Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202402667, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109456

RESUMO

A novel room-temperature liquid crystal of tetraphenylethylene derivative (TPE-DHAB) was synthesized using an ionic self-assembly strategy. The TPE-DHAB complex exhibits typical aggregation-induced emission properties and a unique helical supramolecular structure. Moreover, the generation and handedness inversion of circularly polarized luminescence (CPL) can be achieved through further chiral solvation, providing a facile approach to fabricate room-temperature liquid crystalline materials with controllable supramolecular structures and tunable CPL properties through a synergistic strategy of ionic self-assembly and chiral solvation process.

2.
Small ; 19(30): e2300688, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37029578

RESUMO

The creation of anisotropic nanostructures with precise size control is desirable for new properties and functions, but it is challenging for ionic self-assembly (ISA) because of the non-directional electrostatic interactions. Herein, the formation of size-controllable tetragonal nanoprisms is reported via crystallization-directed ionic self-assembly (CDISA) through evaporating a micellar solution on solid substrates. First, ISA is designed with a crystalline polyethylene oxide (PEO) containing cationic polymer poly(2-(2-guanidinoethoxy)ethyl methacrylate)-b-poly(ethyleneoxide)-b-poly(2-(2-guanidinoethoxy)-ethylmethacrylate) (PGn -PEO230 -PGn ) and an anionic 5,10,15,20-Tetrakis(4-sulfonatophenyl) porphyrin (TPPS) to form micelles in aqueous solution. The PG segments binds excessive TPPS with amplenet chargeto form hydrophilic corona, while the PEO segments are unprecedentedly dehydrated and tightly packed into cores. Upon naturally drying the micellar solution on a silicon wafer, PEO crystallizationdirects the micelles to aggregate into square nanoplates, which are further connected to nanoprisms. Length and width of the nanoprisms can be facilely tuned by varying the initial concentration. In this hierarchical process, the aqueous self-assembly is prerequisite and the water evaporation rate is crucial for the formation of nanostructures, which provides multiple factors for morphology regulating. Such precise size-control strategy is highly expected to provide a new vision for the design of advanced materials with size controllable anisotropic nanostructures.

3.
ACS Appl Mater Interfaces ; 11(37): 34203-34211, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31461262

RESUMO

We report ionic self-assembly of positively charged FeIII meso-tetra(N-methyl-4-pyridyl) porphyrin (FeIIINMePyP) with negatively charged FeIII meso-tetra(4-sulfonatophenyl) porphyrin (FeIIITPPS4), leading to the formation of flower-like nanostructures composed of unprecedented three-dimensional (3D) entangled chains of porphyrin dimers. Molecular dynamics (MD) simulations show that the 3D entanglement of porphyrin chains closely correlates to mismatched charges present in porphyrin dimers like [FeIII(H2O)2NMePyP]5+/[FeIII(H2O)2TPPS4]3- that requires extra interactions or entanglement with neighboring ones to achieve electric neutrality. Interestingly, the interwoven chains bring in excellent thermal stability as evidenced by well maintenance of the flower-like morphology after pyrolysis at 775 °C in argon, which is in good agreement of high-temperature MD simulations. Meanwhile, heat treatment of the flower-like porphyrin nanostructure leads to the formation of a non-noble metal electrocatalyst (NNME) with largely inherited morphology. This exemplifies a new approach by combining ionic self-assembly with subsequent pyrolysis for the synthesis of NNMEs with desired control over the morphology of template-free NNMEs that has rarely been achieved prior to this study. Furthermore, our electrocatalyst exhibits excellent activity and durability toward oxygen reduction reaction as well as much better methanol tolerance compared with commercial Pt/C in alkaline solutions.

4.
Chemphyschem ; 20(17): 2210-2216, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31298447

RESUMO

A series of tetraguanidinium tetraphenylethene (TPE) arylsulfonates with different chain lengths was prepared via ionic self-assembly of tetraguanidinium TPE chloride and the respective methyl arylsulfonates. Liquid crystalline properties were studied by differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction. Tetraguanidinium TPE arylsulfonates with chain lengths of C8 -C12 displayed hexagonal columnar mesophases over a broad temperature range, while derivatives with longer chains showed oblique columnar phases. In solution all compounds displayed aggregation-induced emission behaviour. Temperature-dependent luminescence spectra of the bulk phase of the tetraguanidinium TPE arylsulfonate with C14 side chains revealed a strong luminescence both in the solid state and the oblique columnar mesophase. The emission behaviour was rationalized by a unique combination of restriction of intramolecular rotation of the TPE core, Coulomb interaction between the guanidinium cations and π-π interactions of the anionic arylsulfonate moieties.

5.
Mikrochim Acta ; 186(1): 27, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30564901

RESUMO

A liquid crystal (LC) based method is described for the sensitive determination of the activity of urease and of heavy metal ions which acts as inhibitors. Stimulus-responsive surfactant-encapsulated phosphotungstate clusters (SECs) were fabricated and deposited onto octadecyltrichlorosilane-coated glass. A copper TEM grid filled with LCs was placed on the substrate to construct the LC optical cell. Upon addition of water to the LC interface, the optical appearance of LCs on the glass undergoes a bright-to-dark shift due to an orientational transition of the LCs from a planar to a homeotropic state. However, the LCs display a bright appearance if they are pretreated with an aqueous solution containing urea and urease. This is caused by the disassemby of the SECs from the glass surface due to an increase of the pH value that is induced by the enzymatic hydrolysis of urea by urease. The method is highly sensitive and can detect urease activities as low as 0.03 mU/mL. It can also be applied to the determination of heavy metal ions which exert an inhibitory effect on the activity of urease. For example, Cu(II) can be quantified via urease inhibition in 1 nM concentration. Graphical abstract Schematic presentation of a liquid crystal-based sensor for detection of urease and heavy metal ions by using stimulus-responsive surfactant-encapsulated phosphotungstate clusters.


Assuntos
Metais Pesados , Compostos de Tungstênio , Urease , Animais , Técnicas Biossensoriais , Ativação Enzimática , Humanos , Cristais Líquidos , Metais Pesados/urina , Nanocápsulas/química , Ácido Fosfotúngstico/química , Tensoativos , Compostos de Tungstênio/química , Urease/urina
6.
Nanomaterials (Basel) ; 8(2)2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29462883

RESUMO

Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained.

7.
Small ; 13(46)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28960791

RESUMO

Ionic self-assembly of charged molecular building blocks relies on the interplay between long-range electrostatic forces and short-range, often cooperative, supramolecular interactions, yet has been seldom studied in two dimensions at the solid-liquid interface. Here, we demonstrate anion-driven switching of two-dimensional (2D) crystal structure at the Au(111)/octanoic acid interface. Using scanning tunneling microscopy (STM), three organic salts with identical polyaromatic cation (PQPC6+ ) but different anions (perchlorate, anthraquinonedisulfonate, benzenesulfonate) are shown to form distinct, highly ordered self-assembled structures. Reversible switching of the supramolecular arrangement is demonstrated by in situ exchange of the anion on the pre-formed adlayer, by changing the concentration ratio between the incoming and outgoing anion. Density functional theory (DFT) calculations reveal that perchlorate is highly mobile in the adlayer, and corroborate why this anion is only resolved transiently in STM. Surprisingly, the templating effect of the anion persists even where it does not become part of the adlayer 2D fabric, which we ascribe to differences in stabilization of cation conformations by the anion. Our results provide important insight into the structuring of mixed anion-cation adlayers. This is essential in the design of tectons for ionic self-assembled superstructures and biomimetic adaptive materials and valuable also to understand adsorbate-adsorbate interactions in heterogeneous catalysis.

8.
Chemistry ; 23(54): 13510-13517, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28691775

RESUMO

A series of cationic peptides with alternating hydrophilic and hydrophobic residues were elaborately designed and synthesized. These kinds of short peptides with protonated lysine groups can interact with anionic polyoxometalate nanoclusters through multivalent ionic bonds and hydrogen bonds, resulting in the formation of helical polyoxometalate arrays in aqueous solution. Fourier transform infrared (FTIR) spectroscopy, circular dichroism (CD), transmission electron microscopy (TEM), and dynamic light scattering (DLS) were utilized to characterize the self-assembled structures. TEM revealed that the polyoxometalate clusters form periodic arrays within the helical nanofibers. This work reports that the handedness of the helical fibers was attributed to the precise chirality expression of peptides. The l-type peptide directed the formation of left-handed polyoxometalate arrays, whereas right-handed polyoxometalate arrays were observed when the peptide was constituted by d-amino acids. It was also found that the pitch of the helical nanofibers is inversely proportional to the hydrophobicity of peptides with less hydrophobicity giving a larger helical pitch.


Assuntos
Peptídeos/química , Compostos de Tungstênio/química , Dicroísmo Circular , Difusão Dinâmica da Luz , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Transmissão , Nanofibras/química , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
9.
J Colloid Interface Sci ; 472: 157-66, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27031597

RESUMO

Ionic self-assembled structures have been prepared successfully between di-(2-ethylhexyl) phosphoric acid (DEHPA) and hexamethonium hydroxide (HMO(OH)2). The DEHPA/HMO(OH)2 complexes show good surface activity at a wide mixing molar ratio of DEHPA to HMO(OH)2 (ρ), within which the critical micellar concentration (cmc) is far below that of any single component. In bulk aqueous solutions, rich phase behavior was observed by varying cDEHPA and cHMO(OH)2. When the concentration of HMO(OH)2 is in the range of 10-100 mmol L(-1), isotropic L1 phases, birefringent Lα phases and a phase-separated region were successively observed with increasing cDEHPA. At high cHMO(OH)2 range (>78 mmol L(-1)), a narrow L1/Lα two-phase region with the Lα phase at the bottom was noticed between the single L1 and single Lα phase regions. The rheological properties of the samples in the single Lα phase region at 2.6 ⩽ ρ ⩽ 2.8 are quite similar. Cryo-TEM and freeze-fracture TEM (FF-TEM) observations revealed the presence of multilamellar vesicles with flexible and even branched bilayers. At 2.2 ⩽ ρ ⩽ 2.6, however, the rheological properties are highly sensitive to ρ due to the sophisticated self-assembly behavior as proved by imaging studies and (2)H NMR measurements. Closely-stacked flat structures which look like foams or cellular networks have been newly discovered. Interestingly, NaCl could arouse an L1 to Lα phase transition due to the suppression of the effective area of the hydrophilic headgroups of the ionic complexes, leading to an increase of the critical packing parameter p. The viscoelasticity properties of the salt-containing Lα phases decreased with increasing salinity. We hope our research can provide new ideas for the construction of supramolecular materials by surfactant ionic self-assembly (SISA) strategy.

10.
Angew Chem Int Ed Engl ; 55(7): 2592-5, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26766581

RESUMO

Multivalent peptide nanofibers have attracted intense attention as promising platforms, but the fabrication of those nanofibers is mainly dependent on the spontaneous assembly of ß-sheet peptides. Herein we report an alternative approach to the creation of nanofibers: the polyoxometalate-driven self-assembly of short peptides. The resultant nanofibers with concentrated positive charges are excellent multivalent ligands for binding with bacterial cells and thus lead to a salient improvement in bioactivity.


Assuntos
Antibacterianos/farmacologia , Nanofibras , Peptídeos/química , Compostos de Tungstênio/química , Antibacterianos/química , Microscopia Eletrônica de Transmissão
11.
Carbohydr Polym ; 128: 122-9, 2015 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-26005147

RESUMO

Biocomposites with tunable properties were successfully prepared through ionic assembly between anionic carboxymethyl cellulose (CMC) and cationic copolymers (quaternized poly(l-lactide)-block-poly N,N-dimethylamino-2-ethyl methacrylate) (PLA-b-PDMAEMA). The quaternized PDMAEMA segment not only works as a compatibilizer between hydrophilic CMC and hydrophobic PLA, but also acts as a lubricant between these two rigid biopolymers. The (1)H NMR (nuclear magnetic resonance) spectra demonstrated successful synthesis of PLA-b-PDMAEMA with controlled molecular weight of PDMAEMA segment. The results from scanning electronic microscopy (SEM) and Fourier transform infrared spectrometry (FTIR) verified the interaction between quaternized copolymer micelles and anionic CMC networks. The resultant biocomposite could form a transparent and uniform film after casting. Both storage moduli and maximum degradation temperature of PLA/CMC composites were increased with the reduction of molecular weight of PDMAEMA segments. It suggests that the properties of biocomposite materials can be tailored by adjusting the chain length of inclusive PDMAEMA segment.


Assuntos
Carboximetilcelulose Sódica/química , Metacrilatos/química , Poliésteres/química , Espectroscopia de Ressonância Magnética , Micelas , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
12.
ACS Appl Mater Interfaces ; 7(23): 12570-96, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26010902

RESUMO

Branched polyelectrolytes with cylindrical brush, dendritic, hyperbranched, grafted, and star architectures bearing ionizable functional groups possess complex and unique assembly behavior in solution at surfaces and interfaces as compared to their linear counterparts. This review summarizes the recent developments in the introduction of various architectures and understanding of the assembly behavior of branched polyelectrolytes with a focus on functional polyelectrolytes and poly(ionic liquid)s with responsive properties. The branched polyelectrolytes and poly(ionic liquid)s interact electrostatically with small molecules, linear polyelectrolytes, or other branched polyelectrolytes to form assemblies of hybrid nanoparticles, multilayer thin films, responsive microcapsules, and ion-conductive membranes. The branched structures lead to unconventional assemblies and complex hierarchical structures with responsive properties as summarized in this review. Finally, we discuss prospectives for emerging applications of branched polyelectrolytes and poly(ionic liquid)s for energy harvesting and storage, controlled delivery, chemical microreactors, adaptive surfaces, and ion-exchange membranes.


Assuntos
Eletrólitos , Líquidos Iônicos , Polímeros , Dendrímeros , Nanoestruturas
13.
Angew Chem Int Ed Engl ; 52(49): 13080-5, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24130000

RESUMO

Wrap and stack: Polyanionic [arylene]ethynylene polymers that helically wrap single-walled carbon nanotubes (SWNTs) enable the production of functionalized SWNTs that are soluble in organic solvents. These SWNTs can assemble into structures featuring aligned nanotubes that maintain the optoelectronic properties of individual SWNTs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA