Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
J Control Release ; 373: 93-104, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38968971

RESUMO

The treatment landscape for opioid use disorder (OUD) faces challenges stemming from the limited efficacy of existing medications, poor adherence to prescribed regimens, and a heightened risk of fatal overdose post-treatment cessation. Therefore, there is a pressing need for innovative therapeutic strategies that enhance the effectiveness of interventions and the overall well-being of individuals with OUD. This study explored the therapeutic potential of nor-Levo-α-acetylmethadol (nor-LAAM) to treat OUD. We developed sustained release nor-LAAM-loaded poly (lactic-co-glycolic acid) (PLGA) microparticles (MP) using a hydrophobic ion pairing (HIP) approach. The nor-LAAM-MP prepared using HIP with pamoic acid had high drug loading and exhibited minimal initial burst release and sustained release. The nor-LAAM-MP was further optimized for desirable particle size, drug loading, and release kinetics. The lead nor-LAAM-MP (F4) had a relatively high drug loading (11 wt%) and an average diameter (19 µm) and maintained a sustained drug release for 4 weeks. A single subcutaneous injection of nor-LAAM-MP (F4) provided detectable nor-LAAM levels in rabbit plasma for at least 15 days. We further evaluated the therapeutic efficacy of nor-LAAM-MP (F4) in a well-established fentanyl-addiction rat model, and revealed a marked reduction in fentanyl choice and withdrawal symptoms in fentanyl-dependent rats. These findings provide insights into further developing long-acting nor-LAAM-MP for treating OUD. It has the potential to offer a new effective medication to the existing sparse armamentarium of products available to treat OUD.

2.
Chemosphere ; 363: 142916, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39043274

RESUMO

The detection of the highly toxic per- and polyfluoroalkyl substances, PFAS, constitutes a challenging task in terms of developing a generic method that could be rapid and applicable simultaneously to both long and short-chain PFAS at ppt concentration level. In the present study, the method introduced by the USA Environmental Protection Agency, EPA, to detect surfactants, using methylene blue, MB, which is identified an ideal candidate for PFAS-MB ion pairing, is extended at the lowest concentration range by a simple additional step that involves the dissociation of the ion pairs in water. In this work, Surface Enhanced Raman Scattering, SERS, is applied via Ag nanocolloidal suspensions to probe MB and indirectly either/or both short-chain (perfluorobutyric acid, PFBA) and long-chain (perfluoloctanoic acid, PFOA) PFAS downt to 5 ppt. This method, which can be further optimized to sub-ppt level via a custom-made SERS-PFAS dedicated Raman system, offers the possibility to be applied to either specific PFAS (both short and long-chain) in a targeted analysis or to total PFAS in a non-targeted analysis at very low detection limits, following any type of MB detection method in aqueous solutions and obviously with any type of SERS substrate.

3.
Molecules ; 29(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998970

RESUMO

The amount of free ions, ion pairs, and higher aggregate of the possible species present in a solution during the gold(I)-catalyzed alkoxylation of unsaturated hydrocarbon, i.e., ISIP (inner sphere ion pair) [(NHC)AuX] and OSIP (outer sphere ion pairs) [(NHC)Au(TME)X] [NHC 1,3-bis(2,6-di-isopropylphenyl)-imidazol-2-ylidene; TME = tetramethylethylene (2,3-bis methyl-butene); X- = Cl-, BF4-, OTf-; and OTs- BArF4- (ArF = 3,5-(CF3)2C6H3)], has been determined. The 1H and 19F DOSY NMR measurements conducted in catalytic conditions indicate that the dissociation degree (α) of the equilibrium ion pair/free ions {[(NHC)Au(TME)X] [(NHC)Au(TME)]+ + X-} depends on the nature of the counterion (X-) when chloroform is the catalytic solvent: while the compounds containing OTs- and OTf- as the counterion gave a low α (which means a high number of ion pairs) of 0.13 and 0.24, respectively, the compounds containing BF4- and BArF4- showed higher α values of 0.36 and 0.32, respectively. These results experimentally confirm previous deductions based on catalytic and theoretical data: the lower the α value, the greater the catalytic activity because the anion that can activate methanol during a nucleophilic attack, although the lower propensity to activate methanol of BF4- and BArF4-, as suggested by the DFT calculations, cannot be completely overlooked. As for the effect of the solvent, α increases as the dielectric constant increases, as expected, and in particular, green solvents with high dielectric constants show a very high α (0.90, 0.84, 0.80, and 0.70 for propylene carbonate, γ-valerolactone, acetone, and methanol, respectively), thus confirming that the moderately high activity of NHC-Au-OTf in these solvents is due to the specific effect of polar functionalities (O-H, C=O, O-R) in activating methanol. Finally, the DOSY measurements conducted in p-Cymene show the formation of quadrupole species: under these conditions, the anion can better exercise its 'template' and 'activating' roles, giving the highest TOF.

4.
J Chromatogr A ; 1730: 465074, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38870581

RESUMO

Ion-pairing reversed-phase liquid chromatography was utilized for the analysis of native and phosphorothioated oligonucleotides differing in the length (2-6mers and 21mer) and the number and position of phosphorothioate modifications. We investigated the influence of counterion (acetate vs. hexafluoroisopropanol) on the adsorption of eleven alkylamines on the stationary phases. A stronger adsorption of charged alkylamines on octadecyl- and phenyl-based stationary phases led to greater retention of oligonucleotides, and the adsorption of alkylamines was promoted with greater concentration of hexafluoroisopropanol in the mobile phase. Selected amines (triethylamine, dipropylamine, hexylamine) were used to study the resolution of n and n-x mers (main peak and its impurities shortened at 5´end), and diastereomeric separation of phosphorothioated oligonucleotides. The results confirmed a crucial role of alkylamine and counterion choice on the diastereomeric separation. The increasing hydrophobicity of alkylamine led to diminished diastereomeric selectivity which produced narrower phosphorothioated oligonucleotides peaks and led to improved n/n-x separation. Using hexafluoroisopropanol instead of acetate as counterion further enhances this effect (except for 100 mM concentration of hexafluoroisopropanol in combination with highly hydrophobic hexylamine). The elevated column temperature led to suppression of the diastereomeric resolution and improved resolution of n and n-x mers oligonucleotides. Baseline separation of oligonucleotides with different number of phosphorothioate linkages was achieved; this may be useful for therapeutic oligonucleotide analysis.


Assuntos
Cromatografia de Fase Reversa , Oligonucleotídeos Fosforotioatos , Cromatografia de Fase Reversa/métodos , Oligonucleotídeos Fosforotioatos/química , Oligonucleotídeos Fosforotioatos/isolamento & purificação , Estereoisomerismo , Aminas/química , Interações Hidrofóbicas e Hidrofílicas , Propanóis/química , Adsorção , Hidrocarbonetos Fluorados
5.
Int J Pharm ; 661: 124378, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38925241

RESUMO

Currently, to overcome the short half-life of the local anesthetic ropivacaine, drug delivery systems such as nanoparticles and liposomes have been used to prolong the analgesic effect, but they are prone to abrupt release from the site of administration or have poor slow-release effects, which increases the risk of cardiotoxicity. In this study, injectable lipid suspensions based on ropivacaine-docusate sodium hydrophobic ion pairing (HIP) were designed to significantly prolong the duration of analgesia. The resulting ion-paired lipid suspension (HIP/LIPO) had a micrometer scale and a high zeta potential, which facilitates stable in situ retention. The strong interaction between docusate sodium and ropivacaine was verified using thermal and spectroscopic analyses, and the formation of micron-sized polymorphic vesicles was attributed to the mutual stabilizing interactions between ropivacaine-docusate sodium HIP, docusate sodium and lecithin. The HIP/LIPO delivery system could maintain drug release for more than 5 days in vitro and achieve high analgesic efficacy for more than 10 days in vivo, reducing the side effects associated with high drug doses. The stable HIP/LIPO delivery system is a promising strategy that offers a clinically beneficial alternative for postoperative pain management and other diseases.


Assuntos
Anestésicos Locais , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Ropivacaina , Ropivacaina/administração & dosagem , Ropivacaina/farmacocinética , Ropivacaina/química , Anestésicos Locais/administração & dosagem , Anestésicos Locais/química , Animais , Masculino , Ratos Sprague-Dawley , Anestesia Local/métodos , Ácidos Decanoicos/química , Ácidos Decanoicos/administração & dosagem , Tamanho da Partícula , Lipossomos , Sistemas de Liberação de Medicamentos , Amidas/química , Amidas/administração & dosagem , Ratos , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/prevenção & controle , Lipídeos/química , Interações Hidrofóbicas e Hidrofílicas , Lecitinas/química , Injeções
6.
Chemistry ; : e202401932, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837549

RESUMO

Arylethynyl-substituted dipyrrolyldiketone BF2 complexes as anion-responsive π-electronic molecules exhibited characteristic electronic properties derived from conformation changes upon anion binding, which caused an increase in UV/vis absorption and associated two-photon absorption. The anion complexes showed expanded planar regions assisted by intramolecular interactions, resulting in charge-by-charge ion-pairing assemblies in the solid state.

7.
Asian J Pharm Sci ; 19(3): 100928, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867804

RESUMO

Flurbiprofen (FB), a nonsteroidal anti-inflammatory drug, is widely employed in treating ocular inflammation owing to its remarkable anti-inflammatory effects. However, the racemic nature of its commercially available formulation (Ocufen®) limits the full potential of its therapeutic activity, as the (S)-enantiomer is responsible for the desired anti-inflammatory effects. Additionally, the limited corneal permeability of FB significantly restricts its bioavailability. In this study, we successfully separated the chiral isomers of FB to obtain the highly active (S)-FB. Subsequently, utilizing ion-pairing technology, we coupled (S)-FB with various counter-ions, such as sodium, diethylamine, trimethamine (TMA), and l-arginine, to enhance its ocular bioavailability. A comprehensive evaluation encompassed balanced solubility, octanol-water partition coefficient, corneal permeability, ocular pharmacokinetics, tissue distribution, and in vivo ocular anti-inflammatory activity of each chiral isomer salt. Among the various formulations, S-FBTMA exhibited superior water solubility (about 1-12 mg/ml), lipid solubility (1< lg Pow < 3) and corneal permeability. In comparison to Ocufen®, S-FBTMA demonstrated significantly higher in vivo anti-inflammatory activity and lower ocular irritability (such as conjunctival congestion and tingling). The findings from this research highlight the potential of chiral separation and ion-pair enhanced permeation techniques in providing pharmaceutical enterprises focused on drug development with a valuable avenue for improving therapeutic outcomes.

8.
Small ; : e2402327, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38881257

RESUMO

Narrow carbon nanotubes (nCNT) are unique mimics of biological channels with water-ion selectivity attractive for applications such as water purification and osmotic energy harvesting, yet their understanding is still incomplete. Here, an ab initio computation is employed to develop the full picture of ion transfer in nCNT including specificity and coupling between ions. The thermodynamic costs of ion transfer are computed for single ions and ion pairs and used to evaluate different local coupling scenarios including strong (pairing) and weak (free-ion) coupling as well as "electroneutrality breakdown" (EB), possible for cations only due to their chemisorption-like interaction with nCNT. The results also indicate that nCNT behaves as a highly polarizable metal-like shell, which eliminates the dielectric energy when CNT accommodates coupled cation and anion. This allows facile computation and comparison of the full transfer costs, including translation entropy, for different ions in different coupling modes to identify the dominant regime. EB transfer appears most favorable for K+, while anions strongly favor transfer as pairs, except for chloride which favors weak coupling and, at neutral pH, transfers as a trace ion coupled to both cation and OH-. The results demonstrate that, in general, observed ion permeation and conduction in nCNT, especially for anions, reflect a complex ion-specific and composition-dependent interplay between different ions.

9.
Skin Res Technol ; 30(6): e13788, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38881052

RESUMO

PURPOSE: This study aimed to develop a novel exfoliating material with high efficacy and low irritation by synthesizing the Mandelic acid_Carnitine ion pairing complex (M_C complex) and evaluating its exfoliating properties. Additionally, the study assessed the skin improvement effects of the M_C complex through clinical evaluations. METHODS: The M_C complex was synthesized in a 1:1 molar ratio of Mandelic acid and Carnitine. Structural characterization was performed using dynamic light scattering and Fourier-transform infrared spectroscopy. Exfoliating efficacy was evaluated on porcine skin, and clinical assessments were conducted on human subjects to measure various skin improvement parameters. RESULTS: The formation of the M_C complex was confirmed through particle size analysis, zeta-potential measurements, and FT-IR spectroscopy. The M_C complex demonstrated superior exfoliating efficacy compared to Mandelic acid alone, especially at pH 4.5. Clinical evaluations showed significant improvements in blackheads, whiteheads, pore volume, depth, density, count, and affected area, as well as skin texture. No adverse reactions were observed. CONCLUSION: The M_C complex exhibits high exfoliating efficacy and minimal irritation, making it a promising cosmetic ingredient for improving skin health. These findings support its potential as a low-irritation exfoliating material under mildly acidic conditions, contributing to overall skin health enhancement.


Assuntos
Carnitina , Cosméticos , Ácidos Mandélicos , Ácidos Mandélicos/química , Ácidos Mandélicos/farmacologia , Humanos , Carnitina/farmacologia , Carnitina/química , Animais , Suínos , Cosméticos/farmacologia , Cosméticos/química , Feminino , Adulto , Pele/efeitos dos fármacos , Pele/química , Masculino , Pessoa de Meia-Idade , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Pharmaceutics ; 16(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38794251

RESUMO

Hydrophobic ion pairing (HIP) complexation was found to be an efficient approach in modulating the release and enhancing the stability and encapsulation of hydrophilic macromolecules such as proteins in hydrophobic nano/microcarriers. The present work strives to develop and optimize the preparation of the HIP complex of the antimicrobial enzyme lysozyme (LYZ) with the ion-pairing agent (IPA) sodium dodecyl sulphate (SDS) relying on the quality-by-design (QbD) approach. The quality target product profile (QTPP) includes the achievement of maximal lipophilicity in a reversible manner to enable the maintenance of biological activity. The related critical quality attributes (CQAs) were defined as complexation efficacy, complex stability, enzyme recovery and activity. Three risk assessment (RA) tools were used to identify and rank the critical process parameters (CPPs) and critical material attributes (CMAs). From this assessment, the pH of the medium, LYZ:SDS molar ratio and drying conditions were determined as high-risk factors that need to be investigated. To the best of our knowledge, for the first time, electrostatic titration was used as a smart approach to determine the optimum molar ratio at different pH values. Based on the predefined CQAs, pH 8 with an LYZ/SDS molar ratio of 1:8 was found to be the optimal condition for complexation efficiency and recovery (%) of a biologically active enzyme. A cost-effective drying process based on a ventilated oven was developed, which resulted in complex qualities comparable to those obtained by the commonly used freeze-drying method. In a nutshell, the optimum conditions for the preparation of the LYZ/SDS HIP complex were efficiently facilitated by the rational application of QbD principles and the utilization of efficient electrostatic titration and ventilated oven-drying methods.

11.
J Colloid Interface Sci ; 669: 731-739, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38735255

RESUMO

HYPOTHESIS: Hydrophilic cationic drugs such as mitoxantrone hydrochloride (MTO) pose a significant delivery challenge to the development of nanodrug systems. Herein, we report the use of a hydrophobic ion-pairing strategy to enhance the nano-assembly of MTO. EXPERIMENTS: We employed biocompatible sodium cholesteryl sulfate (SCS) as a modification module to form stable ion pairs with MTO, which balanced the intermolecular forces and facilitated nano-assembly. PEGylated MTO-SCS nanoassemblies (pMS NAs) were prepared via nanoprecipitation. We systematically evaluated the effect of the ratio of the drug module (MTO) to the modification module (SCS) on the nanoassemblies. FINDINGS: The increased lipophilicity of MTO-SCS ion pair could significantly improve the encapsulation efficiency (∼97 %) and cellular uptake efficiency of MTO. The pMS NAs showed prolonged blood circulation, maintained the same level of tumor antiproliferative activity, and exhibited reduced toxicity compared with the free MTO solution. It is noteworthy that the stability, cellular uptake, cytotoxicity, and in vivo pharmacokinetic behavior of the pMS NAs increased in proportion to the molar ratio of SCS to MTO. This study presents a self-assembly strategy mediated by ion pairing to overcome the challenges commonly associated with the poor assembly ability of hydrophilic cationic drugs.


Assuntos
Antineoplásicos , Ésteres do Colesterol , Interações Hidrofóbicas e Hidrofílicas , Mitoxantrona , Mitoxantrona/química , Mitoxantrona/farmacologia , Mitoxantrona/farmacocinética , Humanos , Animais , Ésteres do Colesterol/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Camundongos , Proliferação de Células/efeitos dos fármacos , Cátions/química , Sobrevivência Celular/efeitos dos fármacos , Tamanho da Partícula , Nanopartículas/química , Propriedades de Superfície , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Polietilenoglicóis/química
12.
J Sep Sci ; 47(11): e2400252, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822226

RESUMO

A new approach for the improvement of separation of oligonucleotides by recycling ion-pairing chromatography is described. In the so-called repetto process, segments of separated compounds are sequentially returned to the inlet for multiple passages through the column without a need to pass a pump and with the possibility of detecting the level of separation between individual passages. Unlike in the recently described twin-column recycle approach in which eluents are repeatedly transferred between two separation columns, with the repetto method a single column is sufficient, and the detector is not exposed to high back pressure. The repetto principle was used for the separation of synthetic oligonucleotides, resulting in a multi-fold improvement in single nt resolution of long (> 50 nt) synthetic oligonucleotide fragments with high gas chromatography (guanine-cytosine) content > 40% and their separation from impurities of the original synthesis.


Assuntos
Oligonucleotídeos , Oligonucleotídeos/isolamento & purificação , Oligonucleotídeos/análise , Oligonucleotídeos/química , Cromatografia Líquida de Alta Pressão/métodos
13.
J Am Soc Mass Spectrom ; 35(6): 1301-1309, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38657000

RESUMO

Small interfering RNA (siRNA) is known for its ability to silence the expression of specific genes, demonstrating its promising potential as a therapeutic approach. Self-assembled micelle inhibitory RNA (SAMiRNA) is an oligonucleotide duplex developed to overcome the in vivo delivery limitations of siRNA. SAMiRNA has hydrophilic and hydrophobic groups at both ends of a sense strand, forming a spherical nanostructure that enhances the in vivo delivery efficiency. Ion-pairing reversed-phase liquid chromatography (IP-RPLC) is the most commonly used method for the analysis of oligonucleotides. Since SAMiRNA is heavily chemically modified, the behavior of SAMiRNA in IP-RPLC combined with mass spectrometry (MS) is anticipated to differ from that of the conventional siRNA drug. The current investigation using IP-RPLC-MS revealed that a distinct duplex peak along with two minor separate strands of antisense and sense was observed at column temperatures below 35 °C in the IP-RPLC system with a 100 mM ammonium bicarbonate buffer system. At column temperatures higher than 35 °C, however, two fully denatured single strands were observed. The mass spectrum from the chromatographic peak of the SAMiRNA duplex contained signals from the duplex, the antisense, and the sense, probably due to duplex denaturation during the MS ionization process. The current comprehensive analysis results will make a substantial contribution to the future application of IP-RPLC-MS in the analysis of SAMiRNA.


Assuntos
Cromatografia de Fase Reversa , Micelas , RNA Interferente Pequeno , Cromatografia de Fase Reversa/métodos , RNA Interferente Pequeno/química , RNA Interferente Pequeno/análise , RNA Interferente Pequeno/genética , Espectrometria de Massas/métodos
14.
Methods Mol Biol ; 2797: 35-46, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570451

RESUMO

Biochemical and biophysical assays using recombinant RAS require the protein to be in either the active or inactive state. Here we describe methods to exchange the nucleotide present in the purified RAS protein with either GDPßS, GppNHp, or GTP depending on the assay requirement. In addition, we also describe the HPLC method used to validate the exchange process and provide information on the efficiency of the nucleotide exchange.


Assuntos
Proteínas ras , Guanosina Trifosfato/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Guanosina Difosfato
15.
Nano Lett ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592099

RESUMO

The nature of ion-ion interactions in electrolytes confined to nanoscale pores has important implications for energy storage and separation technologies. However, the physical effects dictating the structure of nanoconfined electrolytes remain debated. Here we employ machine-learning-based molecular dynamics simulations to investigate ion-ion interactions with density functional theory level accuracy in a prototypical confined electrolyte, aqueous NaCl within graphene slit pores. We find that the free energy of ion pairing in highly confined electrolytes deviates substantially from that in bulk solutions, observing a decrease in contact ion pairing but an increase in solvent-separated ion pairing. These changes arise from an interplay of ion solvation effects and graphene's electronic structure. Notably, the behavior observed from our first-principles-level simulations is not reproduced even qualitatively with the classical force fields conventionally used to model these systems. The insight provided in this work opens new avenues for predicting and controlling the structure of nanoconfined electrolytes.

16.
J Mol Model ; 30(4): 107, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492112

RESUMO

CONTEXT: Nucleophilic substitution reactions of aliphatic amines with alkyl halides represent a simple and direct mechanism for obtaining higher-order aliphatic amines. However, it is well known that these reactions suffer from low selectivity due to multiple alkylations, which is attributed to the higher reactivity of the newly formed amine. In order to provide a detailed explanation for this kind of system, we have investigated the reactivity of primary and secondary amines with 1-bromopropane and 2-bromopropane. The free energy profile in acetonitrile solution was obtained and a detailed microkinetic analysis was needed to analyze this complex reaction system. We have found that the product of the first alkylation is an ion pair corresponding to the protonated secondary amine and the bromide ion, which can transfer the proton to the reactant primary amine. Then, the newly formed secondary amine can also react, leading to a second alkylation to produce a tertiary protonated amine. Our modeling points out that both the proton transfer equilibria and the similar reactivity of the primary and secondary amines produce reduced selectivity. The proton transfer equilibria also contribute to slowing down the kinetics of the first alkylation. METHODS: The exploration of the mechanism was done by geometry optimization using the CPCM/X3LYP/ma-def2-SVP method, followed by harmonic frequency calculation at this same level of theory. A composite approach was used to obtain the free energy profile, using the more accurate ωB97X-D3/ma-def2-TZVPP level of theory for electronic energy and the SMD model for the solvation free energy. These calculations were performed with the ORCA 4 program. The detailed microkinetic analysis was done using the Kintecus program.

17.
Small ; 20(27): e2307618, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38308358

RESUMO

This study aims to compare the potential of Polyethylene glycol (PEG-free and PEG-based self-emulsifying drug delivery systems (SEDDS) for the oral administration of insulin glargine (IG). Hydrophobic ion pairs (HIPs) of IG are formed using various counterions. HIPs are assessed for log P octanol/water and dissociation behavior. They are incorporated into SEDDS based on polyglycerol (PG) and zwitterionic surfactant (ZW) using response surface methodology and compared to conventional PEG-SEDDS in size, stability, and log D SEDDS/release medium. Oral IG bioavailability in PG/ZW-SEDDS and PEG-SEDDS is evaluated in rats. Among the various counterions studied, IG-BIS (bis(isotridecyl)sulfosuccinate) HIPs demonstrated the highest log P and an improved dissociation profile. PG/ZW-SEDDS and PEG-SEDDS have similar ≈40 nm sizes and are stable over 24 h. Both formulations have log D > 4 in water and >2 in 50 mM phosphate buffer pH 6.8. PG/ZW-SEDDS yielded an oral bioavailability of 2.13 ± 0.66% for IG, while the employment of PEG-SEDDS resulted in an oral bioavailability of 1.15 ± 0.35%. This study highlights the prospective utilization of PEG-free SEDDS involving the concurrent application of PG and ZW surfactants, an alternative to conventional PEG surfactants, for improved oral therapeutic (poly) peptide delivery.


Assuntos
Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Peptídeos , Polietilenoglicóis , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos/métodos , Administração Oral , Animais , Peptídeos/química , Peptídeos/farmacocinética , Emulsões/química , Ratos , Masculino , Ratos Sprague-Dawley , Tensoativos/química , Glicerol/química , Glicerol/análogos & derivados
18.
Int J Pharm ; 654: 123933, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38403090

RESUMO

Hydrophobic ion pairing (HIP) is a drug encapsulation technology that uses electrostatic interactions between a drug and an additive. However, although polymeric micelles can encapsulate hydrophobic drugs in the core, the encapsulated drug often leaks. Therefore, we designed polymeric micelles with HIP functionalized in a hydrophobic inner core using three diblock copolymers comprising polypeptides with different ratios of polar and hydrophobic amino acids and polyethylene glycol (PEG) to encapsulate indomethacin (IND). The three IND-encapsulated HIP micelles showed different area under the curve (AUC) values as an index of blood retention after intravenous injection in mice. Despite having the same PEG shell, IND-PEG-poly(H/F)n showed a 1.56-fold higher AUC than IND-PEG-poly(D/F)n. PEG interface morphologies were evaluated to determine the differences in pharmacokinetic parameters caused by changes in inner core HIP patterns. The micellarized diblock copolymer was desorbed from IND-PEG-poly(D/F)n due to electrostatic repulsion between IND and the diblock copolymer comprising aspartic acid. Our results suggest that changes in the HIP patterns of the micelle inner core affected the PEG interface morphologies, such as PEG density and diblock copolymer desorption from micelles. These phenomena might lead to changes in the interaction of plasma proteins and drug dispositions.


Assuntos
Indometacina , Micelas , Camundongos , Animais , Indometacina/química , Polímeros/química , Polietilenoglicóis/química , Peptídeos , Portadores de Fármacos/química
19.
Sci Technol Adv Mater ; 25(1): 2313958, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414575

RESUMO

PtII complexes of π-extended dipyrrolyldiketones were synthesized as anion-responsive π-electronic molecules. The dipyrrolyldiketone PtII complexes exhibited red-shifted absorption and photoluminescence properties. In the solid state, [1 + 1]-type anion complexes formed charge-by-charge ion-pairing assemblies when combined with countercations. Detailed theoretical studies of the packing structures revealed favorable interactions between the planar anion complexes and π-electronic cations.


PtII complexes of π-extended dipyrrolyldiketones, introducing arylethynyl substituents, in the form of anion complexes exhibited the formation of charge-by-charge assemblies with π-electronic cations via iπ­iπ interactions.

20.
Drug Deliv Transl Res ; 14(9): 2370-2385, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38289467

RESUMO

The aim of this study was to design surfactants based on histidine (His) for hydrophobic ion-pairing and evaluate their safety and efficacy. Lauryl, palmitoyl and oleyl alcohol, as well as 2-hexyl-1-decanol were converted into surfactants with histidine as head-group via esterification. The synthesized His-surfactants were characterized regarding pKa, critical micellar concentration (CMC), biodegradability, toxicity on Caco-2 cells, and ability to provide endosomal escape. Furthermore, the suitability of these agents to be employed as counterions in hydrophobic ion pairing was evaluated. Chemical structures were confirmed by 1H-NMR, FT-IR, and MS. The synthesized surfactants showed pKa values ranging from 4.9 to 6.0 and CMC values in the range of 0.3 to 7.0 mM. Their biodegradability was proven by enzymatic cleavage within 24 h. Below the CMC, His-surfactants did not show cytotoxic effects on Caco-2 cells (cell viability > 80%). All His-surfactants showed the ability to provide endosomal escape in a pH-dependent manner in the range of 5.2 to 6.8. Complexes formed between His-surfactants and heparin or plasmid DNA (pDNA) via hydrophobic ion pairing showed at least 100-fold higher lipophilicity than the correspondent model drugs. According to these results, His-surfactants might be a promising safe tool for delivering hydrophilic macromolecular drugs and nucleic acids.


Assuntos
Sobrevivência Celular , Histidina , Interações Hidrofóbicas e Hidrofílicas , Tensoativos , Humanos , Tensoativos/química , Células CACO-2 , Histidina/química , Sobrevivência Celular/efeitos dos fármacos , Heparina/química , Plasmídeos , Sistemas de Liberação de Medicamentos , DNA/administração & dosagem , DNA/química , Cátions/química , Micelas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA