Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Water Res ; 266: 122369, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39243458

RESUMO

Highly hydrophilic extracellular polymeric substance (EPS) with gel-like structure seriously plagues the development of sludge deep dewatering. Oxysulfur radicals-based oxidation driven by iron-bearing mineral proposes a promising strategy for effective EPS decomposition. However, the transformation and involved interaction mechanisms of aromatic proteins are still controversial due to the complex EPS structure. Herein, sulfite mediated siderite (denoted as Fe(II)/S(IV)) was developed for targeted transformation aromatic amino acids in EPS oxidation to strengthen sludge solid-liquid separation. The enhanced sludge dewaterability were benefited from the Fe(II)/S(IV) bonded interaction assisted by Fe3+/Fe2+ as redox interface that facilitating the release of intracellular bound water via diminish the hydrophily and bind strength with solid protons. The amide region nitrogen of aromatic amino acids (especially tyrosine and tryptophan) originating from EPS presented looser structure and lower spatial site resistance, which were attributed to the exposure of hydrophobic sites in amino groups after Fe(II)/S(IV) treatment. Furthermore, the effective decline of aromatic amino acids in inner layer-EPS (loosely bound EPS and tightly bound EPS) was directed from Fe-N targeted interaction by triggering a series of sulfate-based radical chain reactions. The good correlation between electron transfer amount (R2 = 0.926) and Fe-N (R2 = 0.925) with bonding interaction demonstrated that the complexation of aromatic amino acids with Fe sites on siderite/sulfite via Fe-N bonds, accounting for efficient sludge solid-liquid separation. This study deepens the understanding of sludge organic matter targeted transformation and provides a tactic for iron-based conditioning of sludge.

2.
Environ Sci Technol ; 58(28): 12430-12440, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38968084

RESUMO

Soil organic carbon (SOC) is pivotal for both agricultural activities and climate change mitigation, and biochar stands as a promising tool for bolstering SOC and curtailing soil carbon dioxide (CO2) emissions. However, the involvement of biochar in SOC dynamics and the underlying interactions among biochar, soil microbes, iron minerals, and fresh organic matter (FOM, such as plant debris) remain largely unknown, especially in agricultural soils after long-term biochar amendment. We therefore introduced FOM to soils with and without a decade-long history of biochar amendment, performed soil microcosm incubations, and evaluated carbon and iron dynamics as well as microbial properties. Biochar amendment resulted in 2-fold SOC accrual over a decade and attenuated FOM-induced CO2 emissions by approximately 11% during a 56-day incubation through diverse pathways. Notably, biochar facilitated microbially driven iron reduction and subsequent Fenton-like reactions, potentially having enhanced microbial extracellular electron transfer and the carbon use efficiency in the long run. Throughout iron cycling processes, physical protection by minerals could contribute to both microbial carbon accumulation and plant debris preservation, alongside direct adsorption and occlusion of SOC by biochar particles. Furthermore, soil slurry experiments, with sterilization and ferrous iron stimulation controls, confirmed the role of microbes in hydroxyl radical generation and biotic carbon sequestration in biochar-amended soils. Overall, our study sheds light on the intricate biotic and abiotic mechanisms governing carbon dynamics in long-term biochar-amended upland soils.


Assuntos
Carbono , Ferro , Microbiologia do Solo , Solo , Solo/química , Ferro/química , Ferro/metabolismo , Carvão Vegetal/química , Dióxido de Carbono/metabolismo
3.
R Soc Open Sci ; 11(4): 231991, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38633354

RESUMO

Cable bacteria are long, filamentous bacteria with a unique metabolism involving centimetre-scale electron transport. They are widespread in the sediment of seasonally hypoxic systems and their metabolic activity stimulates the dissolution of iron sulfides (FeS), releasing large quantities of ferrous iron (Fe2+) into the pore water. Upon contact with oxygen, Fe2+ oxidation forms a layer of iron(oxyhydr)oxides (FeOx), which in its turn can oxidize free sulfide (H2S) and trap phosphorus (P) diffusing upward. The metabolism of cable bacteria could thus prevent the release of H2S from the sediment and reduce the risk of euxinia, while at the same time modulating P release over seasonal timescales. However, experimental support for this so-called 'iron firewall hypothesis' is scarce. Here, we collected natural sediment in a seasonally hypoxic basin in three different seasons. Undisturbed sediment cores were incubated under anoxic conditions and the effluxes of H2S, dissolved iron (dFe) and phosphate (PO4 3-) were monitored for up to 140 days. Cores with recent cable bacterial activity revealed a high stock of sedimentary FeOx, which delayed the efflux of H2S for up to 102 days. Our results demonstrate that the iron firewall mechanism could exert an important control on the prevalence of euxinia and regulate the P release in coastal oceans.

4.
Proc Natl Acad Sci U S A ; 121(9): e2317394121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377212

RESUMO

Effectively managing sewage sludge from Fenton reactions in an eco-friendly way is vital for Fenton technology's viability in pollution treatment. This study focuses on sewage sludge across various treatment stages, including generation, concentration, dehydration, and landfill, and employs chemical composite MoS2 to facilitate green resource utilization of all types of sludge. MoS2, with exposed Mo4+ and low-coordination sulfur, enhances iron cycling and creates an acidic microenvironment on the sludge surface. The MoS2-modified iron sludge exhibits outstanding (>95%) phenol and pollutant degradation in hydrogen peroxide and peroxymonosulfate-based Fenton systems, unlike unmodified sludge. This modified sludge maintains excellent Fenton activity in various water conditions and with multiple anions, allowing extended phenol degradation for over 14 d. Notably, the generated chemical oxygen demand (COD) in sludge modification process can be efficiently eliminated through the Fenton reaction, ensuring effluent COD compliance and enabling eco-friendly sewage sludge resource utilization.

5.
Sci Total Environ ; 915: 170119, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38232828

RESUMO

The Carajás plateaus in Brazil host endemic epilithic vegetation ("campo rupestre") on top of ironstone duricrusts, known as canga. This capping rock is primarily composed of iron(III) oxide minerals and forms a physically resistant horizon. Field observations reveal an intimate interaction between canga's surface and two native sedges (Rhynchospora barbata and Bulbostylis cangae). These observations suggest that certain plants contribute to the biogeochemical cycling of iron. Iron dissolution features at the root-rock interface were characterised using synchrotron-based techniques, Raman spectroscopy and scanning electron microscopy. These microscale characterisations indicate that iron is preferentially leached in the rhizosphere, enriching the comparatively insoluble aluminium around root channels. Oxalic acid and other exudates were detected in active root channels, signifying ligand-controlled iron oxide dissolution, likely driven by the plants' requirements for goethite-associated nutrients such as phosphorus. The excess iron not uptaken by the plant can reprecipitate in and around roots, line root channels and cement detrital fragments in the soil crust at the base of the plants. The reprecipitation of iron is significant as it provides a continuously forming cement, which makes canga horizons a 'self-healing' cover and contributes to them being the world's most stable continuously exposed land surfaces. Aluminium hydroxide precipitates ("gibbsite cutans") were also detected, coating some of the root cavities, often in alternating layers with goethite. This alternating pattern may correspond with oscillating oxygen concentrations in the rhizosphere. Microbial lineages known to contain iron-reducing bacteria were identified in the sedge rhizospheric microbiome and likely contribute to the reductive dissolution of iron(III) oxides within canga. Drying or percolation of oxygenated water to these anaerobic niches have led to iron mineralisation of biofilms, detected in many root channels. This study sheds light on plants' direct and indirect involvement in canga evolution, with possible implications for revegetation and surface restoration of iron mine sites.


Assuntos
Compostos de Ferro , Ferro , Minerais , Rizosfera , Ferro/química , Compostos Férricos/análise , Alumínio/análise , Plantas , Óxidos , Raízes de Plantas/microbiologia , Solo/química
6.
Bioresour Technol ; 393: 130174, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072081

RESUMO

As dosing additives benefit for aerobic granular sludge (AGS) cultivation, effects of different concentrations (0, 10, 50 and 100 mg/L) of magnetic nanoparticles (Fe3O4 NPs) on aerobic granulation, contaminant removal and potential microbial community evolution related to acyl-homoserine lactones (AHLs) mediated bacterial communication were investigated with municipal wastewater. Results showed that the required time to achieve granulation ratio > 70 % was reduced by 60, 90 and 30 days in phase II with addition of 10, 50, 100 mg/L Fe3O4 NPs, respectively. 50 mg/L Fe3O4 NPs can improve contaminant removal efficiency. The promotion of relative abundance of AHLs-producing and AHLs-producing/quenching populations and AHLs-related functional genes accompanied with faster granulation. Iron-cycling-related bacteria were closely related with AHLs-related bacteria during AGS formation. Co-occurrence network analyses showed that AHLs-mediated communication may play an important role in coordinating microbial community composition and functional bacteria participating in nitrogen and polyphosphate metabolisms during aerobic granulation process.


Assuntos
Nanopartículas de Magnetita , Microbiota , Acil-Butirolactonas/metabolismo , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Percepção de Quorum , Esgotos/microbiologia
7.
New Phytol ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062903

RESUMO

Iron (Fe) is crucial for metabolic functions of living organisms. Plants access occluded Fe through interactions with rhizosphere microorganisms and symbionts. Yet, the interplay between Fe addition and plant-mycorrhizal interactions, especially the molecular mechanisms underlying mycorrhiza-assisted Fe processing in plants, remains largely unexplored. We conducted mesocosms in Pinus plants inoculated with different ectomycorrhizal fungi (EMF) Suillus species under conditions with and without Fe coatings. Meta-transcriptomic, biogeochemical, and X-ray fluorescence imaging analyses were applied to investigate early-stage mycorrhizal roots. While Fe addition promoted Pinus growth, it concurrently reduced mycorrhiza formation rate, symbiosis-related metabolites in plant roots, and aboveground plant carbon and macronutrient content. This suggested potential trade-offs between Fe-enhanced plant growth and symbiotic performance. However, the extent of this trade-off may depend on interactions between host plants and EMF species. Interestingly, dual EMF species were more effective at facilitating plant Fe uptake by inducing diverse Fe-related functions than single-EMF species. This subsequently triggered various Fe-dependent physiological and biochemical processes in Pinus roots, significantly contributing to Pinus growth. However, this resulted in a greater carbon allocation to roots, relatively reducing the aboveground plant carbon content. Our study offers critical insights into how EMF communities rebalance benefits of Fe-induced effects on symbiotic partners.

8.
PNAS Nexus ; 2(12): pgad421, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38111821

RESUMO

Iron is one of the Earth's most abundant elements and is required for essentially all forms of life. Yet, iron's reactivity with oxygen and poor solubility in its oxidized form (Fe3+) mean that it is often a limiting nutrient in oxic, near-neutral pH environments like Earth's ocean. In addition to being a vital nutrient, there is a diversity of aerobic organisms that oxidize ferrous iron (Fe2+) to harness energy for growth and biosynthesis. Accordingly, these organisms rely on access to co-existing Fe2+ and O2 to survive. It is generally presumed that such aerobic iron-oxidizing bacteria (FeOB) are relegated to low-oxygen regimes where abiotic iron oxidation rates are slower, yet some FeOB live in higher oxygen environments where they cannot rely on lower oxygen concentrations to overcome abiotic competition. We hypothesized that FeOB chemically alter their environment to limit abiotic interactions between Fe2+ and O2. To test this, we incubated the secreted metabolites (collectively known as the exometabolome) of the deep-sea iron- and hydrogen-oxidizing bacterium Ghiorsea bivora TAG-1 with ferrous iron and oxygen. We found that this FeOB's iron-oxidizing exometabolome markedly impedes the abiotic oxidation of ferrous iron, increasing the half-life of Fe2+ 100-fold from ∼3 to ∼335 days in the presence of O2, while the exometabolome of TAG-1 grown on hydrogen had no effect. Moreover, the few precipitates that formed in the presence of TAG-1's iron-oxidizing exometabolome were poorly crystalline, compared with the abundant iron particles that mineralized in the absence of abiotic controls. We offer an initial exploration of TAG-1's iron-oxidizing exometabolome and discuss potential key contributors to this process. Overall, our findings demonstrate that the exometabolome as a whole leads to a sustained accumulation of ferrous iron in the presence of oxygen, consequently altering the redox equilibrium. This previously unknown adaptation likely enables these microorganisms to persist in an iron-oxidizing and iron-precipitating world and could have impacts on the bioavailability of iron to FeOB and other life in iron-limiting environments.

9.
Chemosphere ; 344: 140321, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37788748

RESUMO

The preparation of Fe-MMT/WO3 composites by the hydrothermal method has been explored in this study for the construction of a chemical and photocatalytic catalyst for the reduction of U (VI). This research found that the visible light absorption and reduction potential of the Fe-MMT/WO3 composites were relatively superior compared to Fe-MMT and WO3 alone. Based on an evaluation of the performance of the Fe-MMT/WO3 composites under visible light irradiation, it was discovered that they had greater uranium extraction capacity, where the maximum extraction capacity of U (VI) was determined to be 1862.69 mg g-1, with removal efficiency reaching 93.32%. To investigate the electron transfer and U (VI) to U (IV) reduction mechanisms after the composite, XPS and DFT calculations were conducted. Results showed that Fe (II) is converted to a higher state Fe (III) and WO3 produce photoelectrons which together reduce U (VI) to U (IV). Moreover, the photoelectrons partially transferred to Fe-MMT with low reduction potential to reduce Fe (III) to Fe (II), allowing iron cycling during uranium extraction to be achieved.


Assuntos
Urânio , Ferro , Catálise , Luz , Transporte de Elétrons
10.
Front Microbiol ; 14: 1108245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520367

RESUMO

Haloalkaliphilic microorganisms are double extremophiles functioning optimally at high salinity and pH. Their typical habitats are soda lakes, geologically ancient yet widespread ecosystems supposed to harbor relict microbial communities. We compared metabolic features and their determinants in two strains of the natronophilic species Dethiobacter alkaliphilus, the only cultured representative of the class "Dethiobacteria" (Bacillota). The strains of D. alkaliphilus were previously isolated from geographically remote Mongolian and Kenyan soda lakes. The type strain AHT1T was described as a facultative chemolithoautotrophic sulfidogen reducing or disproportionating sulfur or thiosulfate, while strain Z-1002 was isolated as a chemolithoautotrophic iron reducer. Here, we uncovered the iron reducing ability of strain AHT1T and the ability of strain Z-1002 for thiosulfate reduction and anaerobic Fe(II) oxidation. Key catabolic processes sustaining the growth of both D. alkaliphilus strains appeared to fit the geochemical settings of two contrasting natural alkaline environments, sulfur-enriched soda lakes and iron-enriched serpentinites. This hypothesis was supported by a meta-analysis of Dethiobacterial genomes and by the enrichment of a novel phylotype from a subsurface alkaline aquifer under Fe(III)-reducing conditions. Genome analysis revealed multiheme c-type cytochromes to be the most probable determinants of iron and sulfur redox transformations in D. alkaliphilus. Phylogeny reconstruction showed that all the respiratory processes in this organism are likely provided by evolutionarily related early forms of unconventional octaheme tetrathionate and sulfite reductases and their structural analogs, OmhA/OcwA Fe(III)-reductases. Several phylogenetically related determinants of anaerobic Fe(II) oxidation were identified in the Z-1002 genome, and the oxidation process was experimentally demonstrated. Proteomic profiling revealed two distinct sets of multiheme cytochromes upregulated in iron(III)- or thiosulfate-respiring cells and the cytochromes peculiar for Fe(II) oxidizing cells. We suggest that maintaining high variation in multiheme cytochromes is an effective adaptive strategy to occupy geochemically contrasting alkaline environments. We propose that sulfur-enriched soda lakes could be secondary habitats for D. alkaliphilus compared to Fe-rich serpentinites, and that the ongoing evolution of Dethiobacterales could retrace the evolutionary path that may have occurred in prokaryotes at a turning point in the biosphere's history, when the intensification of the sulfur cycle outweighed the global significance of the iron cycle.

11.
Bioresour Technol ; 384: 129341, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37343801

RESUMO

The aim of this paper was to investigate the influence of Fe (III) on humification and free radicals evolution. The experimental data showed that the experimental group (CT) with Fe2(SO4)3 had a better degree of humification than the control group (CK). The humic substances (HS) content was 10% higher in CT (23.94 mg·g-1) than in CK (21.54 mg·g-1) in the final. Fe (III) contributed significantly to the formation of free radicals in HS. The amount of H2O2 in CT increased to 74.8 mmol·kg-1, while CK was only 46.5 mmol·kg-1. The content of semiquinone free radical was 10.32 × 1011 spins/mm3 in CT, 5.11 × 1011 spins/mm3 in CK in the end. Several iron-reducing bacteria were detected in composting, among which Paenibacillus was dominant. The above findings suggested that the application of Fe2(SO4)3 enhanced the iron reduction synergistic quinone redox cycling and promoted the generation of free radicals during the humification of composting.


Assuntos
Compostagem , Substâncias Húmicas , Substâncias Húmicas/análise , Peróxido de Hidrogênio , Quinonas , Radicais Livres , Oxirredução , Ferro , Solo
12.
Microorganisms ; 11(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36838412

RESUMO

Lateritic duricrusts cover iron ore deposits and form spatially restricted, unique canga ecosystems endangered by mining. Iron cycling, i.e., the dissolution and subsequent precipitation of iron, is able to restitute canga duricrusts, generating new habitats for endangered biota in post-mining landscapes. As iron-reducing bacteria can accelerate this iron cycling, we aim to retrieve microbial enrichment cultures suitable to mediate the large-scale restoration of cangas. For that, we collected water and sediment samples from the Carajás National Forest and cultivated the iron-reducing microorganisms therein using a specific medium. We measured the potential to reduce iron using ferrozine assays, growth rate and metabolic activity. Six out of seven enrichment cultures effectively reduced iron, showing that different environments harbor iron-reducing bacteria. The most promising enrichment cultures were obtained from environments with repeated flooding and drying cycles, i.e., periodically inundated grasslands and a plateau of an iron mining waste pile characterized by frequent soaking. Selected enrichment cultures contained iron-reducing and fermenting bacteria, such as Serratia and Enterobacter. We found higher iron-reducing potential in enrichment cultures with a higher cell density and microorganism diversity. The obtained enrichment cultures should be tested for canga restoration to generate benefits for biodiversity and contribute to more sustainable iron mining in the region.

13.
Chemosphere ; 311(Pt 2): 137140, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36343601

RESUMO

Per-fluoroalkyl substances (PFASs) have become ubiquitous in farmland ecosystems and pose risks to agricultural safety, and iron is often applied to farmland soils to reduce the availability of pollutants. However, the effects of iron amendment on the availability of PFASs in the soil and on the soil microbiome are not well understood. Here, we investigated the responses of wheat soil containing PFASs to iron addition using a 21-day experiment. Our results showed that iron amendment enhanced PFAS availability (p < 0.05) and stimulated superoxide dismutase (SOD) activity in the wheat soil (p < 0.05), but iron amendment decreased the activities of soil catalase (CAT) and peroxidase (POD) (p < 0.05). Soil bacterial community was more structurally stable than fungal community in response to iron addition, while species' pools were more stable in fungi than in bacteria (p < 0.05). Finally, PFPeA's availability in the wheat soil was the most important abiotic factors driving community succession of iron-cycling bacteria (p < 0.05). These results highlighted the potential interactions among PFASs' availability and microbial iron cycling in wheat farmland soil ecosystems and provided guidance in farmland environmental conservation and management.

14.
Glob Chang Biol ; 28(24): 7410-7427, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36149390

RESUMO

Dissolved organic matter (DOM) plays a vital role in biogeochemical processes and in determining the responses of soil organic matter (SOM) to global change. Although the quantity of soil DOM has been inventoried across diverse spatio-temporal scales, the underlying mechanisms accounting for variability in DOM dynamics remain unclear especially in upland ecosystems. Here, a gradient of SOM storage across 12 croplands in northeast China was used to understand links between DOM dynamics, microbial metabolism, and abiotic conditions. We assessed the composition, biodegradability, and key biodegradable components of DOM. In addition, SOM and mineral-associated organic matter (MAOM) composition, soil enzyme activities, oxygen availability, soil texture, and iron (Fe), Fe-bound organic matter, and nutrient concentrations were quantified to clarify the drivers of DOM quality (composition and biodegradability). The proportion of biodegradable DOM increased exponentially with decreasing initial DOM concentration due to larger fractions of depolymerized DOM that was rich in small-molecular phenols and proteinaceous components. Unexpectedly, the composition of DOM was decoupled from that of SOM or MAOM, but significantly related to enzymatic properties. These results indicate that microbial metabolism exhibited a dominant role in DOM generation. As DOM concentration declined, increased soil oxygen availability regulated DOM composition and enhanced its biodegradability mainly through mediating microbial metabolism and Fe oxidation. The oxygen-induced oxidation of Fe(II) to Fe(III) removed complex DOM compounds with large molecular weight. Moreover, increased oxygen availability stimulated oxidase-catalyzed depolymerization of aromatic substances, and promoted production of protein-like DOM components due to lower enzymatic C/N acquisition ratio. As global changes in temperature and moisture will have large impacts on soil oxygen availability, the role of oxygen in regulating DOM dynamics highlights the importance of integrating soil oxygen supply with microbial metabolism and Fe redox status to improve model predictions of soil carbon under climate change.


Assuntos
Ferro , Solo , Solo/química , Matéria Orgânica Dissolvida , Ecossistema , Oxigênio , Oxirredução
15.
Molecules ; 27(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080348

RESUMO

Nitrate-reducing iron(II) oxidation (NRFO) has been intensively reported in various bacteria. Iron(II) oxidation is found to be involved in both enzymatic and chemical reactions in nitrate-reducing Fe(II)-oxidizing microorganisms (NRFOMs). However, little is known about the relative contribution of biotic and abiotic reactions to iron(II) oxidation for the common nitrate reducers during the NRFO process. In this study, the typical nitrate reducers, four Enterobacter strains E. hormaechei, E. tabaci, E. mori and E. asburiae, were utilized as the model microorganisms. The comparison of the kinetics of nitrate, iron(II) and nitrite and N2O production in setups with and without iron(II) indicates a mixture of enzymatic and abiotic oxidation of iron(II) in all four Enterobacter strains. It was estimated that 22-29% of total oxidized iron(II) was coupled to microbial nitrate reduction by E. hormaechei, E. tabaci, E. mori, and E. asburiae. Enterobacter strains displayed an metabolic inactivity with heavy iron(III) encrustation on the cell surface in the NRFOmedium during days of incubation. Moreover, both respiratory and periplasmic nitrate-reducing genes are encoded by genomes of Enterobacter strains, suggesting that cell encrustation may occur with periplasmic iron(III) oxide precipitation as well as the surface iron(II) mineral coating for nitrate reducers. Overall, this study clarified the potential role of nitrate reducers in the biochemical cycling of iron under anoxic conditions, in turn, re-shaping their activity during denitrification because of cell encrustation with iron(III) minerals.


Assuntos
Ferro , Nitratos , Enterobacter/genética , Enterobacter/metabolismo , Compostos Ferrosos , Ferro/metabolismo , Minerais/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Óxidos de Nitrogênio , Oxirredução
16.
Front Microbiol ; 13: 931648, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35801098
17.
mSystems ; 7(2): e0104721, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35229646

RESUMO

Soil microbiota plays fundamental roles in maintaining ecosystem functions and services, including biogeochemical processes and plant productivity. Despite the ubiquity of soil microorganisms from the topsoil to deeper layers, their vertical distribution and contribution to element cycling in subsoils remain poorly understood. Here, nine soil profiles (0 to 135 cm) were collected at the local scale (within 300 km) from two canonical paddy soil types (Fe-accumuli and Hapli stagnic anthrosols), representing redoximorphic and oxidative soil types, respectively. Variations with depth in edaphic characteristics and soil bacterial and diazotrophic community assemblies and their associations with element cycling were explored. The results revealed that nitrogen and iron status were the most distinguishing edaphic characteristics of the two soil types throughout the soil profile. The acidic Fe-accumuli stagnic anthrosols were characterized by lower concentrations of free iron oxides and total iron in topsoil and ammonia in deeper layers compared with the Hapli stagnic anthrosols. The bacterial and diazotrophic community assemblies were mainly shaped by soil depth, followed by soil type. Random forest analysis revealed that nitrogen and iron cycling were strongly correlated in Fe-accumuli stagnic anthrosol, whereas in Hapli soil, available sulfur was the most important variable predicting both nitrogen and iron cycling. The distinctive biogeochemical processes could be explained by the differences in enrichment of microbial taxa between the two soil types. The main discriminant clades were the iron-oxidizing denitrifier Rhodanobacter, Actinobacteria, and diazotrophic taxa (iron-reducing Geobacter, Nitrospirillum, and Burkholderia) in Fe-accumuli stagnic anthrosol and the sulfur-reducing diazotroph Desulfobacca in Hapli stagnic anthrosol. IMPORTANCE Rice paddy ecosystems support nearly half of the global population and harbor remarkably diverse microbiomes and functions in a variety of soil types. Diazotrophs provide significant bioavailable nitrogen in paddy soil, priming nitrogen transformation and other biogeochemical processes. This study provides a novel perspective on the vertical distribution of bacterial and diazotrophic communities in two hydragric anthrosols. Microbiome analysis revealed divergent biogeochemical processes in the two paddy soil types, with a dominance of nitrogen-iron cycling processes in Fe-accumuli stagnic anthrosol and sulfur-nitrogen-iron coupling in Hapli stagnic anthrosol. This study advances our understanding of the multiple significant roles played by soil microorganisms, especially diazotrophs, in biogeochemical element cycles, which have important ecological and biogeochemical ramifications.


Assuntos
Microbiota , Solo , Solo/química , Bactérias , Ferro , Nitrogênio
18.
J Environ Sci (China) ; 113: 260-268, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34963535

RESUMO

Electron shuttles such cysteine play an important role in Fe cycle and its availability in soils, while the roles of pH and organic ligands in this process are poorly understood. Herein, the reductive dissolution process of goethite by cysteine were explored in the presence of organic ligands. Our results showed that cysteine exhibited a strong reactivity towards goethite - a typical iron minerals in paddy soils with a rate constant ranging from 0.01 to 0.1 hr-1. However, a large portion of Fe(II) appeared to be "structural species" retained on the surface. The decline of pH was favorable to generate more Fe(II) ions and enhancing tendency of Fe(II) release to solution. The decline of generation of Fe(II) by increasing pH was likely to be caused by a lower redox potential and the nature of cysteine pH-dependent adsorption towards goethite. Interestingly, the co-existence of oxalate and citrate ligands also enhanced the rate constant of Fe(II) release from 0.09 to 0.15 hr-1; nevertheless, they negligibly affected the overall generation of Fe(II) in opposition to the pH effect. Further spectroscopic evidence demonstrated that two molecules of cysteine could form disulfide bonds (S-S) to generate cystine through oxidative dehydration, and subsequently, inducing electron transfer from cysteine to the structural Fe(III) on goethite; meanwhile, those organic ligands act as Fe(II) "strippers". The findings of this work provide new insights into the understanding of the different roles of pH and organic ligands on the generation and release of Fe induced by electron shuttles in soils.


Assuntos
Cisteína , Compostos de Ferro , Compostos Férricos , Concentração de Íons de Hidrogênio , Ligantes , Minerais , Oxirredução , Solubilidade
20.
Front Microbiol ; 12: 667944, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539592

RESUMO

Microbial iron cycling influences the flux of major nutrients in the environment (e.g., through the adsorptive capacity of iron oxides) and includes biotically induced iron oxidation and reduction processes. The ecological extent of microbial iron cycling is not well understood, even with increased sequencing efforts, in part due to limitations in gene annotation pipelines and limitations in experimental studies linking phenotype to genotype. This is particularly true for the marine subseafloor, which remains undersampled, but represents the largest contiguous habitat on Earth. To address this limitation, we used FeGenie, a database and bioinformatics tool that identifies microbial iron cycling genes and enables the development of testable hypotheses on the biogeochemical cycling of iron. Herein, we survey the microbial iron cycle in diverse subseafloor habitats, including sediment-buried crustal aquifers, as well as surficial and deep sediments. We inferred the genetic potential for iron redox cycling in 32 of the 46 metagenomes included in our analysis, demonstrating the prevalence of these activities across underexplored subseafloor ecosystems. We show that while some processes (e.g., iron uptake and storage, siderophore transport potential, and iron gene regulation) are near-universal, others (e.g., iron reduction/oxidation, siderophore synthesis, and magnetosome formation) are dependent on local redox and nutrient status. Additionally, we detected niche-specific differences in strategies used for dissimilatory iron reduction, suggesting that geochemical constraints likely play an important role in dictating the dominant mechanisms for iron cycling. Overall, our survey advances the known distribution, magnitude, and potential ecological impact of microbe-mediated iron cycling and utilization in sub-benthic ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA