Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mar Drugs ; 22(8)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39195483

RESUMO

Red seaweed carrageenans are frequently used in industry for its texturizing properties and have demonstrated antiviral activities that can be used in human medicine. However, their high viscosity, high molecular weight, and low skin penetration limit their use. Low-weight carrageenans have a reduced viscosity and molecular weight, enhancing their biological properties. In this study, ι-carrageenan from Solieria chordalis, extracted using hot water and dialyzed, was depolymerized using hydrogen peroxide and ultrasound. Ultrasonic depolymerization yielded fractions of average molecular weight (50 kDa) that were rich in sulfate groups (16% and 33%) compared to those from the hydrogen peroxide treatment (7 kDa, 6% and 9%). The potential bioactivity of the polysaccharides and low-molecular-weight (LMW) fractions were assessed using WST-1 and LDH assays for human fibroblast viability, proliferation, and cytotoxicity. The depolymerized fractions did not affect cell proliferation and were not cytotoxic. This research highlights the diversity in the biochemical composition and lack of cytotoxicity of Solieria chordalis polysaccharides and LMW fractions produced by a green (ultrasound) depolymerization method.


Assuntos
Carragenina , Peso Molecular , Rodófitas , Humanos , Rodófitas/química , Carragenina/farmacologia , Oligossacarídeos/farmacologia , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Fibroblastos/efeitos dos fármacos , Peróxido de Hidrogênio , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Polimerização , Ondas Ultrassônicas , Viscosidade
2.
Int J Biol Macromol ; 279(Pt 1): 134814, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39168227

RESUMO

Amyloids, with their ß-sheet-rich structure, contribute to diabetes, neurodegenerative diseases, and amyloidosis by aggregating within diverse anatomical compartments. Insulin amyloid (IA), sharing structural resemblances with amyloids linked to neurological disorders, acts as a prototype, while compounds capable of degrading these fibrils hold promise as therapeutic agents for amyloidosis intervention. In this research, liposomal nanoformulated iota carrageenan (nCG) was formulated to disrupt insulin amyloids, demonstrating about a 17-20 % higher degradation efficacy compared to conventional carrageenan through thioflavin T fluorescence, dynamic light scattering analysis, and turbidity quantification. The biocompatibility of the nCG and nCG-treated insulin amyloids was evaluated through MTT assay, live-dead cell assay on V79 cells, and hemolysis testing on human blood samples to establish their safety for use in vitro. Zebrafish embryos were utilized to assess in vivo biocompatibility, while adult zebrafish were employed to monitor the degradation capacity of IA post subcutaneous injection, with fluorescence emitted by the fish captured via IVIS. This demonstrated that the formulated nCG exhibited superior anti-amyloid efficacy compared to carrageenan alone, while both materials demonstrated biocompatibility. Furthermore, through docking simulations, an exploration was conducted into the molecular mechanisms governing the inhibition of the target protein pancreatic insulin by carrageenan.


Assuntos
Amiloide , Carragenina , Insulina , Peixe-Zebra , Carragenina/química , Carragenina/farmacologia , Animais , Amiloide/química , Amiloide/metabolismo , Insulina/química , Insulina/metabolismo , Humanos , Simulação de Acoplamento Molecular , Lipossomos/química , Nanopartículas/química , Linhagem Celular , Proteólise/efeitos dos fármacos
3.
Int J Biol Macromol ; 272(Pt 2): 132690, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825270

RESUMO

A rising quantity of drugs has been discharged into the aquatic environment, posing a substantial hazard to public health. In the current work, a novel hydrogel (i.Carr@Bent@PTC), comprised of iota-carrageenan, bentonite, and 4-phenyl-3-thiosemicarbazide, was successfully prepared. The introduction of 4-phenyl-3-thiosemicarbazide and bentonite in iota-carrageenan significantly increased the mechanical strength of iota-carrageenan hydrogel and improved its degree of swelling, which can be attributed to the hydrophilic properties of PTC and Bent. The recorded contact angle was 70.8°, 59.1°, 53.9°, and 34.6° for pristine i.Carr, i.Carr@Bent, and i.Carr@Bent@PTC, respectively. The low contact angle measurement of the Bent and PTC loaded-i.Carr hydrogel was attributed to the hydrophilic Bent and PTC. The ternary i.Carr@Bent@PTC hydrogel demonstrated broad pH adaptability and excellent adsorption capacities for sulfamethoxazole (SMX) and losartan potassium (LP), i.e., 467.61 mg. g-1 and 274.43 mg. g-1 at 298.15 K, respectively. The pseudo-first-order (PSO) model provided a better fit for the adsorption kinetics. The adsorption of SMX and LP can be better explained by employing the Sips and Langmuir isotherm models. As revealed by XPS and FTIR investigations, π-π stacking, complexation, electrostatic interaction, and hydrogen bonding were primarily involved in the adsorption mechanisms.


Assuntos
Bentonita , Carragenina , Hidrogéis , Losartan , Semicarbazidas , Sulfametoxazol , Poluentes Químicos da Água , Carragenina/química , Adsorção , Semicarbazidas/química , Losartan/química , Hidrogéis/química , Bentonita/química , Poluentes Químicos da Água/química , Sulfametoxazol/química , Concentração de Íons de Hidrogênio , Cinética , Purificação da Água/métodos , Interações Hidrofóbicas e Hidrofílicas
4.
Int J Biol Macromol ; 271(Pt 1): 132569, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38797303

RESUMO

Food packaging based on natural polymers from polysaccharides and proteins can be an alternative to replace conventional plastics. In the present study, semi-refined iota carrageenan (SRIC) and fish gelatin (FG) were used as polymer matrix film with different concentration ratios (0.5:1.5 %, 1.0:1.0 % and 1.5:0.5 % w/w) and SiO2-ZnO nanoparticles were incorporated as fillers with the same concentration in all formulas (0.5:1.5 % w/w carrageenan-fish gelatin). This study aimed to develop films for food packaging applications with desirable physical, mechanical, optical, chemical, and microbiological properties. The results showed that incorporating SiO2-ZnO nanoparticles significantly (p < 0.05) improved the films' elongation at break, UV-screening properties, and antimicrobial activity. Also, the films' thickness, degradability, and transparency significantly (p < 0.05) increased with the higher concentration of fish gelatin addition in the SRIC matrix polymer. The best formula was obtained on the SRIC-FG film at the ratio of 1.5:0.5 % w/w, which performed excellent antimicrobial activity. Thus, semi-refined iota carrageenan/fish gelatin-based biocomposite film incorporated with SiO2-ZnO nanoparticles can be potentially developed as eco-friendly and intelligent food packaging materials to resolve traditional plastic-related issues and prevent food waste.


Assuntos
Carragenina , Embalagem de Alimentos , Gelatina , Nanopartículas , Dióxido de Silício , Óxido de Zinco , Carragenina/química , Gelatina/química , Óxido de Zinco/química , Dióxido de Silício/química , Nanopartículas/química , Embalagem de Alimentos/métodos , Animais , Peixes , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia
5.
J Contam Hydrol ; 264: 104362, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38735087

RESUMO

A novel ternary blended polymer composed of cost-effective and readily available polymers was synthesized using poly (vinyl alcohol) (PVA), iota carrageenan (IC), and poly (vinyl pyrrolidone) (PVP). Sulfonated graphene oxide (SGO), prepared from recycled drinking water bottles, was utilized as a doping agent. Varying amounts (1-3 wt%) were combined into the polymer matrix. The produced hydrogel film was examined as a potential adsorbent hydrogel film for the removal of methylene blue (MB) and Gentamicin sulfate (GMS) antibiotic from an aqueous solution. The experimental results demonstrate that the presence of SGO significantly increased the adsorption efficiency of PVA/IC/PVP hydrogel film. The antimicrobial tests revealed that the PVA/IC/PVP-3% SGO hydrogel film exhibited the most potent activity against all the tested pathogenic bacteria. However, the adsorption results for MB and GMS showed that the addition of 3 wt% SGO resulted in a removal percentage that was a two fold increase in the removal percentage compared with the undoped PVA/IC/PVP hydrogel film. Furthermore, the response surface methodology (RSM) model was utilized to examine and optimize several operating parameters, including time, pH of the solution, and initial pollutant concentration. The adsorption kinetics were better characterized by the pseudo-second-order kinetics model. The composite film containing 3 wt% SGO had a maximum adsorption capacity of 606 mg g-1 for MB and 654 mg g-1 for GMS, respectively. The generated nanocomposite hydrogel film demonstrated promising potential for application in water purification systems.


Assuntos
Antibacterianos , Grafite , Hidrogéis , Poluentes Químicos da Água , Grafite/química , Adsorção , Antibacterianos/química , Antibacterianos/farmacologia , Poluentes Químicos da Água/química , Hidrogéis/química , Álcool de Polivinil/química , Purificação da Água/métodos , Polímeros/química , Azul de Metileno/química , Plásticos/química
6.
Mater Today Bio ; 25: 100973, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38322663

RESUMO

Extrusion-based bioprinting has demonstrated significant potential for manufacturing constructs, particularly for 3D cell culture. However, there is a greatly limited number of bioink candidates exploited with extrusion-based bioprinting, as they meet the opposing requirements for printability with indispensable rheological features and for biochemical functionality with desirable microenvironment. In this study, a blend of silk fibroin (SF) and iota-carrageenan (CG) was chosen as a cell-friendly printable material. The SF/CG ink exhibited suitable viscosity and shear-thinning properties, coupled with the rapid sol-gel transition of CG. By employing photo-crosslinking of SF, the printability with Pr value close to 1 and structural integrity of the 3D constructs were significantly improved within a matter of seconds. The printed constructs demonstrated a Young's modulus of approximately 250 kPa, making them suitable for keratinocyte and myoblast cell culture. Furthermore, the high cell adhesiveness and viability (maximum >98%) of the loaded cells underscored the considerable potential of this 3D culture scaffold applied for skin and muscle tissues, which can be easily manipulated using an extrusion-based bioprinter.

7.
Int J Gen Med ; 17: 419-428, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333020

RESUMO

Purpose: Nonpharmacological, barrier-forming nasal sprays are used to manage symptoms of allergic rhinitis. We aim to evaluate the safety and effectiveness of Callergin (investigational product, IP), a nasal spray containing barrier-forming iota-carrageenan, in the treatment of allergic rhinitis (AR). Methods: In this randomized, controlled, crossover trial, adults with grass pollen allergy underwent a treatment sequence with IP, VisAlpin (comparator product, CP), and no treatment in random order. Treatment blocks consisted in prophylactic administration of the assigned treatment or no treatment, followed by a 3-hr allergen exposure, and were separated by a washout period of 7 days. Primary endpoint was a mean change from baseline in "Total Nasal Symptom Score" (TNSS, sum of rhinorrhea, itching, sneezing, and congestion scores) over 3 hr, recorded every 15 min during the challenge period. Results: A total of 42 participants underwent randomization. Exposure to grass pollen for 3 hr induced a notable TNSS increase from baseline in all participants at all times. Mean TNSS change from baseline over 3 hr was lower when participants received IP compared to no treatment, although the difference did not reach statistical significance (untreated 6.96 ± 2.30; IP 6.59 ± 1.93; difference 0.37 points [95% CI (confidence interval) -0.17 to 0.91]; p=0.170). In a post-hoc analysis, mean TNSS at 3 hr was significantly reduced after IP treatment compared to no treatment (untreated 8.29 ± 2.64; IP 7.70 ± 2.56; difference 0.60 points [95% CI -0.10 to 1.29] p=0.028). While all individual nasal symptoms contributed to this effect, rhinorrhea (p=0.013) and congestion (p=0.076) contributed most. Consistently, nasal secretion weight was slightly reduced with IP treatment (p=0.119). IP was safe and well-tolerated, with similar incidence of adverse events across treatment groups. Conclusion: Prophylactic treatment with the iota-carrageenan nasal spray IP is safe, well-tolerated, and alleviates nasal allergy symptoms in adults with grass pollen-induced AR. Trial Registration: NCT04531358.

8.
Food Sci Technol Int ; 29(8): 831-846, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36113116

RESUMO

The aim of this work was to evaluate the influence of high intensity ultrasound (HIUS) treatment on the molecular conformation of whey protein isolated (WPI) as a previous step for complex coacervation with iota carrageenan (IC) and its effect on the surface functional properties of complex coacervates (CC). Both biopolymers were hydrated (1% w/w) separately. A WPI suspension was treated with an ultrasonic bath (40 kHz, 600 W, 30 and 60 min, 100% amplitude). A non-sonicated protein was used as a control. Coacervation was achieved by mixing WPI and IC dispersions (10 min). FTIR-ATR analysis (400-4000 cm-1) detected changes after sonication on WPI secondary structure (1600-1700 cm-1), electrostatic interaction between WPI and IC by electronegative IC charged groups like sulfate (1200-1260 cm-1), anhydrous oxygen of the 3.6 anhydro-D-galactose (940-1066 cm-1) and the electropositive regions of WPI. Rheology results showed pseudoplastic behavior of both IC and WPI-IC with a significant change in viscosity level. Further, HIUS treatment had a positive effect on the emulsifying properties of the WPI-IC coacervates, increasing the time foaming (30 min) and emulsion stability (1 month) percentage. HIUS and complex coacervation proved to be an efficient tool to improve the surface functional properties of WPI.


Assuntos
Carragenina , Carragenina/química , Proteínas do Soro do Leite/química , Biopolímeros/química , Viscosidade , Propriedades de Superfície , Emulsões/química
9.
Int J Pharm ; 627: 122239, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36179927

RESUMO

Genital herpes is one of the most common sexually transmitted infections worldwide. It mainly affects women, as the rate of sexual transmission from male-to-female is higher than from female-to-male. The application of vaginal antivirals drugs could reduce the prevalence of genital herpes and prevent future infections. Layer-by-layer vaginal films were prepared by the solvent evaporation method using iota-carrageenan, hydroxypropyl methylcellulose and the polymethacrylates Eudragit® RS PO and Eudragit® S100, for the controlled release of acyclovir. The films were characterized by texture analysis and Raman spectroscopy. Swelling, mucoadhesion, and drug release studies were conducted in simulated vaginal fluid. The results show that Layer-by-Layer films exhibited adequate mechanical properties. The structuring of the layer-by-layer films allowed the controlled release of acyclovir and produced a prolonged mucoadhesion residence time of up to 192 h. The films formed in layer 2 by the combination of Eudragit® RS PO and S100 showed a controlled release of acyclovir for eight days, and adequate mechanical properties. These promising formulations for the prevention of genital herpes deserve further evaluation.


Assuntos
Aciclovir , Herpes Genital , Feminino , Masculino , Humanos , Herpes Genital/tratamento farmacológico , Herpes Genital/prevenção & controle , Derivados da Hipromelose/química , Preparações de Ação Retardada/uso terapêutico , Carragenina , Antivirais , Solventes
10.
Gels ; 8(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35200482

RESUMO

Macroscopic hydrogel fibers are highly desirable for smart textiles, but the fabrication of self-healable and super-tough covalent/physical double-network hydrogels is rarely reported. Herein, copolymers containing ketone groups were synthesized and prepared into a dynamic covalent hydrogel via acylhydrazone chemistry. Double-network hydrogels were constructed via the dynamic covalent crosslinking of copolymers and the supramolecular interactions of iota-carrageenan. Tensile tests on double-network and parental hydrogels revealed the successful construction of strong and tough hydrogels. The double-network hydrogel precursor was wet spun to obtain macroscopic fibers with controlled drawing ratios. The resultant fibers reached a high strength of 1.35 MPa or a large toughness of 1.22 MJ/m3. Highly efficient self-healing performances were observed in hydrogel fibers and their bulk specimens. Through the simultaneous healing of covalent and supramolecular networks under acidic and heated conditions, fibers achieved rapid and near-complete healing with 96% efficiency. Such self-healable and super-tough hydrogel fibers were applied as shape memory fibers for repetitive actuating in response to water, indicating their potential in intelligent fabrics.

11.
Biochem Biophys Rep ; 29: 101187, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34931176

RESUMO

Iota-carrageenan (IC) nasal spray, a medical device approved for treating respiratory viral infections, has previously been shown to inhibit the ability of a variety of respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), to enter and replicate in the cell by interfering with the virus binding to the cell surface. The aim of this study was to further investigate the efficacy and safety of IC in SARS-CoV-2 infection in advanced in vitro models of the human respiratory epithelium, the primary target and entry port for SARS-CoV-2. We extended the in vitro safety assessment of nebulized IC in a 3-dimensional model of reconstituted human bronchial epithelium, and we demonstrated the efficacy of IC in protecting reconstituted nasal epithelium against viral infection and replication of a patient-derived SARS-CoV-2 strain. The results obtained from these two advanced models of human respiratory tract epithelia confirm previous findings from in vitro SARS-CoV-2 infection assays and demonstrate that topically applied IC can effectively prevent SARS-CoV-2 infection and replication. Moreover, the absence of toxicity and functional and structural impairment of the mucociliary epithelium demonstrates that the nebulized IC is well tolerated.

12.
Polymers (Basel) ; 13(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34883705

RESUMO

The direct borohydride fuel cell (DBFC) is a low-temperature fuel cell that requires the development of affordable price and efficient proton exchange membranes for commercial purposes. In this context, super-acidic sulfated zirconia (SO4ZrO2) was embedded into a cheap and environmentally friendly binary polymer blend, developed from poly(vinyl alcohol) (PVA) and iota carrageenan (IC). The percentage of SO4ZrO2 ranged between 1 and 7.5 wt.% in the polymeric matrix. The study findings revealed that the composite membranes' physicochemical features improved by adding increasing amounts of SO4ZrO2. In addition, there was a decrease in the permeability and swelling ratio of the borohydride membranes as the SO4ZrO2 weight% increased. Interestingly, the power density increased to 76 mW cm-2 at 150 mA cm-2, with 7.5 wt.% SO4ZrO2, which is very close to that of Nafion117 (91 mW cm-2). This apparent selectivity, combined with the low cost of the eco-friendly fabricated membranes, points out that DBFC has promising future applications.

13.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34947999

RESUMO

The COVID-19 pandemic continues to spread around the world and remains a major public health threat. Vaccine inefficiency, vaccination breakthroughs and lack of supply, especially in developing countries, as well as the fact that a non-negligible part of the population either refuse vaccination or cannot be vaccinated due to age, pre-existing illness or non-response to existing vaccines intensify this issue. This might also contribute to the emergence of new variants, being more efficiently transmitted, more virulent and more capable of escaping naturally acquired and vaccine-induced immunity. Hence, the need of effective and viable prevention options to reduce viral transmission is of outmost importance. In this study, we investigated the antiviral effect of iota-, lambda- and kappa-carrageenan, sulfated polysaccharides extracted from red seaweed, on SARS-CoV-2 Wuhan type and the spreading variants of concern (VOCs) Alpha, Beta, Gamma and Delta. Carrageenans as part of broadly used nasal and mouth sprays as well as lozenges have the potential of first line defense to inhibit the infection and transmission of SARS-CoV-2. Here, we demonstrate by using a SARS-CoV-2 spike pseudotyped lentivirus particles (SSPL) system and patient-isolated SARS-CoV-2 VOCs to infect transgenic A549ACE2/TMPRSS2 and Calu-3 human lung cells that all three carrageenan types exert antiviral activity. Iota-carrageenan exhibits antiviral activity with comparable IC50 values against the SARS-CoV-2 Wuhan type and the VOCs. Altogether, these results indicate that iota-carrageenan might be effective for prophylaxis and treatment of SARS-CoV-2 infections independent of the present and potentially future variants.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/virologia , Carragenina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , COVID-19/epidemiologia , COVID-19/imunologia , Vacinas contra COVID-19/farmacologia , Chlorocebus aethiops , Células HEK293 , Humanos , Pandemias , Polissacarídeos/farmacologia , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação/métodos , Células Vero
14.
Int J Gen Med ; 14: 5241-5249, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34526804

RESUMO

PURPOSE: The aim of this study was to investigate whether sucking of an iota-carrageenan containing lozenge releases sufficient iota-carrageenan into the saliva of healthy subjects to neutralize representatives of the most common respiratory virus families causing common cold and SARS-CoV-2. PATIENTS AND METHODS: In this monocentric, open label, prospective clinical trial, 31 healthy subjects were included to suck a commercially available iota-carrageenan containing lozenge. Saliva samples from 27 subjects were used for ex vivo efficacy analysis. The study's primary objective was to assess if the mean iota-carrageenan concentration of the saliva samples exceeded 5 µg/mL, which is the concentration known to reduce replication of human rhinovirus (hRV) 1a and 8 by 90%. The iota-carrageenan concentration of the saliva samples was analyzed by UV-Vis spectroscopy. The antiviral effectiveness of the individual saliva samples was determined in vitro against a panel of respiratory viruses including hRV1a, hRV8, human coronavirus OC43, influenza virus A H1N1pdm09, coxsackievirus A10, parainfluenza virus 3 and SARS-CoV-2 using standard virological assays. RESULTS: The mean iota-carrageenan concentration detected in the saliva exceeds the concentration needed to inhibit 90% of hRV1a and hRV8 replication by 134-fold (95% CI 116.3-160.8-fold; p < 0.001). Thus, the study met the primary endpoint. Furthermore, the iota-carrageenan saliva concentration was 60 to 30,351-fold higher than needed to reduce viral replication/binding of all tested viruses by at least 90% (p < 0.001). The effect was most pronounced in hCoV OC43; in case of SARS-CoV-2, the IC90 was exceeded by 121-fold (p < 0.001). CONCLUSION: Sucking an iota-carrageenan containing lozenge releases sufficient iota-carrageenan to neutralize and inactivate the most abundant respiratory viruses as well as pandemic SARS-CoV-2. The lozenges are therefore an appropriate measure to reduce the viral load at the site of infection, hereby presumably limiting transmission within a population as well as translocation to the lower respiratory tract. TRIAL REGISTRATION: NCT04533906.

15.
Clin Epidemiol Glob Health ; 12: 100826, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222718

RESUMO

OBJECTIVE: There is no specific antiviral treatment available for coronavirus disease 2019 (COVID-19). Among the possible natural constituents is carrageenan, a polymer derived from marine algae that possesses a variety of antiviral properties. The purpose of this review was to summarize the evidence supporting carrageenan subtypes' antiviral activity against the emerging severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19. METHODS: PubMed/MEDLINE and Google Scholar searches were conducted for publications using the terms 'carrageenan', 'iota carrageenan', 'kappa carrageenan', lambda-carrageenan', 'coronavirus', 'common cold', 'rhinovirus', and 'SARS-CoV-2' search was also done in grey literature to increase our understanding. A search for the word "carrageenan" was also carried out. Most of the publications were discussed in narrative. RESULTS: Carrageenan has been shown to have potent antiviral activity against both coronaviruses (coronavirus NL63, SARS-CoV-2) and non-coronaviruses such as dengue virus, herpes simplex virus, cytomegalovirus, vaccinia virus, vesicular stomatitis virus, sindbis virus, human immunodeficiency virus, influenza virus, human papillomavirus, rabies virus, junin virus, tacaribe virus, African swine fever, bovine herpes virus, suid herpes virus, and rhinovirus. No in vivo study has been conducted using carrageenan as an anti-SARS-CoV-2 agent. The majority of the in vivo research was done on influenza, a respiratory virus that causes common cold together with coronavirus. Thus, various clinical trials were conducted to determine the transferability of these in vitro data to clinical effectiveness against SARS-CoV-2. When combined with oral ivermectin, nasally administered iota-carrageenan improved outcome in COVID-19 patients. It is still being tested in clinics for single-dose administration. CONCLUSION: Though the carrageenan exhibited potent antiviral activity against SARS-CoV-2 and was used to treat COVID-19 under emergency protocol in conjunction with oral medications such as ivermectin, there is no solid evidence from clinical trials to support its efficacy. Thus, clinical trials are required to assess its efficacy for COVID-19 treatment prior to broad application.

16.
Pharmacol Res Perspect ; 9(4): e00810, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34128358

RESUMO

In this individual patient data meta-analysis we examined datasets of two randomized placebo-controlled trials which investigated the effect of nasal carrageenan separately on children and adults. In both trials, iota-carrageenan was administered nasally three times per day for 7 days for patients with the common cold and follow-up lasted for 21 days. We used Cox regression to estimate the effect of carrageenan on recovery rate. We also used quantile regression to calculate the effect of carrageenan on colds of differing lengths. Nasal carrageenan increased the recovery rate from all colds by 54% (95% CI 15%-105%; p = .003). The increase in recovery rate was 139% for coronavirus infections, 119% for influenza A infections, and 70% for rhinovirus infections. The mean duration of all colds in the placebo groups of the first four quintiles were 4.0, 6.8, 8.8, and 13.7 days, respectively. The fifth quintile contained patients with censored data. The 13.7-day colds were shortened by 3.8 days (28% reduction), and 8.8-day colds by 1.3 days (15% reduction). Carrageenan had no meaningful effect on shorter colds. In the placebo group, 21 patients had colds lasting over 20 days, compared with six patients in the carrageenan group, which corresponds to a 71% (p = .003) reduction in the risk of longer colds. Given that carrageenan has an effect on diverse virus groups, and effects at the clinical level on two old coronaviruses, it seems plausible that carrageenan may have an effect on COVID-19. Further research on nasal iota-carrageenan is warranted.


Assuntos
Antivirais/administração & dosagem , Carragenina/administração & dosagem , Resfriado Comum/virologia , Infecções por Coronavirus/tratamento farmacológico , Influenza Humana/tratamento farmacológico , Infecções por Picornaviridae/tratamento farmacológico , Administração Intranasal , Adulto , Antivirais/uso terapêutico , Carragenina/farmacologia , Pré-Escolar , Resfriado Comum/tratamento farmacológico , Feminino , Humanos , Masculino , Sprays Nasais , Ensaios Clínicos Controlados Aleatórios como Assunto , Análise de Regressão , Análise de Sobrevida , Fatores de Tempo , Resultado do Tratamento
17.
Heliyon ; 7(5): e06963, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34027169

RESUMO

This paper reports the incorporation of SiO2-ZnO nanoparticles (NPs) into semi-refined iota carrageenan-based (SRIC) film as active food packaging. The dispersion of the nanoparticles was performed using a bead milling method and the films were prepared using the solution casting method. The incorporation of SiO2-ZnO NPs into SRIC films aims to provide multifunctional food packaging with enhanced water vapor barrier properties, UV-screening, and antimicrobial activity. The effect of the incorporation of SiO2 NPs, ZnO NPs, and the mixtures of SiO2-ZnO NPs varied in SiO2/ZnO ratios (SiO2-ZnO 1:1, 1:2, and 1:3) were investigated. The results showed that the tensile strength, water vapor barrier performance, UV-screening, and antimicrobial activity of the SRIC film were increased by the addition of either SiO2 or ZnO NPs alone. Interestingly, when the mixtures of SiO2-ZnO were incorporated, more significant improvement was observed. Also, the bio-degradability and solubility of all the SRIC films were confirmed. It was concluded that the SiO2-ZnO NPs incorporated into SRIC film provided multifunctional activities and acted as a promising active food packaging material.

18.
Int J Biol Macromol ; 183: 727-742, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33915214

RESUMO

In this work free-standing gels formed from gellan gum (GG) by solvent evaporation are coated with polysaccharide-based polyelectrolyte multilayers, using the layer-by-layer approach. We show that PEMs composed of iota-carrageenan (CAR) and three different natural polycationic polymers have composition-dependent antimicrobial properties, and support mammalian cell growth. Cationic polymers (chitosan (CHT), N,N,N-trimethyl chitosan (TMC), and an amino-functionalized tannin derivative (TN)) are individually assembled with the anionic iota-carrageenan (CAR) at pH 5.0. PEMs (15-layers) are alternately deposited on the GG film. The GG film and coated GG films with PEMs are characterized by infrared spectroscopy with attenuated total reflectance (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and water contact angle (WCA) measurements. The TN/CAR coating provides a hydrophobic (WCA = 127°) and rough surface (Rq = 243 ± 48 nm), and the TMC/CAR coating provides a hydrophilic surface (WCA = 78°) with the lowest roughness (Rq = 97 ± 12 nm). Polymer coatings promote stability and durability of the GG film, and introduce antimicrobial properties against Gram-negative (Salmonella enteritidis) and Gram-positive (Staphylococcus aureus) bacteria. The films are also cytocompatible. Therefore, they have properties that can be further developed as wound dressings and food packaging.


Assuntos
Anti-Infecciosos/síntese química , Materiais Biocompatíveis/síntese química , Carragenina/química , Quitosana/química , Polissacarídeos Bacterianos/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Embalagem de Alimentos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Polieletrólitos , Cicatrização
19.
Int J Biol Macromol ; 182: 244-251, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33838193

RESUMO

Gel properties of hydrogel-forming by Ala-Lys dipeptide (AK) and iota-carrageenan (ι-C) were investigated by rheological behavior, fourier transform infrared analysis, cryo-scanning electron microscopy, low field-NMR relaxometry and magnetic resonance imaging. Iota-carrageenan was changed from a liquid to a gel with the addition of AK, and the existence of AK significantly increased the storage modulus (G') of ι-C from 590.4 to 1077.8 Pa. In the ι-C/AK gel, the blue-shift of OH stretching and water deformation were observed, meanwhile, the presence of amide I band at 1682 cm-1 was observed. The network of ι-C/AK gel showed a dense honeycomb structure with flocculating continuous phase and rough entanglement morphology. After adding AK, the water free in the pores of ι-C entered the ι-C/AK gel matrix, and the binding capacity of bound water was enhanced. These scenarios proved that the AK as the cationic dipeptide could control the conversion of negatively charged ι-C from an original random structure to a helical structure due to electrostatic interactions and hydrogen bonds. This study provides a new opportunity for the peptides into carbohydrate-based gel matrices, which could provide insights for the further application of ι-C/AK gels in the fields of food industry, tissue engineering and drug delivery.


Assuntos
Carragenina , Dipeptídeos , Géis , Hidrogéis/química , Espectroscopia de Ressonância Magnética , Reologia
20.
Foods ; 10(3)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807500

RESUMO

The influence of iota carrageenan (iota-CGN) as a partial replacement of sodium tripolyphosphate (STPP) was investigated on the physical (pH, yield, instrumental color, texture profile analysis), chemical (moisture, protein, total fat, ash, phosphate) and sensory (descriptive analysis, acceptance testing) quality of restructured ostrich ham (95% lean meat plus fat). Treatments consisted of five decreasing levels of STPP (0.70%, 0.53%, 0.35%, 0.18% and 0%) that were simultaneously substituted with five increasing levels of iota-CGN (0%, 0.1%, 0.2%, 0.3% and 0.4%). Cooked yield, hardness, cohesiveness, and gumminess of restructured ostrich ham increased (p ≤ 0.05) with decreasing levels of STPP (and increased levels of iota-CGN). No significant trend in instrumental color measurements or springiness were observed between treatments. Ostrich ham with 0.35% STPP and lower had increased ostrich meat aroma and flavor, while spicy aroma and flavor, mealiness and consumer acceptance decreased. Iota carrageenan can be substituted for STPP (up to 0.35% STPP and 0.2% iota-CGN) to produce reduced STPP ham.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA