionally, leveraging the PyQT framework, a software platform for real-time dynamic liquid level monitoring is engineered, capable of generating liquid level profiles, computing the sound velocity and liquid depth and visualizing the monitoring data. To bolster the data storage and analytical capabilities, the system incorporates an around-the-clock unattended monitoring approach, utilizing Internet of Things (IoT) technology to facilitate the transmission of the collected dynamic liquid level data and computed results to the oilfield's central data repository via LoRa and 4G communication modules. Field trials on dynamic liquid level monitoring and measurement in oil wells demonstrate a measurement range of 600 m to 3000 m, with consistent and reliable results, fulfilling the requirements for oil well dynamic liquid level monitoring and measurement. This innovative system offers a new perspective and methodology for the computation and surveillance of dynamic liquid level depths.

17.
Sensors (Basel) ; 24(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38894422

RESUMO

The growth of IoT healthcare is aimed at providing efficient services to patients by utilizing data from local hospitals. However, privacy concerns can impede data sharing among third parties. Federated learning offers a solution by enabling the training of neural networks while maintaining the privacy of the data. To integrate federated learning into IoT healthcare, hospitals must be part of the network to jointly train a global central model on the server. Local hospitals can train the global model using their patient datasets and send the trained localized models to the server. These localized models are then aggregated to enhance the global model training process. The aggregation of local models dramatically influences the performance of global training, mainly due to the heterogeneous nature of patient data. Existing solutions to address this issue are iterative, slow, and susceptible to convergence. We propose two novel approaches that form groups efficiently and assign the aggregation weightage considering essential parameters vital for global training. Specifically, our method utilizes an autoencoder to extract features and learn the divergence between the latent representations of patient data to form groups, facilitating more efficient handling of heterogeneity. Additionally, we propose another novel aggregation process that utilizes several factors, including extracted features of patient data, to maximize performance further. Our proposed approaches for group formation and aggregation weighting outperform existing conventional methods. Notably, significant results are obtained, one of which shows that our proposed method achieves 20.8% higher accuracy and 7% lower loss reduction compared to the conventional methods.


Assuntos
Internet das Coisas , Redes Neurais de Computação , Humanos , Atenção à Saúde , Algoritmos , Aprendizado de Máquina
18.
Sensors (Basel) ; 24(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38894434

RESUMO

This article introduces a novel middleware that utilizes cost-effective, low-power computing devices like Raspberry Pi to analyze data from wireless sensor networks (WSNs). It is designed for indoor settings like historical buildings and museums, tracking visitors and identifying points of interest. It serves as an evacuation aid by monitoring occupancy and gauging the popularity of specific areas, subjects, or art exhibitions. The middleware employs a basic form of the MapReduce algorithm to gather WSN data and distribute it across available computer nodes. Data collected by RFID sensors on visitor badges is stored on mini-computers placed in exhibition rooms and then transmitted to a remote database after a preset time frame. Utilizing MapReduce for data analysis and a leader election algorithm for fault tolerance, this middleware showcases its viability through metrics, demonstrating applications like swift prototyping and accurate validation of findings. Despite using simpler hardware, its performance matches resource-intensive methods involving audiovisual and AI techniques. This design's innovation lies in its fault-tolerant, distributed setup using budget-friendly, low-power devices rather than resource-heavy hardware or methods. Successfully tested at a historical building in Greece (M. Hatzidakis' residence), it is tailored for indoor spaces. This paper compares its algorithmic application layer with other implementations, highlighting its technical strengths and advantages. Particularly relevant in the wake of the COVID-19 pandemic and general monitoring middleware for indoor locations, this middleware holds promise in tracking visitor counts and overall building occupancy.

19.
Sensors (Basel) ; 24(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38894451

RESUMO

This study explored an indoor system for tracking multiple humans and detecting falls, employing three Millimeter-Wave radars from Texas Instruments. Compared to wearables and camera methods, Millimeter-Wave radar is not plagued by mobility inconveniences, lighting conditions, or privacy issues. We conducted an initial evaluation of radar characteristics, covering aspects such as interference between radars and coverage area. Then, we established a real-time framework to integrate signals received from these radars, allowing us to track the position and body status of human targets non-intrusively. Additionally, we introduced innovative strategies, including dynamic Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering based on signal SNR levels, a probability matrix for enhanced target tracking, target status prediction for fall detection, and a feedback loop for noise reduction. We conducted an extensive evaluation using over 300 min of data, which equated to approximately 360,000 frames. Our prototype system exhibited a remarkable performance, achieving a precision of 98.9% for tracking a single target and 96.5% and 94.0% for tracking two and three targets in human-tracking scenarios, respectively. Moreover, in the field of human fall detection, the system demonstrates a high accuracy rate of 96.3%, underscoring its effectiveness in distinguishing falls from other statuses.

20.
Sensors (Basel) ; 24(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38894471

RESUMO

The integration of cutting-edge technologies such as the Internet of Things (IoT), robotics, and machine learning (ML) has the potential to significantly enhance the productivity and profitability of traditional fish farming. Farmers using traditional fish farming methods incur enormous economic costs owing to labor-intensive schedule monitoring and care, illnesses, and sudden fish deaths. Another ongoing issue is automated fish species recommendation based on water quality. On the one hand, the effective monitoring of abrupt changes in water quality may minimize the daily operating costs and boost fish productivity, while an accurate automatic fish recommender may aid the farmer in selecting profitable fish species for farming. In this paper, we present AquaBot, an IoT-based system that can automatically collect, monitor, and evaluate the water quality and recommend appropriate fish to farm depending on the values of various water quality indicators. A mobile robot has been designed to collect parameter values such as the pH, temperature, and turbidity from all around the pond. To facilitate monitoring, we have developed web and mobile interfaces. For the analysis and recommendation of suitable fish based on water quality, we have trained and tested several ML algorithms, such as the proposed custom ensemble model, random forest (RF), support vector machine (SVM), decision tree (DT), K-nearest neighbor (KNN), logistic regression (LR), bagging, boosting, and stacking, on a real-time pond water dataset. The dataset has been preprocessed with feature scaling and dataset balancing. We have evaluated the algorithms based on several performance metrics. In our experiment, our proposed ensemble model has delivered the best result, with 94% accuracy, 94% precision, 94% recall, a 94% F1-score, 93% MCC, and the best AUC score for multi-class classification. Finally, we have deployed the best-performing model in a web interface to provide cultivators with recommendations for suitable fish farming. Our proposed system is projected to not only boost production and save money but also reduce the time and intensity of the producer's manual labor.


Assuntos
Aprendizado de Máquina , Lagoas , Qualidade da Água , Animais , Peixes , Algoritmos , Monitoramento Ambiental/métodos , Máquina de Vetores de Suporte , Aquicultura/métodos , Internet das Coisas , Pesqueiros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...