Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37960401

RESUMO

The Internet of Things (IoT), projected to exceed 30 billion active device connections globally by 2025, presents an expansive attack surface. The frequent collection and dissemination of confidential data on these devices exposes them to significant security risks, including user information theft and denial-of-service attacks. This paper introduces a smart, network-based Intrusion Detection System (IDS) designed to protect IoT networks from distributed denial-of-service attacks. Our methodology involves generating synthetic images from flow-level traffic data of the Bot-IoT and the LATAM-DDoS-IoT datasets and conducting experiments within both supervised and self-supervised learning paradigms. Self-supervised learning is identified in the state of the art as a promising solution to replace the need for massive amounts of manually labeled data, as well as providing robust generalization. Our results showcase that self-supervised learning surpassed supervised learning in terms of classification performance for certain tests. Specifically, it exceeded the F1 score of supervised learning for attack detection by 4.83% and by 14.61% in accuracy for the multiclass task of protocol classification. Drawing from extensive ablation studies presented in our research, we recommend an optimal training framework for upcoming contrastive learning experiments that emphasize visual representations in the cybersecurity realm. This training approach has enabled us to highlight the broader applicability of self-supervised learning, which, in some instances, outperformed supervised learning transferability by over 5% in precision and nearly 1% in F1 score.

2.
Sensors (Basel) ; 23(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36904618

RESUMO

Industrial control systems (ICSs), supervisory control and data acquisition (SCADA) systems, and distributed control systems (DCSs) are fundamental components of critical infrastructure (CI). CI supports the operation of transportation and health systems, electric and thermal plants, and water treatment facilities, among others. These infrastructures are not insulated anymore, and their connection to fourth industrial revolution technologies has expanded the attack surface. Thus, their protection has become a priority for national security. Cyber-attacks have become more sophisticated and criminals are able to surpass conventional security systems; therefore, attack detection has become a challenging area. Defensive technologies such as intrusion detection systems (IDSs) are a fundamental part of security systems to protect CI. IDSs have incorporated machine learning (ML) techniques that can deal with broader kinds of threats. Nevertheless, the detection of zero-day attacks and having technological resources to implement purposed solutions in the real world are concerns for CI operators. This survey aims to provide a compilation of the state of the art of IDSs that have used ML algorithms to protect CI. It also analyzes the security dataset used to train ML models. Finally, it presents some of the most relevant pieces of research on these topics that have been developed in the last five years.

3.
Sensors (Basel) ; 22(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35591056

RESUMO

From smart homes to industrial environments, the IoT is an ally to easing daily activities, where some of them are critical. More and more devices are connected to and through the Internet, which, given the large amount of different manufacturers, may lead to a lack of security standards. Denial of service attacks (DDoS, DoS) represent the most common and critical attack against and from these networks, and in the third quarter of 2021, there was an increase of 31% (compared to the same period of 2020) in the total number of advanced DDoS targeted attacks. This work uses the Bot-IoT dataset, addressing its class imbalance problem, to build a novel Intrusion Detection System based on Machine Learning and Deep Learning models. In order to evaluate how the records timestamps affect the predictions, we used three different feature sets for binary and multiclass classifications; this helped us avoid feature dependencies, as produced by the Argus flow data generator, whilst achieving an average accuracy >99%. Then, we conducted comprehensive experimentation, including time performance evaluation, matching and exceeding the results of the current state-of-the-art for identifying denial of service attacks, where the Decision Tree and Multi-layer Perceptron models were the best performing methods to identify DDoS and DoS attacks over IoT networks.


Assuntos
Aprendizado Profundo , Internet das Coisas , Internet , Aprendizado de Máquina , Redes Neurais de Computação
4.
Sensors (Basel) ; 22(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35270994

RESUMO

In this paper, we addressed the problem of dataset scarcity for the task of network intrusion detection. Our main contribution was to develop a framework that provides a complete process for generating network traffic datasets based on the aggregation of real network traces. In addition, we proposed a set of tools for attribute extraction and labeling of traffic sessions. A new dataset with botnet network traffic was generated by the framework to assess our proposed method with machine learning algorithms suitable for unbalanced data. The performance of the classifiers was evaluated in terms of macro-averages of F1-score (0.97) and the Matthews Correlation Coefficient (0.94), showing a good overall performance average.


Assuntos
Algoritmos , Aprendizado de Máquina , Projetos de Pesquisa
5.
Sensors (Basel) ; 21(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063577

RESUMO

At present, new data sharing technologies, such as those used in the Internet of Things (IoT) paradigm, are being extensively adopted. For this reason, intelligent security controls have become imperative. According to good practices and security information standards, particularly those regarding security in depth, several defensive layers are required to protect information assets. Within the context of IoT cyber-attacks, it is fundamental to continuously adapt new detection mechanisms for growing IoT threats, specifically for those becoming more sophisticated within mesh networks, such as identity theft and cloning. Therefore, current applications, such as Intrusion Detection Systems (IDS), Intrusion Prevention Systems (IPS), and Security Information and Event Management Systems (SIEM), are becoming inadequate for accurately handling novel security incidents, due to their signature-based detection procedures using the matching and flagging of anomalous patterns. This project focuses on a seldom-investigated identity attack-the Clone ID attack-directed at the Routing Protocol for Low Power and Lossy Networks (RPL), the underlying technology for most IoT devices. Hence, a robust Artificial Intelligence-based protection framework is proposed, in order to tackle major identity impersonation attacks, which classical applications are prone to misidentifying. On this basis, unsupervised pre-training techniques are employed to select key characteristics from RPL network samples. Then, a Dense Neural Network (DNN) is trained to maximize deep feature engineering, with the aim of improving classification results to protect against malicious counterfeiting attempts.

6.
Sensors (Basel) ; 20(16)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824695

RESUMO

The Internet of Things (IoT) paradigm has revolutionized several industries (e.g., manufacturing, health, transport, education, among others) by allowing objects to connect to the Internet and, thus, enabling a variety of novel applications. In this sense, IoT devices have become an essential component of smart cities, allowing many novel and useful services, but, at the same time, bringing numerous cybersecurity threats. The paper at hand proposes BlockSIEM, a blockchain-based and distributed Security Information and Event Management (SIEM) solution framework for the protection of the aforementioned smart city services. The proposed SIEM relies on blockchain technology to securely store and access security events. Such security events are generated by IoT sentinels that are in charge of shielding groups of IoT devices. The IoT sentinels may be deployed in smart city scenarios, such as smart hospitals, smart transport systems, smart airports, among others, ensuring a satisfactory level of protection. The blockchain guarantees the non-repudiation and traceability of the registry of security events due to its features. To demonstrate the feasibility of the proposed approach, our proposal is implemented using Ethereum and validated through different use cases and experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA