Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1439204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39176281

RESUMO

Background: This study aimed to investigate the effects of licorice processing of different Evodiae Fructus (EF) specifications on liver inflammation and oxidative stress associated with the intestinal mucosal microbiota. Materials and methods: The 25 Kunming mice were divided into control (MCN), raw small-flowered Evodiae Fructus (MRSEF), raw medium-flowered EF (MRMEF), licorice-processed small-flowered EF (MLSEF), and licorice-processed medium-flowered EF (MLSEF) groups. The EF intervention groups were given different specifications of EF extract solutions by gavage. After 21 days, indices of liver inflammation and oxidative stress and intestinal mucosal microbiota were measured in mice. Results: Compared with the MCN, malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) levels were significantly increased in the MRMEF. Although the trends of oxidative stress and inflammatory indexes in the MLSEF and MLMEF were consistent with those in the raw EF groups, the changes were smaller than those in the raw EF groups. Compared to the raw EF groups, the MLSEF and MLMEF showed closer approximations of metabolic function to the MCN. The abundance of Corynebacterium in MRMEF was significantly lower than that in the MCN, and it was not significantly different from the MCN after licorice processing. The probiotic Candidatus Arthromitus was enriched in the MLSEF. The probiotic Lactobacillus was enriched in the MLMEF. Correlation analysis revealed significant negative correlations between IL-1ß, some metabolic functions and Corynebacterium. Conclusion: The effects of medium-flowered EF on oxidative stress and inflammatory factors in the liver of mice were stronger than those of small-flowered EF. The licorice processing can reduce this difference by modulating the abundance of Corynebacterium and intestinal mucosal metabolic function.

2.
Microb Cell Fact ; 23(1): 33, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267983

RESUMO

Growing evidence has demonstrated that cold and humid environmental stress triggers gastrointestinal (GI) disorders. In this study, we explored the effects of intestinal microbiota homeostasis on the intestinal mucus barrier and GI disorders by cold and humid environmental stress. Moreover, the inner link between the intestinal mucosal microbiota and metabolites in mice with cold and humid environmental stress was interpreted by integrative analysis of PacBio HiFi sequencing microbial genomics and targeted metabolomics. In the current study, we found (1) after the cold and wet cold and humid environmental stress intervened in the intestinal microbiota disorder and homeostasis mice respectively, the bacterial culturing and fluorescein diacetate (FDA) microbial activity detection of intestinal microbiota including feces, intestinal contents, and intestinal mucosa suggested that the cold and humid environmental stress decreased the colony of culturable bacteria and microbial activity, in which intestinal microbiota disorder aggravated the injury of the intestinal mucus barrier and the GI symptoms related to cold and humid environmental stress; (2) the serum amino acid transferases such as glutamate pyruvic transa (GPT), and glutamic oxaloacetic transaminase (GOT) in cold and humid environmental stressed mice increased significantly, indicating that the intestinal microbiota adapted to cold and humid environmental stress by regulating the host's amino acid metabolism; (3) the integrative analysis of multi-omics illustrated a prediction model based on the microbiota Lactobacillus reuteri abundance and host amino acid level that can predict intestinal mucoprotein Muc2 with an adjusted R2 of 75.0%. In conclusion, the cold and humid environmental stress regulates the neurotransmitter amino acids metabolic function both in intestinal mucosal microbiota and host serum by adjusting the composition of the dominant bacterial population Lactobacillus reuteri, which contributes to the intestinal mucus barrier injury and GI disorders caused by cold and humid environmental stress.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Mucosa Intestinal , Homeostase , Aminoácidos
3.
Front Microbiol ; 14: 1214577, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37789856

RESUMO

Background: A growing body of evidence has demonstrated that a high-fat and high-protein diet (HFHPD) causes constipation. This study focuses on understanding how the use of Zhishi Daozhi decoction (ZDD) affects the intricate balance of intestinal microorganisms. The insights gained from this investigation hold the potential to offer practical clinical approaches to mitigate the constipation-related issues associated with HFHPD. Materials and methods: Mice were randomly divided into five groups: the normal (MN) group, the natural recovery (MR) group, the low-dose ZDD (MLD) group, the medium-dose ZDD (MMD) group, and the high-dose ZDD (MHD) group. After the constipation model was established by HFHPD combined with loperamide hydrochloride (LOP), different doses of ZDD were used for intervention. Subsequently, the contents of cholecystokinin (CCK) and calcitonin gene-related peptide (CGRP) in serum, superoxide dismutase (SOD), and malondialdehyde (MDA) in the liver were determined. The DNA of intestinal mucosa was extracted, and 16S rRNA amplicon sequencing was used to analyze the changes in intestinal mucosal microbiota. Results: After ZDD treatment, CCK content in MR group decreased and CGRP content increased, but the changes were not significant. In addition, the SOD content in MR group was significantly lower than in MLD, MMD, and MHD groups, and the MDA content in MR group was significantly higher than in MN, MLD, and MHD groups. Constipation modeling and the intervention of ZDD changed the structure of the intestinal mucosal microbiota. In the constipation induced by HFHPD, the relative abundance of pathogenic bacteria such as Aerococcus, Staphylococcus, Corynebacterium, Desulfovibrio, Clostridium, and Prevotella increased. After the intervention of ZDD, the relative abundance of these pathogenic bacteria decreased, and the relative abundance of Candidatus Arthromitus and the abundance of Tropane, piperidine, and pyridine alkaloid biosynthesis pathways increased in MHD group. Conclusion: Constipation induced by HFHPD can increase pathogenic bacteria in the intestinal mucosa, while ZDD can effectively relieve constipation, reduce the relative abundance of pathogenic bacteria, and alleviate oxidative stress injury. In addition, high-dose ZDD can increase the abundance of beneficial bacteria, which is more conducive to the treatment of constipation.

4.
3 Biotech ; 13(6): 192, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37205176

RESUMO

Intestinal microbiota disorder was associated with constipation. This study investigated the microbiota-gut-brain axis and oxidative stress mediated by intestinal mucosal microbiota in mice with spleen deficiency constipation. The Kunming mice were randomly divided into the control (MC) group and the constipation (MM) group. The spleen deficiency constipation model was established by gavage with Folium sennae decoction and controlled diet and water intake. The body weight, spleen and thymus index, 5-Hydroxytryptamine (5-HT) and Superoxide Dismutase (SOD) content were significantly lower in the MM group than the MC group, the content of vasoactive intestinal peptide (VIP) and malondialdehyde (MDA) content were significantly higher than the MC group. The Alpha diversity of intestinal mucosal bacteria was not changed but beta diversity was changed in mice with spleen deficiency constipation. Compared to the MC group, the relative abundance of Proteobacteria was an upward trend and the Firmicutes/Bacteroidota (F/B) value was a downward trend in the MM group. There was a significant difference in the characteristic microbiota between the two groups. In the MM group, Brevinema, Akkermansia, Parasutterella, Faecalibaculum, Aeromonas, Sphingobium, Actinobacillus, and other pathogenic bacteria were enriched. Meanwhile, there was a certain relationship between the microbiota and gastrointestinal neuropeptide and oxidative stress indicators. The community structure of intestinal mucosal bacteria in mice with spleen deficiency constipation was changed, which was characterized by the reduction of F/B value and enrichment of Proteobacteria. Microbiota-gut-brain axis may be important for spleen deficiency constipation.

5.
Front Microbiol ; 14: 1123843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36925479

RESUMO

Inflammation and immunity play a major role in the development of hypertension, and a potential correlation between host mucosal immunity and inflammatory response regulation. We explored the changes of intestinal mucosal microbiota in hypertensive rats induced by high-salt diet and the potential link between the intestinal mucosal microbiota and inflammation in rats. Therefore, we used PacBio (Pacific Bioscience) SMRT sequencing technology to determine the structure of intestinal mucosal microbiota, used enzyme-linked immunosorbent assay (ELISA) to determined the proinflammatory cytokines and hormones associated with hypertension in serum, and used histopathology methods to observe the kidney and vascular structure. We performed a potential association analysis between intestinal mucosal characteristic bacteria and significantly different blood cytokines in hypertensive rats induced by high-salt. The results showed that the kidney and vascular structures of hypertensive rats induced by high salt were damaged, the serum concentration of necrosis factor-α (TNF-α), angiotensin II (AngII), interleukin-6 (IL-6), and interleukin-8 (IL-8) were significantly increased (p < 0.05), and the coefficient of immune organ spleen was significantly changed (p < 0.05), but there was no significant change in serum lipids (p > 0.05). From the perspective of gut microbiota, high-salt diet leads to significant changes in intestinal mucosal microbiota. Bifidobacterium animalis subsp. and Brachybacterium paraconglomeratum were the dominant differential bacteria in intestinal mucosal, with the AUC (area under curve) value of Bifidobacterium animalis subsp. and Brachybacterium paraconglomeratum were 1 and 0.875 according to ROC (receiver operating characteristic) analysis. Correlation analysis showed that Bifidobacterium animalis subsp. was correlated with IL-6, IL-8, TNF-α, and Ang II. Based on our results, we can speculated that high salt diet mediated chronic low-grade inflammation through inhibited the growth of Bifidobacterium animalis subsp. in intestinal mucosa and caused end-organ damage, which leads to hypertension.

6.
Front Microbiol ; 14: 1090302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846756

RESUMO

Background: Simo decoction (SMD) is a traditional prescription for treating gastrointestinal diseases. More and more evidences prove that SMD can treat constipation by regulating intestinal microbiota and related oxidative stress indicators, but the specific mechanism is still unclear. Methods: A network pharmacological analysis was used to predict the medicinal substances and potential targets of SMD to alleviate constipation. Then, 15 male mice were randomly divided into normal group (MN group), natural recovery group (MR group), and SMD treatment group (MT group). Constipation model mice were constructed by gavage of Folium sennae decoction and control of diet and drinking water, and SMD was used for intervention after successful modeling. The levels of 5-hydroxytryptamine (5-HT), vasoactive intestinal peptide (VIP), superoxide dismutase (SOD), malondialdehyde (MDA), and fecal microbial activities were measured, and the intestinal mucosal microbiota was sequenced. Result: Network pharmacology analysis showed that a total of 24 potential active components were obtained from SMD, and 226 target proteins were obtained after conversion. Meanwhile, we obtained 1,273 and 424 disease-related targets in the GeneCards database and the DisGeNET database, respectively. After combination and deduplication, the disease targets shared 101 targets with the potential active components of SMD. When the mice were intervened with SMD, the 5-HT, VIP, MDA, SOD content, and microbial activity in MT group were close to MN group, and Chao 1 and ACE in MT group were significantly higher than that in MR group. In the Linear discriminant analysis Effect Size (LEfSe) analysis, the abundance of beneficial bacteria such as Bacteroides, Faecalibacterium, Alistipes, Subdoligranulum, Lactiplantibacillus, and Phascolarctobacterium in MT group increased. At the same time, there were some associations between microbiota and brain-gut peptides and oxidative stress indicators. Conclusion: SMD can promote intestinal health and relieve constipation through brain-bacteria-gut axis associating with intestinal mucosal microbiota and alleviate oxidative stress.

7.
Front Microbiol ; 14: 1108398, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36744095

RESUMO

Introduction: Due to the poor taste of Qiweibaizhu powder (QWBZP), patients have difficulty taking medicine, which leads to poor compliance and limits clinical use to a certain extent. In the trend of restricting sugar intake, sweeteners have gained massive popularity, among which sucrose is a commonly used sweetener in preparations. This study aimed to investigate the effect of different sucrose dose addition with antibiotic-associated diarrhea (AAD) by intervened QWBZP on intestinal mucosal microbiota. Methods: Thirty specific-pathogen-free (SPF) Kunming (KM) male mice were randomly divided into normal group (N), natural recovery group (M), QWBZP group (Q), low dose sucrose group (LQ), medium dose sucrose group (MQ), and high dose sucrose group (HQ). Subsequently, 16S rRNA amplicon sequencing and GC-MS techniques were used to analyze the intestinal mucosal microbiota and short-chain fatty acid (SCFAs) in intestinal contents, respectively, and enzyme-linked immunosorbent assay was used to determine mucin 2 (MUC2) and interleukin 17 (IL-17). Results: Compared with the Q group, the results showed that with the increase of sucrose dose, the intestinal microbial structure of mice was significantly altered, and the intestinal microbial diversity was elevated, with the poor restoration of the intestinal biological barrier, decreased content of SCFAs, high expression of inflammatory factor IL-17 and decreased content of mucosal protective factor MUC2. In conclusion, we found that the addition of sucrose had an effect on the efficacy of the AAD intervented by QWBZP, which was less effective than QWBZP, showing a certain dose-response relationship. In this experiment, it was concluded that the addition of sucrose might also further lead to intestinal inflammation and the disruption of the intestinal mucosal barrier, and the production of metabolites SCFAs. Discussion: The addition of sucrose might also further lead to intestinal inflammation and the disruption of the intestinal mucosal barrier, and the production of metabolites SCFAs. However, these findings still need to be verified in a more extensive study. The effect of adding the sweetener sucrose on the efficacy of Chinese herbal medicine in treating diseases also still needs more research.

8.
3 Biotech ; 13(3): 77, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36761339

RESUMO

Growing evidence has demonstrated that fatigue and a high-fat diet trigger diarrhea, and intestinal microbiota disorder interact with diarrhea. However, the association of intestinal mucosal microbiota with fatigue and high-fat diet trigger diarrhea remains unclear. The specific pathogen-free Kunming male mice were randomly divided into the normal group (MCN), standing group (MSD), lard group (MLD), and standing united lard group (MSLD). Mice in the MSD and MSLD groups stood on the multiple-platform apparatus for four h/d for fourteen consecutive days. From the eighth day, mice in the MLD and MSLD groups were intragastric lard, 0.4 mL/each, twice a day for seven days. Subsequently, we analyzed the characteristics and interaction relationship of intestinal mucosal microbiota, interleukin-6 (IL-6), interleukin-17 (IL-17), malondialdehyde (MDA), superoxide dismutase (SOD), and secretory immunoglobulin A (sIgA). Results showed that mice in the MSLD group had an increased number of bowel movements. Compared with the MCN group, the contents of IL-17, and IL-6 were higher (p > 0.05), and the content of sIgA was lower in the MSLD group (p > 0.05). MDA and SOD increased in MLD and MSLD groups. Thermoactinomyces and Staphyloccus were the characteristic bacteria of the MSLD group. And Staphyloccus were positively correlated with IL-6, IL-17, and SOD. In conclusion, the interactions between Thermoactinomyces, Staphyloccus and intestinal inflammation, and immunity might be involved in fatigue and high-fat diet-induced diarrhea.

9.
Front Nutr ; 9: 1038364, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36337643

RESUMO

In recent years, sweeteners have gained massive popularity under the trend of limiting sugar intake. Our previous study found that Qiweibaizhu Powder (QWBZP) could improve gut microbiota dysbiosis and has good efficacy in treating antibiotic-associated diarrhea (AAD). In this study, we investigated the effects of sucrose, sorbitol, xylitol, and saccharin on the intestinal mucosal microbiota of AAD mice treated with QWBZP. When the AAD model was constructed by being gavaged mixed antibiotic solution, Kunming mice were randomly assigned to seven groups: the control (mn) group, the ADD (mm) group, the QWBZP (mq) group, the saccharin + QWBZP (mc) group, the sucrose + QWBZP (ms) group, the xylito + QWBZP (mx) group, and the sorbitol + QWBZP (msl) group. Subsequently, 16S rRNA gene amplicon sequencing was used to analyze the intestinal mucosal microbiota composition and abundance. The results showed that feces from AAD mice were diluted and wet and improved diarrhea symptoms with QWBZP and sorbitol. In contrast, the addition of sucrose, saccharin, and xylitol delayed the healing of diarrhea. The relative abundance of intestinal mucosal microbiota showed Glutamicibacter, Robinsoniella, and Blautia were characteristic bacteria of the mx group, Candidatus Arthromitus, and Bacteroidales_S24-7_group as the typical bacteria of the mn group, Clostridium_innocuum_group as the distinct bacteria of the mm group. Mycoplasma and Bifidobacterium as the characteristic bacteria of the ms group. Correlation analysis of typical bacterial genera with metabolic functions shows that Blautia negatively correlates with D-Glutamine and D-glutamate metabolism. Bacteroidales_S24-7_group has a significant negative correlation with the Synthesis and degradation of ketone bodies. The study confirmed that sucrose, sorbitol, xylitol, and saccharin might further influence metabolic function by altering the intestinal mucosal microbiota. Compared to the other sweetener, adding sorbitol to QWBZP was the best therapeutic effect for AAD and increased the biosynthesis and degradation activities. It provides the experimental basis for applying artificial sweeteners in traditional Chinese medicine (TCM) as a reference for further rational development and safe use of artificial sweeteners.

10.
Dig Dis Sci ; 67(12): 5580-5592, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35879512

RESUMO

BACKGROUND AND AIMS: Recent studies have shown that changes in the intestinal microbiota contribute to the pathogenesis of irritable bowel syndrome (IBS). This study aimed to investigate the characteristics of the fecal and intestinal mucosal microbiota in IBS patients, and the correlation between microbiota and clinical manifestations. METHODS: Fecal and intestinal mucosal samples were collected from 14 constipation-predominant IBS (IBS-C) patients, 20 diarrhea-predominant IBS (IBS-D) patients, and 20 healthy controls (HCs). 16S rRNA gene sequencing and fluorescence in situ hybridization were used for the analysis of samples. RESULTS: Community richness and diversity of the fecal microbiota in IBS patients were significantly reduced compared with the HCs. The mucosal samples in IBS patients showed decreased Bifidobacterium and increased Bacteroides caccae compared with HCs; Eubacterium and Roseburia were decreased in IBS-C patients and increased in IBS-D patients. A comparison of the fecal and mucosal microbiota in IBS patients showed significantly increased Bifidobacterium in fecal samples and a decrease in mucosal samples in IBS-C patients; Bacteroides caccae and Roseburia were significantly reduced in fecal samples and increased in mucosal samples of IBS patients. A correlation between microbiota and clinical manifestations in IBS patients showed that Bacteroides caccae and Roseburia in fecal samples and Bifidobacterium and Eubacterium in mucosal samples were associated with abdominal pain and distention. CONCLUSIONS: Distinct differences exist between the fecal and intestinal mucosal microbiota in IBS patients, with the changes in the latter appearing more consistent with the pathophysiology of IBS. Changes in intestinal microbiota were associated with the clinical manifestations in IBS.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Microbiota , Humanos , Síndrome do Intestino Irritável/complicações , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Hibridização in Situ Fluorescente , Diarreia/etiologia , Fezes/microbiologia , Clostridiales
11.
Front Cell Infect Microbiol ; 12: 1096202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36683693

RESUMO

Background: Environment, diet, and emotion may trigger diarrhea, but the mechanism is unclear. Dietary habits or environmental factors affect the composition of gut microbiota. This study aimed to investigate the effects of improper diet combined with high humidity and temperature (HTH) environment on the intestinal mucosal microbiota. Materials and methods: Kunming mice were randomly assigned to two equal groups of five mice, namely the control (ccm) group and the model (cmm) group. Diarrhea mice with dampness-heat (DSH) were established by improper diet combined with HTH environments. We used 16S rRNA gene amplicon sequencing to analyze the characteristics of intestinal mucosal microbiota and the interaction relationship of function. Results: Our study shows that the intestinal mucosal microbiota of mice changed significantly after an improper diet combined with the HTH environments. The abundance of Fusobacteria and Haemophilus increased dramatically in the cmm group compared to the ccm group (P<0.05). And the abundance of Firmicutes, Lactobacillus, and Lonsdalea was significantly decreased in the cmm group (P<0.05). According to the functional predictive analysis, we found that Lactobacillus showed a significant negative correlation with Protein export, Homologous recombination, Phenylalanine, tyrosine, tryptophan biosynthesis, Citrate cycle, and Lipoic acid metabolism. Conclusion: Diarrhea with DSH constructed under improper diet and HTH environment may be related to Lactobacillus and Haemophilus. And long-term consumption of improper diet and the HTH environment may affect metabolism.


Assuntos
Microbioma Gastrointestinal , Animais , Camundongos , Diarreia/microbiologia , Dieta , Microbioma Gastrointestinal/genética , Temperatura Alta , Umidade , RNA Ribossômico 16S/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA