Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 246: 114179, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36244170

RESUMO

Foliar Cu concentration has been widely used as a biomarker of plant growth in phytotoxicity bioassays. This relation has helped find plant processes altered by Cu in dose-response experiments (a bivariate approach). However, when plants are grown in field conditions, their responses can vary in function of multiple variables, such as the environment, plant physiology, and other elements in plant (plant ionome). These sources of variability are commonly unreported, which could limit bioassays' utility. Thus, the present study aimed to assess and integrate the mentioned sources of variability on Cu phytotoxicity. Lettuce was used as plant model. Lettuces were grown in growth chambers with contrasting light and air humidity conditions and on two different field-contaminated soils (sandy and loamy soils). Results showed that environmental conditions significantly affected foliar Cu and plant growth, but this effect differed in the two studied soils. Foliar Cu was not a good biomarker of plant growth. In contrast, integrating the potential phytotoxicity effect with the plant's nutritional status allowed a better understanding of plant growth. We remarked on using a structural equation modeling approach (SEM) to integrate plant physiology and plant ionome as moderators of plant growth. Results showed that plant growth was primarily related to plant nutritional status rather than Cu phytotoxicity. Also, the foliar Cu concentration would affect plant nutritional status due to photosynthesis-related plant processes and cation balance. Finally, this research invites to state and include sources of variability when assessing phytotoxicity. This way, it is possible to advance toward understanding complex linked processes occurring in field conditions.


Assuntos
Poluentes do Solo , Poluentes do Solo/análise , Cobre/toxicidade , Cobre/análise , Poluição Ambiental , Solo/química , Lactuca , Plantas , Fotossíntese , Raízes de Plantas/química
2.
Front Microbiol ; 13: 949272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118191

RESUMO

A challenge in the study of gastrointestinal microbiota (GITm) is the validation of the genomic data with metabolic studies of the microbial communities to understand how the microbial networks work during health and sickness. To gain insights into the metabolism of the GITm, feces from healthy and sick rats with cancer were inoculated in a defined synthetic medium directed for anaerobic prokaryote growth (INC-07 medium). Significant differences between cultures of healthy and sick individuals were found: 1) the consumption of the carbon source and the enzyme activity involved in their catabolism (e.g., sucrase, lactase, lipases, aminotransferases, and dehydrogenases); 2) higher excretion of acetic, propionic, isobutyric, butyric, valeric, and isovaleric acids; 3) methane production; 4) ability to form biofilms; and 5) up to 500 amplicon sequencing variants (ASVs) identified showed different diversity and abundance. Moreover, the bowel inflammation induced by cancer triggered oxidative stress, which correlated with deficient antioxidant machinery (e.g., NADPH-producing enzymes) determined in the GITm cultures from sick individuals in comparison with those from control individuals. Altogether, the data suggested that to preserve the microbial network between bacteria and methanogenic archaea, a complete oxidation of the carbon source may be essential for healthy microbiota. The correlation of 16S rRNA gene metabarcoding between cultures and feces, as well as metabolomic data found in cultures, suggest that INC-07 medium may be a useful tool to understand the metabolism of microbiota under gut conditions.

3.
Front Plant Sci ; 11: 596000, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224175

RESUMO

Sweet basil (Ocimum basilicum L.) is one of the most produced aromatic herbs in the world, exploiting hydroponic systems. It has been widely assessed that macronutrients, like nitrogen (N) and sulfur (S), can strongly affect the organoleptic qualities of agricultural products, thus influencing their nutraceutical value. In addition, plant-growth-promoting rhizobacteria (PGPR) have been shown to affect plant growth and quality. Azospirillum brasilense is a PGPR able to colonize the root system of different crops, promoting their growth and development and influencing the acquisition of mineral nutrients. On the bases of these observations, we aimed at investigating the impact of both mineral nutrients supply and rhizobacteria inoculation on the nutraceutical value on two different sweet basil varieties, i.e., Genovese and Red Rubin. To these objectives, basil plants have been grown in hydroponics, with nutrient solutions fortified for the concentration of either S or N, supplied as SO4 2- or NO3 -, respectively. In addition, plants were either non-inoculated or inoculated with A. brasilense. At harvest, basil plants were assessed for the yield and the nutraceutical properties of the edible parts. The cultivation of basil plants in the fortified nutrient solutions showed a general increasing trend in the accumulation of the fresh biomass, albeit the inoculation with A. brasilense did not further promote the growth. The metabolomic analyses disclosed a strong effect of treatments on the differential accumulation of metabolites in basil leaves, producing the modulation of more than 400 compounds belonging to the secondary metabolism, as phenylpropanoids, isoprenoids, alkaloids, several flavonoids, and terpenoids. The primary metabolism that resulted was also influenced by the treatments showing changes in the fatty acid, carbohydrates, and amino acids metabolism. The amino acid analysis revealed that the treatments induced an increase in arginine (Arg) content in the leaves, which has been shown to have beneficial effects on human health. In conclusion, between the two cultivars studied, Red Rubin displayed the most positive effect in terms of nutritional value, which was further enhanced following A. brasilense inoculation.

4.
Am J Bot ; 106(10): 1377-1385, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31553490

RESUMO

PREMISE: Hyperaccumulation of heavy metals in plants has never been documented from Central America or Mexico. Psychotria grandis, P. costivenia, and P. glomerata (Rubiaceae) have been reported to hyperaccumulate nickel in the Greater Antilles, but they also occur widely across the neotropics. The goals of this research were to investigate the geographic distribution of hyperaccumulation in these species and explore the phylogenetic distribution of hyperaccumulation in this clade by testing related species. METHODS: Portable x-ray fluorescence (XRF) spectroscopy was used to analyze 565 specimens representing eight species of Psychotria from the Missouri Botanical Garden herbarium. RESULTS: Nickel hyperaccumulation was found in specimens of Psychotria costivenia ranging from Mexico to Costa Rica and in specimens of P. grandis from Guatemala to Ecuador and Venezuela. Among related species, nickel hyperaccumulation is reported for the first time in P. lorenciana and P. papantlensis, but no evidence of hyperaccumulation was found in P. clivorum, P. flava, or P. pleuropoda. Previous reports of hyperaccumulation in P. glomerata appear to be erroneous, resulting from taxonomic synonymy and specimen misidentification. CONCLUSIONS: Hyperaccumulation of nickel by Psychotria is now known to occur widely from southern Mexico through Central America to northwestern South America, including some areas not known to have ultramafic soils. Novel aspects of this research include the successful prediction of new hyperaccumulator species based on molecular phylogeny, use of XRF technology to nondestructively obtain elemental data from herbarium specimens, and documentation of previously unknown areas of ultramafic or nickel-rich soil based on such data.


Assuntos
Psychotria , América Central , Costa Rica , México , Níquel , Filogenia , América do Sul
5.
Adv Exp Med Biol ; 1073: 161-185, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31236843

RESUMO

Because of strong impact of omics in many fields, and the complexity of the samples when focusing on areas such as genomics, (metallo)proteomics, metabolomics, among others, it is easy to rationalize the great importance that sample preparation has for achieving reliable results, mainly considering plant science. Then, this chapter points out applications of the sample preparation focusing on such areas, and a diversity of strategies, techniques, and procedures is highlighted and commented.


Assuntos
Genômica , Metabolômica , Plantas , Proteômica , Manejo de Espécimes/métodos
6.
Front Plant Sci ; 9: 865, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018622

RESUMO

Iron (Fe) and zinc (Zn) are essential micronutrients required for proper development in both humans and plants. Rice (Oryza sativa L.) grains are the staple food for nearly half of the world's population, but a poor source of metals such as Fe and Zn. Populations that rely on milled cereals are especially prone to Fe and Zn deficiencies, the most prevalent nutritional deficiencies in humans. Biofortification is a cost-effective solution for improvement of the nutritional quality of crops. However, a better understanding of the mechanisms underlying grain accumulation of mineral nutrients is required before this approach can achieve its full potential. Characterization of gene function is more time-consuming in crops than in model species such as Arabidopsis thaliana. Aiming to more quickly characterize rice genes related to metal homeostasis, we applied the concept of high throughput elemental profiling (ionomics) to Arabidopsis lines heterologously expressing rice cDNAs driven by the 35S promoter, named FOX (Full Length Over-eXpressor) lines. We screened lines expressing candidate genes that could be used in the development of biofortified grain. Among the most promising candidates, we identified two lines ovexpressing the metal cation transporter OsZIP7. OsZIP7 expression in Arabidopsis resulted in a 25% increase in shoot Zn concentrations compared to non-transformed plants. We further characterized OsZIP7 and showed that it is localized to the plasma membrane and is able to complement Zn transport defective (but not Fe defective) yeast mutants. Interestingly, we showed that OsZIP7 does not transport Cd, which is commonly transported by ZIP proteins. Importantly, OsZIP7-expressing lines have increased Zn concentrations in their seeds. Our results indicate that OsZIP7 is a good candidate for developing Zn biofortified rice. Moreover, we showed the use of heterologous expression of genes from crops in A. thaliana as a fast method for characterization of crop genes related to the ionome and potentially useful in biofortification strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA