Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Front Cell Neurosci ; 18: 1397658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962513

RESUMO

Background: Intrauterine inflammation and the requirement for mechanical ventilation independently increase the risk of perinatal brain injury and adverse neurodevelopmental outcomes. We aimed to investigate the effects of mechanical ventilation for 24 h, with and without prior exposure to intrauterine inflammation, on markers of brain inflammation and injury in the preterm sheep brain. Methods: Chronically instrumented fetal sheep at ~115 days of gestation were randomly allocated to receive a single intratracheal dose of 1 mg lipopolysaccharide (LPS) or isovolumetric saline, then further randomly allocated 1 h after to receive mechanical ventilation with room air or no mechanical ventilation (unventilated control + saline [UVC, n = 7]; in utero mechanical ventilation + saline [VENT, n = 8], unventilated control + intratracheal LPS [UVC + LPS, n = 7]; in utero ventilation + intratracheal LPS [VENT + LPS, n = 7]). Serial fetal blood and plasma samples were collected throughout the experimental protocol for assessment of blood biochemistry and plasma interleukin (IL)-6 levels. After 24 h of mechanical ventilation, fetal brains were collected for RT-qPCR and immunohistochemical analyses. Results: LPS exposure increased numbers of microglia and upregulated pro-inflammatory related genes within the cortical gray matter (GM) and subcortical white matter (SCWM) (pLPS < 0.05). Mechanical ventilation alone increased astrocytic cell density in the periventricular white matter (PVWM) (pVENT = 0.03) but had no effect on pro-inflammatory gene expression. The combination of ventilation and LPS increased plasma IL-6 levels (p < 0.02 vs. UVC and VENT groups), and exacerbated expression of pro-inflammatory-related genes (IL1ß, TLR4, PTGS2, CXCL10) and microglial density (p < 0.05 vs. VENT). Conclusion: This study demonstrates that 24 h of mechanical ventilation after exposure to intrauterine inflammation increased markers of systemic and brain inflammation and led to the upregulation of pro-inflammatory genes in the white matter. We conclude that 24 h of mechanical ventilation following intrauterine inflammation may precondition the preterm brain toward being more susceptible to inflammation-induced injury.

2.
J Neuroinflammation ; 21(1): 142, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807204

RESUMO

BACKGROUND: Intrauterine inflammation is considered a major cause of brain injury in preterm infants, leading to long-term neurodevelopmental deficits. A potential contributor to this brain injury is dysregulation of neurovascular coupling. We have shown that intrauterine inflammation induced by intra-amniotic lipopolysaccharide (LPS) in preterm lambs, and postnatal dopamine administration, disrupts neurovascular coupling and the functional cerebral haemodynamic responses, potentially leading to impaired brain development. In this study, we aimed to characterise the structural changes of the neurovascular unit following intrauterine LPS exposure and postnatal dopamine administration in the brain of preterm lambs using cellular and molecular analyses. METHODS: At 119-120 days of gestation (term = 147 days), LPS was administered into the amniotic sac in pregnant ewes. At 126-7 days of gestation, the LPS-exposed lambs were delivered, ventilated and given either a continuous intravenous infusion of dopamine at 10 µg/kg/min or isovolumetric vehicle solution for 90 min (LPS, n = 6; LPSDA, n = 6). Control preterm lambs not exposed to LPS were also administered vehicle or dopamine (CTL, n = 9; CTLDA, n = 7). Post-mortem brain tissue was collected 3-4 h after birth for immunohistochemistry and RT-qPCR analysis of components of the neurovascular unit. RESULTS: LPS exposure increased vascular leakage in the presence of increased vascular density and remodelling with increased astrocyte "end feet" vessel coverage, together with downregulated mRNA levels of the tight junction proteins Claudin-1 and Occludin. Dopamine administration decreased vessel density and size, decreased endothelial glucose transporter, reduced neuronal dendritic coverage, increased cell proliferation within vessel walls, and increased pericyte vascular coverage particularly within the cortical and deep grey matter. Dopamine also downregulated VEGFA and Occludin tight junction mRNA, and upregulated dopamine receptor DRD1 and oxidative protein (NOX1, SOD3) mRNA levels. Dopamine administration following LPS exposure did not exacerbate any effects induced by LPS. CONCLUSION: LPS exposure and dopamine administration independently alters the neurovascular unit in the preterm brain. Alterations to the neurovascular unit may predispose the developing brain to further injury.


Assuntos
Animais Recém-Nascidos , Dopamina , Lipopolissacarídeos , Animais , Dopamina/metabolismo , Ovinos , Feminino , Lipopolissacarídeos/toxicidade , Gravidez , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Nascimento Prematuro/induzido quimicamente , Nascimento Prematuro/patologia
3.
J Transl Med ; 22(1): 7, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167140

RESUMO

BACKGROUND: Prenatal exposure to intrauterine inflammation (IUI) is a crucial event in preterm birth (PTB) pathophysiology, increasing the incidence of neurodevelopmental disorders. Gut microbiota and metabolite profile alterations have been reported to be involved in PTB pathophysiology. METHOD AND RESULTS: In this study, IUI-exposed PTB mouse model was established and verified by PTB rate and other perinatal adverse reactions; LPS-indued IUI significantly increased the rates of PTB, apoptosis and inflammation in placenta tissue samples. LPS-induced IUI caused no significant differences in species richness and evenness but significantly altered the species abundance distribution. Non-targeted metabolomics analysis indicated that the metabolite profile of the preterm mice was altered, and differential metabolites were associated with signaling pathways including pyruvate metabolism. Furthermore, a significant positive correlation between Parasutterella excrementihominis and S4572761 (Nb-p-coumaroyltryptamine) and Mreference-1264 (pyruvic acid), respectively, was observed. Lastly, pyruvic acid treatment partially improved LPS-induced IUI phenotypes and decreased PTB rates and decreased the apoptosis and inflammation in placenta tissue samples. CONCLUSION: This study revealed an association among gut microbiota dysbiosis, metabolite profile alterations, and LPS-induced IUI and PTB in mice models. Our investigation revealed the possible involvement of gut microbiota in the pathophysiology of LPS-induced IUI and PTB, which might be mediated by metabolites such as pyruvic acid. Future studies should be conducted to verify the findings through larger sample-sized animal studies and clinical investigations.


Assuntos
Microbioma Gastrointestinal , Nascimento Prematuro , Recém-Nascido , Gravidez , Humanos , Feminino , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Nascimento Prematuro/etiologia , Ácido Pirúvico/efeitos adversos , Inflamação/metabolismo , Inseminação Artificial
5.
Am J Obstet Gynecol ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37967697

RESUMO

OBJECTIVE: This study aimed to investigate the prognostic role of concomitant histological fetal inflammatory response with chorioamnionitis on neonatal outcomes through a systematic review and meta-analysis of existing literature. DATA SOURCES: The primary search was conducted on October 17, 2021, and it was updated on May 26, 2023, across 4 separate databases (MEDLINE, the Cochrane Central Register of Controlled Trials, Embase, and Scopus) without using any filters. STUDY ELIGIBILITY CRITERIA: Observational studies reporting obstetrical and neonatal outcomes of infant-mother dyads with histological chorioamnionitis and histological fetal inflammatory response vs infant-mother dyads with histological chorioamnionitis alone were eligible. Studies that enrolled only preterm neonates, studies on neonates born before 37 weeks of gestation, or studies on neonates with very low birthweight (birthweight <1500 g) were included. The protocol was registered with the International Prospective Register of Systematic Reviews (registration number: CRD42021283448). METHODS: The records were selected by title, abstract, and full text, and disagreements were resolved by consensus. Random-effect model-based pooled odds ratios with corresponding 95% confidence intervals were calculated for dichotomous outcomes. RESULTS: Overall, 50 studies were identified. A quantitative analysis of 14 outcomes was performed. Subgroup analysis using the mean gestational age of the studies was performed, and a cutoff of 28 weeks of gestation was implemented. Among neonates with lower gestational ages, early-onset sepsis (pooled odds ratio, 2.23; 95% confidence interval, 1.76-2.84) and bronchopulmonary dysplasia (pooled odds ratio, 1.30; 95% confidence interval, 1.02-1.66) were associated with histological fetal inflammatory response. Our analysis showed that preterm neonates with a concomitant histological fetal inflammatory response are more likely to develop intraventricular hemorrhage (pooled odds ratio, 1.54; 95% confidence interval, 1.18-2.02) and retinopathy of prematurity (pooled odds ratio, 1.37; 95% confidence interval, 1.03-1.82). The odds of clinical chorioamnionitis were almost 3-fold higher among infant-mother dyads with histological fetal inflammatory response than among infant-mother dyads with histological chorioamnionitis alone (pooled odds ratio, 2.99; 95% confidence interval, 1.96-4.55). CONCLUSION: This study investigated multiple neonatal outcomes and found association in the case of 4 major morbidities: early-onset sepsis, bronchopulmonary dysplasia, intraventricular hemorrhage, and retinopathy of prematurity.

6.
Am J Reprod Immunol ; 90(5): e13782, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37881125

RESUMO

PROBLEM: Prenatal exposure to intrauterine inflammation (IUI) is a crucial event in PTB pathophysiology. However, the relationship between microflora and PTB is not fully elucidated. METHOD OF STUDY: In this study, we established an intrauterine inflammation mouse model via LPS intrauterine injection. The saliva and amniotic fluid were collected for 16s RNA gene sequencing. The levels of TNF-α and IL-1ß in mouse amniotic fluid were determined by ELISA assays. RESULTS: Up to 60% of the operational taxonomic units (OTUs) in the saliva and amniotic fluid of PBS-treated mice were overlapped. LPS treatment-induced changes in the abundance of oral and amniotic fluid microorganisms. Both immune-associated probiotics, salivarius and mastitidis, were still detected in saliva (at significantly increased levels) after LPS-induced intrauterine inflammation and almost no probiotics of any type were detected in amniotic fluid, suggesting that the uterine cavity seems to be more susceptible to LPS compared to the oral cavity. Moreover, the abundance of pathogenic bacteria Escherichia coli was increased in both saliva and amniotic fluid after LPS treatment. The level of TNF-α and IL-1ß in amniotic fluid is positively related to the amniotic fluid E. coli abundance. CONCLUSIONS: The microbial composition of saliva and amniotic fluid of pregnant mice was similar. LPS-induced intrauterine inflammation decreased the consistency of microbial composition in mouse saliva and amniotic fluid, increased the abundance of E. coli in saliva and amniotic fluid, and decreased the abundance of immune-associated probiotics, especially in amniotic fluid.


Assuntos
Líquido Amniótico , Fator de Necrose Tumoral alfa , Gravidez , Feminino , Animais , Camundongos , Escherichia coli , Saliva , Lipopolissacarídeos/farmacologia , Inflamação/patologia
7.
J Endocr Soc ; 7(9): bvad100, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37564887

RESUMO

Context: Intrauterine inflammation, a representative stressor for the fetus, has been shown to alter the hypothalamus-pituitary-adrenal (HPA) axis reactivity in preterm fetuses and increase postnatal cortisol production. However, the mechanism of this alteration has not yet been elucidated. Objective: We aimed to clarify the effects of endotoxin-induced intrauterine inflammation on the HPA axis of periviable sheep fetuses. Methods: Fetal sheep (0.63 term) were divided into 2 groups: (1) the endotoxin group, in which the endotoxin was injected into the amniotic fluid; and (2) the control group, in which the saline solution was injected instead. A corticotropin-releasing hormone (CRH) challenge test was performed on the third day after injection to evaluate the cortisol-producing capacity of each group. Gene expression levels in the fetal adrenal glands of each group were analyzed by RNA-seq. Results: The cortisol levels were significantly higher in the endotoxin group than in the control group after CRH challenge (P = .02). There were no significant differences in the responsiveness of adrenocorticotropin and cortisone between the 2 groups. Gene expression levels of the following enzymes involved in cortisol synthesis were significantly elevated in the endotoxin group: cytochrome P450 family (CYP) 11 subfamily A member 1 (log2FC 1.75), CYP 17 subfamily A member 1 (log2FC 3.41), 3ß-hydroxysteroid dehydrogenase type I (log2FC 1.13), steroidogenic acute regulatory protein (log2FC 1.09), and CYP 21 (log2FC 0.89). Conclusion: Periviable fetuses exposed to inflammation in utero have altered the responsiveness of the HPA axis with increased expression of enzymes involved in cortisol synthesis in the adrenal gland.

8.
Front Pediatr ; 11: 1146014, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520051

RESUMO

Rationale: The role of circulating fetal monocytes in bronchopulmonary dysplasia is not known. We utilized a humanized mouse model that supports human progenitor cell engraftment (MISTRG) to test the hypothesis that prenatal monocyte programming alters early lung development and response to hyperoxia. Methods: Cord blood-derived monocytes from 10 human infants were adoptively transferred into newborn MISTRG mice at p0 (1 × 106 cells/mouse, intrahepatic injection) followed by normoxia versus hyperoxia (85% oxygen × 14 days). Lungs were harvested at p14 for alveolar histology (alveolar count, perimeter and area) and vascular parameters (vWF staining for microvessel density, Fulton's index). Human CD45 staining was conducted to compare presence of hematopoietic cells. Murine lung parameters were compared among placebo and monocyte-injected groups. The individual profiles of the 10 patients were further considered, including gestational age (GA; n = 2 term, n = 3 moderate/late preterm, and n = 5 very preterm infants) and preeclampsia (n = 4 patients). To explore the monocyte microenvironment of these patients, 30 cytokines/chemokines were measured in corresponding human plasma by multiplex immunoassay. Results: Across the majority of patients and corresponding mice, MISTRG alveolarization was simplified and microvessel density was decreased following hyperoxia. Hyperoxia-induced changes were seen in both placebo (PBS) and monocyte-injected mice. Under normoxic conditions, alveolar development was altered modestly by monocytes as compared with placebo (P < 0.05). Monocyte injection was associated with increased microvessel density at P14 as compared with placebo (26.7 ± 0.73 vs. 18.8 ± 1.7 vessels per lung field; P < 0.001). Pooled analysis of patients revealed that injection of monocytes from births complicated by lower GA and preeclampsia was associated with changes in alveolarization and vascularization under normoxic conditions. These differences were modified by hyperoxia. CD45+ cell count was positively correlated with plasma monocyte chemoattractant protein-1 (P < 0.001) and macrophage inflammatory protein-1ß (P < 0.01). Immunohistochemical staining for human CD206 and mouse F4/80 confirmed absence of macrophages in MISTRG lungs at P14. Conclusions: Despite the inherent absence of macrophages in early stages of lung development, immunodeficient MISTRG mice revealed changes in alveolar and microvascular development induced by human monocytes. MISTRG mice exposed to neonatal hyperoxia may serve as a novel model to study isolated effects of human monocytes on alveolar and pulmonary vascular development.

9.
Am J Reprod Immunol ; 90(2): e13749, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37491927

RESUMO

PROBLEM: Preterm birth (PTB) remains a leading cause of childhood mortality. Recent studies demonstrate that the risk of spontaneous PTB (sPTB) is increased in individuals with Lactobacillus-deficient vaginal microbial communities. One proposed mechanism is that vaginal microbes ascend through the cervix, colonize the uterus, and activate inflammatory pathways leading to sPTB. This study assessed whether intrauterine colonization with either Gardnerella vaginalis and Mobiluncus mulieris alone is sufficient to induce maternal-fetal inflammation and induce sPTB. METHOD OF STUDY: C56/B6J mice, on embryonic day 15, received intrauterine inoculation of saline or 108 colony-forming units of G. vaginalis (n = 30), M. mulieris (n = 17), or Lactobacillus crispatus (n = 16). Dams were either monitored for maternal morbidity and sPTB or sacrificed 6 h post-infusion for analysis of bacterial growth and cytokine/chemokine expression in maternal and fetal tissues. RESULTS: Six hours following intrauterine inoculation with G. vaginalis, M. mulieris, or L. crispatus, live bacteria were observed in both blood and amniotic fluid, and a potent immune response was identified in the uterus and maternal serum. In contrast, only a limited immune response was identified in the amniotic fluid and the fetus after intrauterine inoculation. High bacterial load (108 CFU/animal) of G. vaginalis was associated with maternal morbidity and mortality but not sPTB. Intrauterine infusion with L. crispatus or M. mulieris at 108 CFU/animal did not induce sPTB, alter pup viability, litter size, or maternal mortality. CONCLUSIONS: Despite inducing an immune response, intrauterine infusion of live G. vaginalis or M. mulieris is not sufficient to induce sPTB in our mouse model. These results suggest that ascension of common vaginal microbes into the uterine cavity alone is not causative for sPTB.


Assuntos
Infecções por Actinomycetales , Gardnerella vaginalis , Mobiluncus , Vaginose Bacteriana , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Mães , Complicações Infecciosas na Gravidez , Nascimento Prematuro , Feminino , Animais , Camundongos
10.
J Nutr Biochem ; 116: 109330, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36967094

RESUMO

Malnutrition associated with low dietary protein can induce gestational inflammation and sets a long-lasting metabolic impact on the offspring even after replenishment. The work investigated whether a low-protein diet (LPD) during pregnancy and lactation induces intrauterine inflammation and predisposes offspring to adiposity and insulin resistance in their adult life. Female Golden Syrian hamsters were fed LPD (10.0% energy from protein) or a control diet (CD, 20.0 % energy from protein) from preconception until lactation. All pups were switched to CD after lactation and continued until the end. Maternal LPD increased intrauterine inflammation by enhancing neutrophil infiltration, amniotic hsCRP, oxidative stress, and mRNA expression of NFκß, IL8, COX2, and TGFß in the chorioamniotic membrane (P<.05). The prepregnancy body weight, placental, and fetal weights, serum AST and ALT were decreased, while blood platelets, lymphocytes, insulin, and HDL were significantly increased in LPD-fed dams (P<.05). A postnatal switch to an adequate protein could not prevent hyperlipidemia in the 6-months LPD/CD offspring. The lipid profile and liver functions were restored over 10 months of protein feeding but failed to normalize fasting glucose and body fat accumulation compared to CD/CD. LPD/CD showed elevated GLUT4 expression & activated pIRS1 in the skeletal muscle and increased expression of IL6, IL1ß, and p65-NFκB proteins in the liver (P<.05). In conclusion, present data suggest that maternal protein restriction may induce intrauterine inflammation and affect liver inflammation in the adult offspring by an influx of fats from adipose that may alter lipid metabolism and reduce insulin sensitivity in skeletal muscle.


Assuntos
Resistência à Insulina , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Gravidez , Dieta com Restrição de Proteínas/efeitos adversos , Adiposidade/fisiologia , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Placenta/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Inflamação/metabolismo , Proteínas Alimentares , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Lactação , Peso Corporal
11.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(2): 193-201, 2023 Feb 15.
Artigo em Chinês | MEDLINE | ID: mdl-36854697

RESUMO

OBJECTIVES: To study the protective effect of breviscapine against brain injury induced by intrauterine inflammation in preterm rats and its mechanism. METHODS: A preterm rat model of brain injury caused by intrauterine inflammation was prepared by intraperitoneal injections of lipopolysaccharide in pregnant rats. The pregnant rats and preterm rats were respectively randomly divided into 5 groups: control, model, low-dose breviscapine (45 mg/kg), high-dose breviscapine (90 mg/kg), and high-dose breviscapine (90 mg/kg)+ML385 [a nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor, 30 mg/kg] (n=10 each). The number and body weight of the live offspring rats were measured for each group. Hematoxylin-eosin staining was used to observe the pathological morphology of the uterus and placenta of pregnant rats and the pathological morphology of the brain tissue of offspring rats. Immunofluorescent staining was used to measure the co-expression of ionized calcium binding adaptor molecule-1 (IBA-1) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in the cerebral cortex of offspring rats. ELISA was used to measure the levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1ß (IL-1ß) in the brain tissue of offspring rats. Western blotting was used to measure the expression of Nrf2 pathway-related proteins in the brain tissue of offspring rats. RESULTS: Pathological injury was found in the uterus, and placenta tissue of the pregnant rats and the brain tissue of the offspring rats, and severe microglia pyroptosis occurred in the cerebral cortex of the offspring rats in the model group. Compared with the control group, the model group had significant reductions in the number and body weight of the live offspring rats and the protein expression levels of Nrf2 and heme oxygenase-1 (HO-1) in the brain tissue of the offspring rats (P<0.05), but significant increases in the relative fluorescence intensity of the co-expression of IBA-1 and NLRP3, the levels of the inflammatory factors IL-6, IL-8, and IL-1ß, and the protein expression levels of NLRP3 and caspase-1 in the brain tissue of the offspring rats (P<0.05). Compared with the model group, the breviscapine administration groups showed alleviated pathological injury of the uterus and placenta tissue of the pregnant rats and the brain tissue of the offspring rats, significant increases in the number and body weight of the live offspring rats and the protein expression levels of Nrf2 and HO-1 in the brain tissue of the offspring rats (P<0.05), and significant reductions in the relative fluorescence intensity of the co-expression of IBA-1 and NLRP3, the levels of the inflammatory factors IL-6, IL-8, and IL-1ß, and the protein expression levels of NLRP3 and caspase-1 in the brain tissue of the offspring rats (P<0.05). The high-dose breviscapine group had a significantly better effect than the low-dose breviscapine (P<0.05). ML385 significantly inhibited the intervention effect of high-dose breviscapine (P<0.05). CONCLUSIONS: Breviscapine can inhibit inflammatory response in brain tissue of preterm rats caused by intrauterine inflammation by activating the Nrf2 pathway, and it can also inhibit microglial pyroptosis and alleviate brain injury.


Assuntos
Lesões Encefálicas , Flavonoides , Inflamação , Animais , Feminino , Gravidez , Ratos , Peso Corporal , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/etiologia , Lesões Encefálicas/prevenção & controle , Caspase 1 , Inflamação/complicações , Inflamação/tratamento farmacológico , Interleucina-6 , Interleucina-8 , Fator 2 Relacionado a NF-E2 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Flavonoides/uso terapêutico
12.
Am J Respir Cell Mol Biol ; 68(6): 610-624, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36603194

RESUMO

Epidemiological surveys indicate that intrauterine inflammation increases the risk of asthma in offspring. However, the underlying mechanisms remain largely unknown. Previous studies in BALB/c and C57BL/6 mice showed that prenatal exposure to endotoxins prevented allergic airway inflammation in offspring, which is inconsistent with most clinical observations. In this study, we found that prenatal LPS exposure increased airway resistance and total exfoliated cell counts, eosinophils, and IL-4 concentrations in BAL fluid of ovalbumin-sensitized Institute of Cancer Research (ICR) mice. Importantly, long noncoding RNA (lncRNA) NONMMUT033452.2 was upregulated in the lungs of LPS-exposed ICR offspring. Fluorescence in situ hybridization and cytoplasmic and nuclear fraction analyses revealed that this lncRNA was distributed in both the nuclei and cytoplasm of lung and airway epithelial cells, smooth muscle cells, and fibroblasts. Intranasal administration of NONMMUT033452.2 siRNA markedly alleviated allergic airway inflammation in ovalbumin-sensitized ICR mice. In vitro functional experiments demonstrated that overexpression of NONMMUT033452.2 inhibited the proliferation of lung and bronchiolar epithelial cells and promoted oxidative stress. RNA pull-down assays proved that NONMMUT033452.2 could directly bind Eef1D (eukaryotic translation elongation factor 1 delta). Overexpression of NONMMUT033452.2 induced the redistribution of Eef1D and substantially inhibited the expression of its downstream heat shock genes. NONMMUT033452.2 was also involved in the modulation of IL-1, IL-12, and some key molecules related to asthma, including Npr3 (natriuretic peptide receptor 3), Rac1 (Rac family small GTPase 1), and Nr4a3 (nuclear receptor subfamily 4, group A, member 3). Furthermore, the human lncRNA NONHSAT078603.2 was identified as a functional homolog of NONMMUT033452.2. These findings provide new insight into the pathogenic mechanism underlying asthma development.


Assuntos
Asma , RNA Longo não Codificante , Gravidez , Feminino , Animais , Humanos , Camundongos , Lipopolissacarídeos , Ovalbumina , Fator 1 de Elongação de Peptídeos/metabolismo , Hibridização in Situ Fluorescente , Ligação Proteica , RNA Longo não Codificante/genética , Camundongos Endogâmicos C57BL , Asma/induzido quimicamente , Asma/genética , Asma/metabolismo , Inflamação/patologia , Pulmão/patologia , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo
13.
J Matern Fetal Neonatal Med ; 36(1): 2150392, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36443245

RESUMO

OBJECTIVE: Baroreflex is a regulatory mechanism that slows the fetal heart rate. This study aimed to investigate the effects of lipopolysaccharide (LPS)-induced endotoxemia on fetal baroreceptor sensitivity in preterm fetal sheep. METHODS: The changes in fetal baroreceptor sensitivity were measured in seven chronically instrumented preterm fetal sheep. Fetal baroreceptor sensitivity was measured in three phases: (A) control phase, defined as the 24 h before the first injection of LPS; (B) acute phase, defined as the 24 h between the first and second injections of LPS; and (C) fetal acidosis phase, defined as the time from the second LPS injection until intrauterine fetal death. Histological examinations of the fetal membrane and umbilical cord were also conducted. RESULTS: Each fetus developed metabolic acidosis after the second injection of LPS. The fetuses died 24.7 (SD = 6.1) hours after the second injection of LPS. Both the umbilical cord and fetal membranes showed histological evidence of severe inflammation. In total, 163 fetal baroreceptor measurements were performed in this experiment (A, n = 77 times; B, n = 60 times; C, n = 26 times). Fetal baroreceptor sensitivity showed significant differences in all three phases (A: 2.7 [SD = 0.2]; B: 2.5 [SD = 0.2]; and C: 1.5 [SD = 0.2]). Post hoc tests showed that baroreceptor sensitivity in the acidosis phase had decreased significantly compared to that in the control and acute phases (p<.001 and p=.002, respectively). CONCLUSIONS: Fetal baroreceptor sensitivity decreased during fetal acidosis induced by LPSs.


Assuntos
Acidose , Doenças Fetais , Gravidez , Feminino , Humanos , Ovinos , Animais , Lipopolissacarídeos , Pressorreceptores/metabolismo , Pressorreceptores/patologia , Feto/patologia , Inflamação/induzido quimicamente , Inflamação/patologia , Frequência Cardíaca Fetal
14.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-971059

RESUMO

OBJECTIVES@#To study the protective effect of breviscapine against brain injury induced by intrauterine inflammation in preterm rats and its mechanism.@*METHODS@#A preterm rat model of brain injury caused by intrauterine inflammation was prepared by intraperitoneal injections of lipopolysaccharide in pregnant rats. The pregnant rats and preterm rats were respectively randomly divided into 5 groups: control, model, low-dose breviscapine (45 mg/kg), high-dose breviscapine (90 mg/kg), and high-dose breviscapine (90 mg/kg)+ML385 [a nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor, 30 mg/kg] (n=10 each). The number and body weight of the live offspring rats were measured for each group. Hematoxylin-eosin staining was used to observe the pathological morphology of the uterus and placenta of pregnant rats and the pathological morphology of the brain tissue of offspring rats. Immunofluorescent staining was used to measure the co-expression of ionized calcium binding adaptor molecule-1 (IBA-1) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in the cerebral cortex of offspring rats. ELISA was used to measure the levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β) in the brain tissue of offspring rats. Western blotting was used to measure the expression of Nrf2 pathway-related proteins in the brain tissue of offspring rats.@*RESULTS@#Pathological injury was found in the uterus, and placenta tissue of the pregnant rats and the brain tissue of the offspring rats, and severe microglia pyroptosis occurred in the cerebral cortex of the offspring rats in the model group. Compared with the control group, the model group had significant reductions in the number and body weight of the live offspring rats and the protein expression levels of Nrf2 and heme oxygenase-1 (HO-1) in the brain tissue of the offspring rats (P<0.05), but significant increases in the relative fluorescence intensity of the co-expression of IBA-1 and NLRP3, the levels of the inflammatory factors IL-6, IL-8, and IL-1β, and the protein expression levels of NLRP3 and caspase-1 in the brain tissue of the offspring rats (P<0.05). Compared with the model group, the breviscapine administration groups showed alleviated pathological injury of the uterus and placenta tissue of the pregnant rats and the brain tissue of the offspring rats, significant increases in the number and body weight of the live offspring rats and the protein expression levels of Nrf2 and HO-1 in the brain tissue of the offspring rats (P<0.05), and significant reductions in the relative fluorescence intensity of the co-expression of IBA-1 and NLRP3, the levels of the inflammatory factors IL-6, IL-8, and IL-1β, and the protein expression levels of NLRP3 and caspase-1 in the brain tissue of the offspring rats (P<0.05). The high-dose breviscapine group had a significantly better effect than the low-dose breviscapine (P<0.05). ML385 significantly inhibited the intervention effect of high-dose breviscapine (P<0.05).@*CONCLUSIONS@#Breviscapine can inhibit inflammatory response in brain tissue of preterm rats caused by intrauterine inflammation by activating the Nrf2 pathway, and it can also inhibit microglial pyroptosis and alleviate brain injury.


Assuntos
Animais , Feminino , Gravidez , Ratos , Peso Corporal , Lesões Encefálicas/prevenção & controle , Caspase 1 , Inflamação/tratamento farmacológico , Interleucina-6 , Interleucina-8 , Fator 2 Relacionado a NF-E2 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Flavonoides/uso terapêutico
15.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36430355

RESUMO

Patent ductus arteriosus (PDA) is a common cardiovascular complication that complicates clinical care in the intensive care of premature infants. Prenatal and postnatal infections and the inflammation process can contribute to PDA, and intrauterine inflammation is a known risk factor of PDA. A variety of inflammatory biomarkers have been reported to be associated with PDA. Chorioamnionitis induces the fetal inflammatory process via several cytokines that have been reported to be associated with the presence of PDA and may have a role in the vascular remodeling process or vessel dilation of the ductus. On the other hand, anti-inflammatory agents, such as antenatal steroids, decrease PDA incidence and severity in patients born to those with chorioamnionitis. Proinflammatory cytokines, which are expressed more significantly in preterm neonates and chorioamnionitis, are associated with the presence of PDA. In this review, we focus on the pathogenesis of PDA in preterm infants and the role of biomarkers associated with the perinatal inflammatory process.


Assuntos
Corioamnionite , Permeabilidade do Canal Arterial , Doenças do Prematuro , Lactente , Humanos , Recém-Nascido , Feminino , Gravidez , Permeabilidade do Canal Arterial/patologia , Recém-Nascido Prematuro , Biomarcadores , Inflamação/complicações , Citocinas
16.
Front Immunol ; 13: 902096, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211368

RESUMO

The placental inflammatory processes induced maternally result in preterm birth (PTB). Serum amyloid A (SAA) is a well-known biomarker of inflammation. The objective of this study was to investigate whether murine placental SAA isoforms (SAA1-4) participate in the mechanism of spontaneous PTB and whether maternal regulation of SAA production may serve as a therapeutic approach. During the gestation, all isoforms of SAA were detectable except SAA2. The mouse model of intrauterine inflammation was established using LPS infusion to the uterus. Following intrauterine inflammation, placental SAA2 increased significantly. Inhibition of Saa2, using siSaa2, markedly decreased PTB. The increased placental expression of pro-inflammatory cytokines Il1ß, Il6, and Tnfα were downregulated by siSaa2 treatment. Maternal inhibition of Saa2 did not change the expression of Saa1-4 in the fetal brain. Explant inflammatory culture of placentas with siSaa2 showed similar results to our in vivo experiments. This study demonstrates the highly expressed placental SAA2 as a novel therapeutic target, and maternal administration of siRNA as a promising approach to alleviate PTB.


Assuntos
Nascimento Prematuro , Proteína Amiloide A Sérica , Animais , Citocinas/metabolismo , Feminino , Humanos , Recém-Nascido , Inflamação/genética , Interleucina-6 , Lipopolissacarídeos , Camundongos , Placenta/metabolismo , Gravidez , Isoformas de Proteínas , RNA Interferente Pequeno/genética , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo , Fator de Necrose Tumoral alfa
17.
Cell Biosci ; 12(1): 164, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183130

RESUMO

BACKGROUND: Intrauterine inflammation (IUI) alters epigenetic modifications in offspring, leading to lung injury. However, the epigenetic mechanism underlying IUI-induced lung injury remains uncertain. In the present study, we aim to investigate the effect of IUI on lung development, and to identify the key molecule involved in this process and its epigenetic regulatory mechanism. RESULTS: Serpine1 was upregulated in the lung tissue of neonatal mice with IUI. Intranasal delivery of Serpine1 siRNA markedly reversed IUI-induced lung injury. Serpine1 overexpression substantially promoted cell senescence of both human and murine lung epithelial cells, reflected by decreased cell proliferation and increased senescence-associated ß-galactosidase activity, G0/G1 cell fraction, senescence marker, and oxidative and DNA damage marker expression. IUI decreased the methylation level of the Serpine1 promoter, and methylation of the promoter led to transcriptional repression of Serpine1. Furthermore, IUI promoted the expression of Tet1 potentially through TNF-α, while Tet1 facilitated the demethylation of Serpine1 promoter. DNA pull-down and ChIP assays revealed that the Serpine1 promoter was regulated by Rela and Hdac2. DNA demethylation increased the recruitment of Rela to the Serpine1 promoter and induced the release of Hdac2. CONCLUSION: Increased Serpine1 expression mediated by DNA demethylation causes lung injury in neonatal mice with IUI. Therefore, therapeutic interventions targeting Serpine1 may effectively prevent IUI-induced lung injury.

18.
J Steroid Biochem Mol Biol ; 221: 106120, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35533917

RESUMO

Chorioamnionitis profoundly influences multiple fetal organs as well as the immune system. Maternal vitamin D (VitD) supplementation may modulate the immune function of offspring. Here, we sought to uncover the immunomodulatory potential of intrauterine inflammation and VitD in offspring CD4+ T cells. Pregnant C57BL/6 mice were treated with intrauterine lipopolysaccharide (LPS) injections, with or without VitD. Splenic CD4+ T cells were negatively selected using anti-biotin microbeads at 28 days after birth. Differentially expressed genes (DEGs) in the offspring CD4+ T cells were identified via RNA sequencing. In total, 181 DEGs induced by LPS exposure were identified in offspring CD4+ T cells. Furthermore, 2461 DEGs were detected after VitD supplementation in addition to LPS exposure. VitD supplementation showed an unexpected ability to counteract the LPS-induced transcriptional responses. VitD supplementation downregulated lymphocyte differentiation (GO: 0030098) and lymphocyte activation (GO: 0046649), and upregulated the responses to viruses (GO: 0009615) and bacteria (GO:0009617) in offspring CD4+ T cells with intrauterine LPS exposure. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that several pathways, including the T cell receptor signaling pathway, the mitogen-activated protein kinase (MAPK) signaling pathway, Th17 cell differentiation, and autophagy, were downregulated by intrauterine VitD intervention following LPS exposure. Subsequently, we confirmed the counteracting effect of VitD against LPS on the expression of several genes (Insr, Foxo1, and Peli1) using qRT-PCR and western blot analyses. We also demonstrated that intrauterine VitD supplementation interferes with offspring Th17 cell differentiation induced by intrauterine LPS exposure. Our study revealed that VitD reverses the transcriptional and Th17 differential profiles of offspring CD4+ T lymphocytes induced by intrauterine LPS, and indicated the contribution of maternal VitD supplementation to immune protection in offspring affected by intrauterine inflammation.


Assuntos
Colecalciferol , Lipopolissacarídeos , Animais , Linfócitos T CD4-Positivos , Colecalciferol/farmacologia , Feminino , Inflamação/induzido quimicamente , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares , Gravidez , Ubiquitina-Proteína Ligases/farmacologia , Vitamina D/farmacologia , Vitaminas/farmacologia
19.
Exp Neurol ; 352: 114049, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35305987

RESUMO

BACKGROUND: Neurovascular coupling leads to an increase in local cerebral blood flow and oxygenation in response to increased neural activity. Reduced cerebral functional responses may predispose to tissue hypoxia when neural activity is increased. Intrauterine inflammation, identified clinically as chorioamnionitis, is a major contributor to the neuropathology arising after preterm birth. The impact of chorioamnionitis on the preterm cerebral functional haemodynamic response is unknown. Previously, we have reported that somatosensory stimulation produces predominantly positive cerebral haemodynamic responses (i.e., increased cerebral oxygenation) in preterm lambs, which are reduced with dopamine treatment. As preterm infants born after chorioamnionitis often suffer from hypotension and are treated with dopamine, we aimed to investigate how chorioamnionitis with and without dopamine treatment affect the cerebral haemodynamic response in preterm lambs. METHODS: At 119 days of gestation, intrauterine inflammation was induced by intra-amniotic injection of lipopolysaccharide (LPS) in pregnant ewes. At 126-7 days of gestation (term is ~147 days), these LPS-exposed lambs were delivered and mechanically ventilated. The cerebral functional response was assessed by near infrared spectroscopy as changes in cerebral oxy- and deoxyhaemoglobin (ΔoxyHb, ΔdeoxyHb), following left median nerve stimulation of 1.8, 4.8 and 7.8 s durations without dopamine; and 4.8 and 7.8 s stimulations with intravenous dopamine infusion. RESULTS: Stimulation for 1.8, 4.8 and 7.8 s durations led to negative functional responses (decreased ΔoxyHb) in 5 (62.5%), 5 (62.5%) and 4 (50%) of 8 preterm lambs respectively, while other lambs showed positive responses (increased ∆oxyHb). Dopamine infusion increased baseline tissue oxygenation index (TOI), oxyHb and total Hb. In lambs with a positive functional response, dopamine decreased the evoked ΔoxyHb response, increasing the overall incidence of negative cerebral haemodynamic responses. CONCLUSIONS: Somatosensory stimulation produced mostly negative responses with decreased cerebral oxygenation in preterm lambs exposed to intrauterine inflammation, contrasting with our previous findings of predominantly positive responses in non-inflamed, control, preterm lambs. Dopamine increased baseline cerebral oxygenation, but further increased the incidence of negative functional responses. Impaired neurovascular coupling leading to intermittent localised tissue hypoxia may therefore contribute to the neuropathy in infants with chorioamnionitis, with the risk of injury exacerbated with dopamine treatment.


Assuntos
Corioamnionite , Nascimento Prematuro , Animais , Animais Recém-Nascidos , Corioamnionite/tratamento farmacológico , Dopamina , Feminino , Hemodinâmica/fisiologia , Humanos , Hipóxia , Recém-Nascido , Recém-Nascido Prematuro , Inflamação , Lipopolissacarídeos , Gravidez , Ovinos
20.
J Nutr Biochem ; 101: 108925, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34843933

RESUMO

Maternal high-fat diet (HFD) often results in intrauterine and feto-placental inflammation, and increases the risks of fetal programming of metabolic diseases. Intake of prebiotic is reported beneficial. However, its effects on HFD during pregnancy and lactation is not known. We evaluated the maternal intake of fructooligosaccharide (FOS) and its impact on placental inflammation, offspring's adiposity, glucose, and lipid metabolism in their later life. Female Golden Syrian hamsters were fed with a control diet (CD, 26.4 % energy from fat) or HFD (60.7% energy from fat) in the presence or absence of FOS from preconception until lactation. All pups were switched over to CD after lactation and continued until the end. Placental inflammation was upregulated in HFD-fed dam, as measured by a high concentration of hsCRP in the serum and amniotic fluid. Neutrophil infiltration was significantly increased in the decidua through the chorionic layer of the placenta. The expression of pro-inflammatory cytokines such as COX2, NFκß, IL-8, TGFß mRNA was increased in the chorioamniotic membrane (P <.05). The HFD/CD hamsters had more adiposity, higher triglyceride, and low HDL at 12 months of age compared to CD/CD (P <.05). However, HFD+FOS/CD-fed hamsters prevented adverse effects such as placental inflammation, neutrophil infiltration, glucose, and lipid profiles in the offspring (P <.05). Anti-inflammatory and lipid-lowering effects of FOS may reduce placental inflammation by lowering neutrophil infiltration and decreasing the production of pro-inflammatory cytokines. Intake of FOS during pregnancy may be beneficial in maintaining lipid metabolism and preventing excess adiposity for mother and their offspring.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Inflamação/prevenção & controle , Lipídeos/sangue , Fenômenos Fisiológicos da Nutrição Materna , Oligossacarídeos , Prebióticos , Adiposidade , Animais , Glicemia/análise , Peso Corporal , Membrana Corioalantoide/imunologia , Citocinas/metabolismo , Feminino , Metabolismo dos Lipídeos , Lipoproteínas HDL/sangue , Mesocricetus , Infiltração de Neutrófilos , Placenta/imunologia , Gravidez , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA