Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39142280

RESUMO

Photoreception is essential for the development of the visual system, shaping vision's first synapse to cortical development. Here, we find that the lighting environment controls developmental rod apoptosis via Opn4-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs). Using genetics, sensory environment manipulations, and computational approaches, we establish a pathway where light-dependent glutamate released from ipRGCs is detected via a transiently expressed glutamate receptor (Grik3) on rod precursors within the inner retina. Communication between these cells is mediated by hybrid neurites on ipRGCs that sense light before eye opening. These structures span the ipRGC-rod precursor distance over development and contain the machinery for photoreception (Opn4) and neurotransmitter release (Vglut2 & Syp). Assessment of the human gestational retina identifies conserved hallmarks of an ipRGC-to-rod axis, including displaced rod precursors, transient GRIK3 expression, and ipRGCs with deep-projecting neurites. This analysis defines an adaptive retrograde pathway linking the sensory environment to rod precursors via ipRGCs prior to eye opening.

2.
Front Psychol ; 15: 1352320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39205984

RESUMO

Exposure to bright light can be visually aversive. This study explored the association between light aversion and various facets of impulsivity. A total of 1,245 participants completed the UPPS-Impulsive Behavior Scale to assess five facets of impulsivity. Additionally, participants responded to questions regarding their aversion to light (e.g., how aversive do you find bright light?). Spearman's correlation coefficients (rho) revealed that individuals who find light physically aversive, or who experience a negative physical response to exposure (e.g., nausea or headache) triggered by bright indoor light or sunlight, tend to act impulsively under extreme negative and positive affect. Individuals who experience a negative physical response to exposure display greater premeditation, indicating a higher likelihood of considering the potential consequences of their actions. Moreover, these individuals score lower on sensation-seeking, suggesting a reduced inclination to seek out thrilling or novel experiences. These results reveal a complex relationship between light aversion and impulsivity, where those who find light aversive tend to be less impulsive in general, but more impulsive under extreme positive or negative affect.

3.
Exp Eye Res ; 245: 109976, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897270

RESUMO

This review examines the pivotal role of photoreceptor cells in ocular refraction development, focusing on dopamine (DA) as a key neurotransmitter. Contrary to the earlier view favoring cone cells, recent studies have highlighted the substantial contributions of both rod and cone cells to the visual signaling pathways that influence ocular refractive development. Notably, rod cells appeared to play a central role. Photoreceptor cells interact intricately with circadian rhythms, color vision pathways, and other neurotransmitters, all of which are crucial for the complex mechanisms driving the development of myopia. This review emphasizes that ocular refractive development results from a coordinated interplay between diverse cell types, signaling pathways, and neurotransmitters. This perspective has significant implications for unraveling the complex mechanisms underlying myopia and aiding in the development of more effective prevention and treatment strategies.


Assuntos
Miopia , Refração Ocular , Miopia/fisiopatologia , Miopia/metabolismo , Miopia/etiologia , Humanos , Refração Ocular/fisiologia , Animais , Dopamina/metabolismo , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Ritmo Circadiano/fisiologia , Transdução de Sinais/fisiologia , Células Fotorreceptoras de Vertebrados/fisiologia , Células Fotorreceptoras de Vertebrados/patologia
4.
Neuron ; 112(14): 2404-2422.e9, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38697114

RESUMO

In the pupillary light response (PLR), increases in ambient light constrict the pupil to dampen increases in retinal illuminance. Here, we report that the pupillary reflex arc implements a second input-output transformation; it senses temporal contrast to enhance spatial contrast in the retinal image and increase visual acuity. The pupillary contrast response (PCoR) is driven by rod photoreceptors via type 6 bipolar cells and M1 ganglion cells. Temporal contrast is transformed into sustained pupil constriction by the M1's conversion of excitatory input into spike output. Computational modeling explains how the PCoR shapes retinal images. Pupil constriction improves acuity in gaze stabilization and predation in mice. Humans exhibit a PCoR with similar tuning properties to mice, which interacts with eye movements to optimize the statistics of the visual input for retinal encoding. Thus, we uncover a conserved component of active vision, its cell-type-specific pathway, computational mechanisms, and optical and behavioral significance.


Assuntos
Sensibilidades de Contraste , Reflexo Pupilar , Animais , Camundongos , Humanos , Reflexo Pupilar/fisiologia , Sensibilidades de Contraste/fisiologia , Pupila/fisiologia , Células Ganglionares da Retina/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Estimulação Luminosa/métodos , Adulto , Células Bipolares da Retina/fisiologia , Feminino , Acuidade Visual/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Movimentos Oculares/fisiologia
5.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521995

RESUMO

In brightness, the pupil constricts, while in darkness, the pupil dilates; this is known as the pupillary light response (PLR). The PLR is driven by all photoreceptors: rods and cones, which contribute to image-forming vision, and intrinsically photosensitive retinal ganglion cells (ipRGCs), which mainly contribute to non-image-forming vision. Rods and cones cause immediate pupil constriction upon light exposure, whereas ipRGCs cause sustained constriction throughout light exposure. Recent studies have shown that covert attention modulated the initial PLR; however, it remains unclear whether the same holds for the sustained PLR. We tested this by leveraging ipRGCs' responsiveness to blue light, causing the most prominent sustained constriction. While replicating previous studies by showing that pupils constricted more when either directly looking at, or covertly attending to, bright as compared to dim stimuli (with the same color), we also found that the pupil constricted more when directly looking at blue as compared to red stimuli (with the same luminosity). Crucially, however, in two high-powered studies (n = 60), we did not find any pupil-size difference when covertly attending to blue as compared to red stimuli. This suggests that ipRGC-mediated pupil constriction, and possibly non-image-forming vision more generally, is not modulated by covert attention.


Assuntos
Células Ganglionares da Retina , Visão Ocular , Constrição , Células Ganglionares da Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Luz , Estimulação Luminosa
6.
Vision Res ; 217: 108378, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38458004

RESUMO

Human photoreceptors consist of cones, rods, and melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs). First studied in circadian regulation and pupillary control, ipRGCs project to a variety of brain centers suggesting a broader involvement beyond non-visual functions. IpRGC responses are stable, long-lasting, and with a particular codification of photoreceptor signals. In comparison with the transient and adaptive nature of cone and rod signals, ipRGCs' signaling might provide an ecological advantage to different attributes of color vision. Previous studies have indicated melanopsin's influence on visual responses yet its contribution to color perception in humans remains debated. We summarized evidence and hypotheses (from physiology, psychophysics, and natural image statistics) about direct and indirect involvement of ipRGCs in human color vision, by first briefly assessing the current knowledge about the role of melanopsin and ipRGCs in vision and codification of spectral signals. We then approached the question about melanopsin activation eliciting a color percept, discussing studies using the silent substitution method. Finally, we explore various avenues through which ipRGCs might impact color perception indirectly, such as through involvement in peripheral color matching, post-receptoral pathways, color constancy, long-term chromatic adaptation, and chromatic induction. While there is consensus about the role of ipRGCs in brightness perception, confirming its direct contribution to human color perception requires further investigation. We proposed potential approaches for future research, emphasizing the need for empirical validation and methodological thoroughness to elucidate the exact role of ipRGCs in human color vision.


Assuntos
Visão de Cores , Células Ganglionares da Retina , Humanos , Células Ganglionares da Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Percepção Visual , Opsinas de Bastonetes/fisiologia , Psicofísica , Luz
7.
Ann Med ; 56(1): 2298875, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38329797

RESUMO

Introduction: Light profoundly influences human physiology, behaviour and cognition by affecting various functions through light-sensitive cells in the retina. Light therapy has proven effective in treating seasonal depression and other disorders. However, designing appropriate control conditions for light-based interventions remains a challenge.Materials and methods: This article presents a novel framework for selecting, implementing and evaluating control conditions in light studies, offering theoretical foundations and practical guidance. It reviews the fundamentals of photoreception and discusses control strategies such as dim light, darkness, different wavelengths, spectral composition and metameric conditions. Special cases like dynamic lighting, simulated dawn and dusk, complex interventions and studies involving blind or visually impaired patients are also considered.Results: The practical guide outlines steps for selection, implementation, evaluation and reporting, emphasizing the importance of α-opic calculations and physiological validation.Conclusion: In conclusion, constructing effective control conditions is crucial for demonstrating the efficacy of light interventions in various research scenarios.


Assuntos
Cognição , Fototerapia , Humanos , Projetos de Pesquisa
8.
Graefes Arch Clin Exp Ophthalmol ; 262(3): 983-990, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37864638

RESUMO

Myopia, a common ophthalmic disorder, places a high economic burden on individuals and society. Genetic and environmental factors influence myopia progression; however, the underlying mechanisms remain unelucidated. This paper reviews recent advances in circadian rhythm, intrinsically photosensitive retinal ganglion cells (ipRGCs), and dopamine (DA) signalling in myopia and proposes the hypothesis of a circadian rhythm brain retinal circuit in myopia progression. The search of relevant English articles was conducted in the PubMed databases until June 2023. Based on the search, emerging evidence indicated that circadian rhythm was associated with myopia, including circadian genes Bmal1, Cycle, and Per. In both humans and animals, the ocular morphology and physiology show rhythmic oscillations. Theoretically, such ocular rhythms are regulated locally and indirectly via the suprachiasmatic nucleus, which receives signal from the ipRGCs. Compared with the conventional retinal ganglion cells, ipRGCs can sense the presence of light because of specific expression of melanopsin. Light, together with ipRGCs and DA signalling, plays a crucial role in both circadian rhythm and myopia. In summary, regarding myopia progression, a circadian rhythm brain retinal circuit involving ipRGCs and DA signalling has not been well established. However, based on the relationship between circadian rhythm, ipRGCs, and DA signalling in myopia, we hypothesised a circadian rhythm brain retinal circuit.


Assuntos
Miopia , Células Ganglionares da Retina , Animais , Humanos , Dopamina , Miopia/genética , Retina , Ritmo Circadiano
9.
Biol Psychol ; 184: 108695, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37757999

RESUMO

Two recent studies of eye closure triggered by intense luminance increase suggest that this behavior reflects the melanopsin-based retinal activity known to underlie photophobia, the pathological aversion to light (Kardon, 2012; Kaiser et al., 2021). Early studies of the photic blink reflex (PBR) are reviewed to help guide future research on this possible objective index of photophobia. Electromyographic recordings of the lid-closure muscle, orbicularis oculi, reveal distinct bursts with typical onset latencies of 50 and 80 ms, R50 and R80, respectively. The latter component appears to be especially sensitive to visual signals from intrinsically photosensitive retinal ganglion cells (ipRGCs) and to prior trigeminal nociceptive stimuli. The authors argue that the R80's function, in addition to protecting the eyeballs from physical contact, is to shape the upper and lower eyelids into a narrow slit to restrict incoming light. This serves to prevent retinal bleaching or injury, while allowing continued visual function.


Assuntos
Piscadela , Fotofobia , Humanos , Estimulação Luminosa , Células Ganglionares da Retina/fisiologia , Sensação , Reflexo Pupilar/fisiologia
10.
Front Cell Neurosci ; 17: 1132230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37032840

RESUMO

Traditional photoreceptors utilize the chromophore retinal to absorb light coupled with a unique opsin protein to specify receptor spectral sensitivity. Light absorption triggers a cascade of events transducing light energy to neural signals beginning with graded potentials in receptors (rods and cones) and bipolar cells in outer and middle retina eventuating in action potentials at the inner retinal amacrine and ganglion cell levels. Unlike traditional photoreceptors, ganglion cells in the inner retina (intrinsically photosensitive retinal ganglion cells, ipRGCs) absorb short wavelength, blue light utilizing their photopigment melanopsin. Assessment across multiple species show that the ipRGCs mediate myriad visual and non-visual functions including photo-entrainment and circadian rhythms, the pupillary light reflex, sleep, alertness, cognition, mood, and even conscious visual perception. Some ipRGC functions can persist despite blindness in animal models and humans exemplifying their multidisciplinary control of visual and non-visual functions. In previous research we used selective chromatic adaptation (blue stimulus on a bright amber field) to suppress input from rods, red and green sensitive cones to identify retinal and cortical responses from ipRGCs. Herein we used a similar approach, coupled with a filter to block input from blue sensitive cones, to develop a clinically expedient method to measure the full-field, putative visual threshold from human ipRGCs. This metric may expand our ability to detect, diagnose and monitor ocular and neurologic disease and provide a global retinal metric of ipRGCs as a potential outcome measure for studies using gene therapy to arrest and/or improve vision in hereditary retinal diseases.

11.
Front Cell Neurosci ; 17: 1114634, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36993934

RESUMO

Introduction: Intrinsically photosensitive retinal ganglion cells (ipRGCs) integrate melanopsin and rod/cone-mediated inputs to signal to the brain. Whilst originally identified as a cell type specialised for encoding ambient illumination, several lines of evidence indicate a strong association between colour discrimination and ipRGC-driven responses. Thus, cone-mediated colour opponent responses have been widely found across ipRGC target regions in the mouse brain and influence a key ipRGC-dependent function, circadian photoentrainment. Although ipRGCs exhibiting spectrally opponent responses have also been identified, the prevalence of such properties have not been systematically evaluated across the mouse retina or yet been found in ipRGC subtypes known to influence the circadian system. Indeed, there is still uncertainty around the overall prevalence of cone-dependent colour opponency across the mouse retina, given the strong retinal gradient in S and M-cone opsin (co)-expression and overlapping spectral sensitivities of most mouse opsins. Methods: To address this, we use photoreceptor isolating stimuli in multielectrode recordings from human red cone opsin knock-in mouse (Opn1mwR) retinas to systematically survey cone mediated responses and the occurrence of colour opponency across ganglion cell layer (GCL) neurons and identify ipRGCs based on spectral comparisons and/or the persistence of light responses under synaptic blockade. Results: Despite detecting robust cone-mediated responses across the retina, we find cone opponency is rare, especially outside of the central retina (overall ~3% of GCL neurons). In keeping with previous suggestions we also see some evidence of rod-cone opponency (albeit even more rare under our experimental conditions), but find no evidence for any enrichment of cone (or rod) opponent responses among functionally identified ipRGCs. Conclusion: In summary, these data suggest the widespread appearance of cone-opponency across the mouse early visual system and ipRGC-related responses may be an emergent feature of central visual processing mechanisms.

12.
Cell ; 186(2): 398-412.e17, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36669474

RESUMO

Public health studies indicate that artificial light is a high-risk factor for metabolic disorders. However, the neural mechanism underlying metabolic modulation by light remains elusive. Here, we found that light can acutely decrease glucose tolerance (GT) in mice by activation of intrinsically photosensitive retinal ganglion cells (ipRGCs) innervating the hypothalamic supraoptic nucleus (SON). Vasopressin neurons in the SON project to the paraventricular nucleus, then to the GABAergic neurons in the solitary tract nucleus, and eventually to brown adipose tissue (BAT). Light activation of this neural circuit directly blocks adaptive thermogenesis in BAT, thereby decreasing GT. In humans, light also modulates GT at the temperature where BAT is active. Thus, our work unveils a retina-SON-BAT axis that mediates the effect of light on glucose metabolism, which may explain the connection between artificial light and metabolic dysregulation, suggesting a potential prevention and treatment strategy for managing glucose metabolic disorders.


Assuntos
Tecido Adiposo Marrom , Hipotálamo , Camundongos , Animais , Humanos , Tecido Adiposo Marrom/metabolismo , Hipotálamo/metabolismo , Termogênese/fisiologia , Retina , Células Ganglionares da Retina , Glucose/metabolismo
13.
Intern Med ; 62(6): 849-854, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35989269

RESUMO

Objectives Migraine is a disease that leads to social loss due to a decrease in productivity since it is a primary headache with a high prevalence and readily occurs in working-age persons. As described in the diagnostic criteria of the International Classification of Headache Disorders, 3rd edition (beta version), migraine causes hypersensitivity, especially photosensitivity, during attacks, suggesting that light is an inducer of headaches. We developed Blue Cut for Night (BCN) glass, which reduces light stimulation to intrinsically photosensitive continental ganglion cells (ipRGCs), photoreceptors that can lead to exacerbation of migraine attacks. Methods Ten patients with migraine participated in the study. Each participant was made to wear BCN glasses only at night for four weeks. The number of headache days and Headache Impact Test-6 values before and after using the BCN glasses were compared. Results When the 10 patients with migraine wore the BCN glass at night only for 4 weeks, the number of headache days within that time tended to decrease (7.0±4.37 days) compared to before wearing the glasses (8.7±5.03 days). No participants had any side effects. Conclusion BCN glass, which reduces light stimulation to ipRGCs, was suggested to be a tool for reducing migraine attacks.


Assuntos
Transtornos de Enxaqueca , Humanos , Transtornos de Enxaqueca/prevenção & controle , Cefaleia/etiologia
14.
Policy Insights Behav Brain Sci ; 10(2): 237-246, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38919981

RESUMO

Beyond visual function, specialized light-sensitive retinal circuits involving the photopigment melanopsin drive critical aspects of human physiology and behavior, including sleep-wake rhythms, hormone production, mood, and cognition. Fundamental discoveries of visual neurobiology dating back to the 1990s have given rise to strong interest from the lighting industry in optimizing lighting to benefit health. Consequently, evidence-based recommendations, regulations, and policies need to translate current knowledge of neurobiology into practice. Here, reviewing recent advances in understanding of NIF circuits in humans leads to proposed strategies to optimize electric lighting. Highlighted knowledge gaps must be addressed urgently, as well as the challenge of developing personalized, adaptive NIF lighting interventions accounting for complex individual differences in physiology, behavior, and environment. Finally, lighting equity issues appear in the context of marginalized groups, who have traditionally been underserved in research on both fundamental visual processes and applied lighting. Biologically optimal light is a fundamental environmental right.

15.
Neurobiol Sleep Circadian Rhythms ; 13: 100083, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36345502

RESUMO

Many physiological functions with approximately 24-h rhythmicity (circadian rhythms) are generated by an internal time-measuring system of the circadian clock. While sleep/wake cycles, feeding patterns, and body temperature are the most widely known physiological functions under the regulation of the circadian clock, physiological regulation by the circadian clock extends to higher brain functions. Accumulating evidence suggests strong associations between the circadian clock and mood disorders such as depression, but the underlying mechanisms of the functional relationship between them are obscure. This review overviews rodent models with disrupted circadian rhythms on depression-related responses. The animal models with circadian disturbances (by clock gene mutations and artifactual interventions) will help understand the causal link between the circadian clock and depression.

16.
Cell Rep ; 41(1): 111444, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36198265

RESUMO

Contagious itch behavior informs conspecifics of adverse environment and is crucial for the survival of social animals. Gastrin-releasing peptide (GRP) and its receptor (GRPR) in the suprachiasmatic nucleus (SCN) of the hypothalamus mediates contagious itch behavior in mice. Here, we show that intrinsically photosensitive retina ganglion cells (ipRGCs) convey visual itch information, independently of melanopsin, from the retina to GRP neurons via PACAP-PAC1R signaling. Moreover, GRPR neurons relay itch information to the paraventricular nucleus of the thalamus (PVT). Surprisingly, neither the visual cortex nor superior colliculus is involved in contagious itch. In vivo calcium imaging and extracellular recordings reveal contagious itch-specific neural dynamics of GRPR neurons. Thus, we propose that the retina-ipRGC-SCN-PVT pathway constitutes a previously unknown visual pathway that probably evolved for motion vision that encodes salient environmental cues and enables animals to imitate behaviors of conspecifics as an anticipatory mechanism to cope with adverse conditions.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Vias Visuais , Animais , Cálcio/metabolismo , Peptídeo Liberador de Gastrina/metabolismo , Camundongos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Prurido/metabolismo , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Núcleo Supraquiasmático/metabolismo , Vias Visuais/metabolismo
17.
Front Integr Neurosci ; 16: 933426, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118115

RESUMO

Developmental neuroscience research has not yet fully unveiled the dynamics involved in human birth. The trigger of the first breath, often assumed to be the marker of human life, has not been characterized nor has the process entailing brain modification and activation at birth been clarified yet. To date, few researchers only have investigated the impact of the extrauterine environment, with its strong stimuli, on birth. This 'hypothesis and theory' article assumes the role of a specific stimulus activating the central nervous system (CNS) at human birth. This stimulus must have specific features though, such as novelty, efficacy, ubiquity, and immediacy. We propose light as a robust candidate for the CNS activation via the retina. Available data on fetal and neonatal neurodevelopment, in particular with reference to retinal light-responsive pathways, will be examined together with the GABA functional switch, and the subplate disappearance, which, at an experimental level, differentiate the neonatal brain from the fetal brain. In this study, we assume how a very rapid activation of retinal photoreceptors at birth initiates a sudden brain shift from the prenatal pattern of functions to the neonatal setup. Our assumption implies the presence of a photoreceptor capable of capturing and transducing light/photon stimulus, transforming it into an effective signal for the activation of new brain functions at birth. Opsin photoreception or, more specifically, melanopsin-dependent photoreception, which is provided by intrinsically photosensitive retinal ganglion cells (ipRGCs), is considered as a valid candidate. Although what is assumed herein cannot be verified in humans based on knowledge available so far, proposing an important and novel function can trigger a broad range of diversified research in different domains, from neurophysiology to neurology and psychiatry.

18.
Cell ; 185(17): 3124-3137.e15, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35944541

RESUMO

During development, melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) become light sensitive much earlier than rods and cones. IpRGCs project to many subcortical areas, whereas physiological functions of these projections are yet to be fully elucidated. Here, we found that ipRGC-mediated light sensation promotes synaptogenesis of pyramidal neurons in various cortices and the hippocampus. This phenomenon depends on activation of ipRGCs and is mediated by the release of oxytocin from the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) into cerebral-spinal fluid. We further characterized a direct connection between ipRGCs and oxytocin neurons in the SON and mutual projections between oxytocin neurons in the SON and PVN. Moreover, we showed that the lack of ipRGC-mediated, light-promoted early cortical synaptogenesis compromised learning ability in adult mice. Our results highlight the importance of light sensation early in life on the development of learning ability and therefore call attention to suitable light environment for infant care.


Assuntos
Ocitocina , Células Ganglionares da Retina , Animais , Encéfalo/metabolismo , Humanos , Camundongos , Células Ganglionares da Retina/fisiologia , Opsinas de Bastonetes/metabolismo
19.
Front Cell Dev Biol ; 10: 956279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035999

RESUMO

Retinal ganglion cells (RGCs) are a heterogeneous population of neurons that function synchronously to convey visual information through the optic nerve to retinorecipient target areas in the brain. Injury or disease to the optic nerve results in RGC degeneration and loss of visual function, as few RGCs survive, and even fewer can be provoked to regenerate their axons. Despite causative insults being broadly shared, regeneration studies demonstrate that RGC types exhibit differential resilience to injury and undergo selective survival and regeneration of their axons. While most early studies have identified these RGC types based their morphological and physiological characteristics, recent advances in transgenic and gene sequencing technologies have further enabled type identification based on unique molecular features. In this review, we provide an overview of the well characterized RGC types and identify those shown to preferentially survive and regenerate in various regeneration models. Furthermore, we discuss cellular characteristics of both the resilient and susceptible RGC types including the combinatorial expression of different molecular markers that identify these specific populations. Lastly, we discuss potential molecular mechanisms and genes found to be selectively expressed by specific types that may contribute to their reparative capacity. Together, we describe the studies that lay the important groundwork for identifying factors that promote neural regeneration and help advance the development of targeted therapy for the treatment of RGC degeneration as well as neurodegenerative diseases in general.

20.
Exp Neurol ; 357: 114176, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35870522

RESUMO

Visual impairment caused by retinal ganglion cell (RGC) axon damage or degeneration affects millions of individuals throughout the world. While some progress has been made in promoting long-distance RGC axon regrowth following injury, it remains unclear whether RGC axons can properly reconnect with their central targets to restore visual function. Additionally, the regenerative capacity of many RGC subtypes remains unknown in part due to a lack of available genetic tools. Here, we use a new mouse line, Sema6ACreERT2, that labels On direction-selective RGCs (oDSGCs) and characterize the survival and regenerative potential of these cells following optic nerve crush (ONC). In parallel, we use a previously characterized mouse line, Opn4CreERT2, to answer these same questions for M1 intrinsically photosensitive RGCs (ipRGCs). We find that both M1 ipRGCs and oDSGCs are resilient to injury but do not display long-distance axon regrowth following Lin28a overexpression. Unexpectedly, we found that M1 ipRGC, but not oDSGC, intraretinal axons exhibit ectopic branching and are misaligned near the optic disc between one- and three-weeks following injury. Additionally, we observe that numerous ectopic presynaptic specializations associate with misguided ipRGC intraretinal axons. Taken together, these results reveal insights into the injury response of M1 ipRGCs and oDSGCs, providing a foundation for future efforts seeking to restore visual system function following injury.


Assuntos
Traumatismos do Nervo Óptico , Semaforinas , Animais , Axônios/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Compressão Nervosa , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/metabolismo , Retina , Células Ganglionares da Retina/metabolismo , Semaforinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA