Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 876
Filtrar
1.
Eur J Cardiothorac Surg ; 66(2)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39120890

RESUMO

OBJECTIVES: Pharmacological postconditioning can protect against myocardial ischaemia-reperfusion injury during cardiac surgery with extracorporeal circulation. The aim of this study was to observe the protective effects of fructose-1,6-bisphosphate (FDP) postconditioning on myocardial ischaemia-reperfusion injury in patients undergoing cardiac valve replacement with extracorporeal circulation. METHODS: Patients undergoing elective mitral valve replacement and/or aortic valve replacement were divided into normal saline postconditioning group (NS group) and FDP postconditioning group (FDP group). The primary outcome was the plasma concentration of creatine kinase-MB (CK-MB). The secondary outcomes were the plasma concentrations of lactate dehydrogenase, CK, high-sensitivity C-reactive protein, alpha-hydroxybutyrate dehydrogenase and cardiac troponin I, the spontaneous cardiac rhythm recovery profile, the extracorporeal circulation time and duration of surgery, intensive care unit and postoperative hospitalization. RESULTS: Forty patients were randomly assigned to receive intervention and included in the analysis. The serum concentrations of CK-MB, lactate dehydrogenase, CK, cardiac troponin I, alpha-hydroxybutyrate dehydrogenase and high-sensitivity C-reactive protein at T1∼4 were lower in the FDP group than in the NS group (P < 0.001). Compared with the NS group, the dosage of dopamine administered 1-90 min after cardiac resuscitation, the spontaneous cardiac rhythm recovery time and the incidence of ventricular fibrillation were lower in the FDP group (P < 0.001, P < 0.001 and P = 0.040, respectively). The values of ST- changes were increased more significantly in the NS group than in the FDP group (median [standard deviation] 1.3 [0.3] mm vs 0.7 [0.2] mm; P < 0.001). Compared with the NS group, the time of recovery of ST-segment deviations was shorter in the FDP group (50.3 [12.3] min vs 34.6 [6.9] min; P < 0.001). CONCLUSIONS: The FDP postconditioning could improve both myocardial ischaemia-reperfusion injury and the spontaneous cardiac rhythm recovery during cardiac valve surgery with extracorporeal circulation.


Assuntos
Implante de Prótese de Valva Cardíaca , Traumatismo por Reperfusão Miocárdica , Humanos , Masculino , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/etiologia , Feminino , Método Duplo-Cego , Implante de Prótese de Valva Cardíaca/efeitos adversos , Implante de Prótese de Valva Cardíaca/métodos , Pessoa de Meia-Idade , Frutosedifosfatos/uso terapêutico , Frutosedifosfatos/administração & dosagem , Pós-Condicionamento Isquêmico/métodos , Valva Mitral/cirurgia , Creatina Quinase Forma MB/sangue , Idoso , Adulto , Circulação Extracorpórea/métodos , Valva Aórtica/cirurgia
2.
J Int Med Res ; 52(8): 3000605241261912, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39088656

RESUMO

OBJECTIVE: To investigate the cerebroprotective effects of leptin in vitro and in vivo via the Janus kinase-2 (JAK2)/transcription factor signal transducer and activators of transcription-3 (STAT3) pathway and leptin receptors (LEPR). METHODS: The study used the cellular oxygen-glucose deprivation (OGD) model in PC12 cells and the middle cerebral artery occlusion (MCAO) rat model of cerebral ischaemia-reperfusion injury (CIRI) to assess changes in gene expression and protein levels following leptin pretreatment. The methylated DNA immunoprecipitation (MeDIP) assay measured DNA methylation levels. RESULTS: The optimal leptin concentration for exerting neuroprotective effects against ischaemia-reperfusion injury in PC12 cells was 200 ng/ml in vitro, but excessive leptin diminished this effect. Leptin pretreatment in the MCAO rat model demonstrated a similar effect to previously reported leptin administration post-CIRI. In addition to regulating the expression of inflammation-related cytokines, Western blot analysis showed that leptin pretreatment upregulated BCL-2 and downregulated caspase 3 levels. The MeDIP analysis demonstrated that DNA methylation regulated LEPR gene expression in the MCAO rat model when leptin pretreatment was used. CONCLUSION: Exogenous leptin might bind to extra-activated LEPR by reducing the methylation level of the LEPR gene promoter region, which leads to an increase in phosphorylated JAK2/STAT3 and apoptotic signalling pathways.


Assuntos
Metilação de DNA , Janus Quinase 2 , Leptina , Ratos Sprague-Dawley , Receptores para Leptina , Traumatismo por Reperfusão , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Janus Quinase 2/metabolismo , Ratos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptores para Leptina/metabolismo , Receptores para Leptina/genética , Masculino , Leptina/metabolismo , Células PC12 , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Apoptose/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Caspase 3/metabolismo
3.
Rev Cardiovasc Med ; 25(2): 67, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39077342

RESUMO

Background: Ischaemia-reperfusion injury (IRI) is the damage that occurs when blood flow is restored to a tissue or organ after a period of ischaemia. Postconditioning is a therapeutic strategy aimed at reducing the tissue damage caused by IRI. Postconditioning in rodents is a useful tool to investigate the potential mechanisms of postconditioning. Currently, there is no convenient approach for postconditioning rodents. Methods: Rats were subjected to a balloon postconditioning procedure. A balloon was used to control the flow in the vessel. This allowed for easy and precise manipulation of perfusion. Evans blue and triphenyltetrazolium chloride (TTC) double staining were used to determine the infarct size. Apoptosis in the myocardium was visualised and quantified by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Western blotting was performed to assess the expression of key apoptotic proteins, i.e., B-cell lymphoma 2 (Bcl-2), Bcl-2 Associated X (Bax), and cleaved caspase-3. Results: The balloon control approach to postconditioning provided accurate control of coronary blood flow and simplified the postconditioning manipulation. Infarct size reduction was observed in IRI rats after post-conditioning. There was a decrease in cardiac apoptosis in IRI rats after conditioning, as detected by TUNEL staining. IRI rats showed increased Bcl-2 levels and decreased Bax and cleaved caspase-3 levels in the myocardium. Conclusions: Postconditioning was successfully applied in rats using this novel approach. Postconditioning with this approach reduced infarct size and apoptosis in the area at risk.

4.
J Physiol ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39057844

RESUMO

Renal ischaemia and reperfusion (I/R) is caused by a sudden temporary impairment of the blood flow. I/R is a prevalent cause of acute kidney injury. As nitric oxide generated by inducible nitric oxide synthase (iNOS) has detrimental effects during I/R, the pharmacological blockade of iNOS has been proposed as a potential strategy to prevent I/R injury. The aim of this study was to improve the understanding of 1400W (an iNOS inhibitor) on renal I/R as a pharmacological strategy against kidney disease. BALB/c mice received 30 min of bilateral ischaemia, followed by 48 h or 28 days of reperfusion. Vehicle or 1400W (10 mg/kg) was administered 30 min before inducing ischaemia. We found that after 48 h of reperfusion 1400W decreased the serum creatinine, blood urea nitrogen, neutrophil gelatinase-associated lipocalin and proliferating cell nuclear antigen 3 in the I/R animals. Unexpectedly, we observed mRNA upregulation of genes involved in kidney injury, cell-cycle arrest, inflammation, mesenchymal transition and endothelial activation in the renal medulla of sham animals treated with 1400W. We also explored if 1400W promoted chronic kidney dysfunction 28 days after I/R and did not find significant alterations in renal function, fibrosis, blood pressure or mortality. The results provide evidence that 1400W may have adverse effects in the renal medulla. Importantly, our data point to 1400W-induced endothelial dysfunction, establishing therapeutic limitations for its use. KEY POINTS: Acute kidney injury is a global health problem associated with high morbidity and mortality. The pharmacological blockade of inducible nitric oxide synthase (iNOS) has been proposed as a potential strategy to prevent AKI induced by ischaemia and reperfusion (I/R). Our main finding is that 1400W, a selective and irreversible iNOS inhibitor with low toxicity that is proposed as a therapeutic strategy to prevent kidney I/R injury, produces aberrant gene expression in the medulla associated to tissue injury, cell cycle arrest, inflammation, mesenchymal transition and endothelial activation. The negative effect of 1400W observed in the renal medulla at 48 h from drug administration, is transient as it did not translate into a chronic kidney disease condition.

5.
Int Immunopharmacol ; 140: 112761, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39079349

RESUMO

Myocardial ischaemia-reperfusion injury (MIRI) caused by the treatment of acute myocardial infarction (AMI) is the primary cause of severe ventricular remodelling, heart failure (HF), and high mortality. In recent studies, research on the role of necroptosis in MIRI has focused on cardiomyocytes, but new biomarkers and immunocyte mechanisms of necroptosis are rarely studied. In the present study, weighted gene co-expression network analysis (WGCNA) algorithms were used to establish a weighted gene co-expression network, and Casp1, Hpse, Myd88, Ripk1, and Tpm3 were identified as biological markers of necroptosis using least absolute shrinkage, selection operator (LASSO) regression and support vector machine (SVM) feature selection algorithms. The role and discriminatory power of these five genes in MIRI had never been studied. Single-cell and cell-talk analyses showed that hub genes of necroptosis were focused on macrophages, which mediate the functions of monocytes, fibroblasts, haematopoietic stem cells, and cardiomyocytes, primarily through the TNF/TNFRSF1A interaction. The polarisation and functional activation of macrophages were affected by the MIF signalling network (MIF CD74/CXCR4 and MIF CD74/CD44) of other cells. The results of the immune infiltration assay showed that the five genes involved in necroptosis were significantly related to the infiltration and functional activity of M2 macrophages. TWS-119 is predicted to be a molecular drug that targets key MIRI genes. A mouse model was established to confirm the expression of five hub genes, and ventricular remodelling increased with time after ischaemia-reperfusion injury (IRI). Therefore, Casp1, Hpse, Myd88, Ripk1, and Tpm3 may be key genes regulating necroptosis and polarisation in macrophages, and causing ventricular remodelling.

6.
Diabetes Obes Metab ; 26(9): 3940-3957, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38988216

RESUMO

AIM: Post-transcriptional modifications and their specific mechanisms are the focus of research on the regulation of myocardial damage. Stress granules (SGs) can inhibit the inflammatory response by inhibiting the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. This study investigated whether alkylation repair homologue protein 5 (ALKBH5) could affect myocardial inflammation and apoptosis during diabetic myocardial ischaemia-reperfusion injury (IRI) through the cGAS-STING pathway via SGs. METHODS: A diabetes ischaemia-reperfusion rat model and a high glucose hypoxia/reoxygenation cell model were established. Adeno-associated virus (AAV) and lentivirus (LV) were used to overexpress ALKBH5, while the SG agonist arsenite (Ars) and the SG inhibitor anisomycin were used as interventions. Then, the levels of apoptosis and related indicators in the cell and rat models were measured. RESULTS: In the in vivo experiment, compared with the normal sham group, the degree of myocardial tissue damage, creatine kinase-MB and cardiac troponin I in serum, and myocardial apoptosis, the infarcted area of myocardium, and the level of B-cell lymphoma 2 associated X protein, cGAS-STING pathway and inflammatory factors in the diabetes ischaemia-reperfusion group were significantly increased. However, the expression of SGs and the levels of ALKBH5, rat sarcoma-GTPase-activating protein-binding protein 1, T-cell intracellular antigen-1 and Bcl2 were significantly decreased. After AAV-ALKBH5 intervention, the degree of myocardial tissue damage, degree of myocardial apoptosis, and extent of myocardial infarction in myocardial tissue were significantly decreased. In the in vitro experiment, compared with those in the normal control group, the levels of lactate dehydrogenase, inflammation and apoptosis were significantly greater, and cell viability and the levels of ALKBH5 and SGs were decreased in the high glucose and hypoxia/reoxygenation groups. In the high glucose hypoxia/reoxygenation cell model, the degree of cell damage, inflammation, and apoptosis was greater than those in the high glucose and hypoxia/reoxygenation models, and the levels of ALKBH5 and SGs were further decreased. LV-ALKBH5 and Ars alleviated the degree of cell damage and inhibited inflammation and cell apoptosis. The inhibition of SGs could partly reverse the protective effect of LV-ALKBH5. The cGAS agonist G140 antagonized the inhibitory effects of the SG agonist Ars on cardiomyocyte apoptosis, inflammation and the cGAS-STING pathway. CONCLUSION: Both ALKBH5 and SGs inhibited myocardial inflammation and apoptosis during diabetic myocardial ischaemia-reperfusion. Mechanistically, ALKBH5 might inhibit the apoptosis of cardiomyocytes by promoting the expression of SGs through the cGAS-STING pathway.


Assuntos
Apoptose , Traumatismo por Reperfusão Miocárdica , Transdução de Sinais , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Ratos , Masculino , Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Ratos Sprague-Dawley , Diabetes Mellitus Experimental/metabolismo
7.
Eur Heart J ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842545

RESUMO

BACKGROUND AND AIMS: The spleen serves as an important relay organ that releases cardioprotective factor(s) upon vagal activation during remote ischaemic conditioning (RIC) in rats and pigs. The translation of these findings to humans was attempted. METHODS: Remote ischaemic conditioning or electrical auricular tragus stimulation (ATS) were performed in 10 healthy young volunteers, 10 volunteers with splenectomy, and 20 matched controls. Venous blood samples were taken before and after RIC/ATS or placebo, and a plasma dialysate was infused into isolated perfused rat hearts subjected to global ischaemia/reperfusion. RESULTS: Neither left nor right RIC or ATS altered heart rate and heart rate variability in the study cohorts. With the plasma dialysate prepared before RIC or ATS, respectively, infarct size (% ventricular mass) in the recipient rat heart was 36 ± 6% (left RIC), 34 ± 3% (right RIC) or 31 ± 5% (left ATS), 35 ± 5% (right ATS), and decreased with the plasma dialysate from healthy volunteers after RIC or ATS to 20 ± 4% (left RIC), 23 ± 6% (right RIC) or to 19 ± 4% (left ATS), 26 ± 9% (right ATS); infarct size was still reduced with plasma dialysate 4 days after ATS and 9 days after RIC. In a subgroup of six healthy volunteers, such infarct size reduction was abrogated by intravenous atropine. Infarct size reduction by RIC or ATS was also abrogated in 10 volunteers with splenectomy, but not in their 20 matched controls. CONCLUSIONS: In humans, vagal innervation and the spleen as a relay organ are decisive for the cardioprotective signal transduction of RIC and ATS.

8.
Acta Pharmacol Sin ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937576

RESUMO

Reperfusion injury, which is distinct from ischaemic injury, occurs when blood flow is restored in previously ischaemic brain tissue, further compromising neurons and other cells and worsening the injury. There is currently a lack of pharmaceutical agents and therapeutic interventions that specifically mitigate cerebral ischaemia/reperfusion (I/R) injury. Ginsenoside Rg1 (Rg1), a protopanaxatriol-type saponin isolated from Panax ginseng C. A. Meyer, has been found to protect against cerebral I/R injury, but its intricate protective mechanisms remain to be elucidated. Numerous studies have shown that autophagy plays a crucial role in protecting brain tissue during the I/R process and is emerging as a promising therapeutic strategy for effective treatment. In this study, we investigated whether Rg1 protected against I/R damage in vitro and in vivo by regulating autophagy. Both MCAO and OGD/R models were established. SK-N-AS and SH-SY5Y cells were subjected to OGD followed by reperfusion with Rg1 (4-32 µM). MCAO mice were injected with Rg1 (30 mg·kg-1·d-1. i.p.) for 3 days before and on the day of surgery. Rg1 treatment significantly mitigated ischaemia/reperfusion injury both in vitro and in vivo. Furthermore, we demonstrated that the induction of autophagy contributed to I/R injury, which was effectively inhibited by Rg1 in both in vitro and in vivo models of cerebral I/R injury. Rg1 inhibited autophagy through multiple steps, including impeding autophagy initiation, inducing lysosomal dysfunction and inhibiting cathepsin enzyme activities. We revealed that mTOR activation was pivotal in mediating the inhibitory effect of Rg1 on autophagy. Treatment with Torin-1, an autophagy inducer and mTOR-specific inhibitor, significantly reversed the impact of Rg1 on autophagy, decreasing its protective efficacy against I/R injury both in vitro and in vivo. In conclusion, our results suggest that Rg1 may serve as a promising drug candidate against cerebral I/R injury by inhibiting autophagy through activation of mTOR signalling.

9.
Int J Cardiol ; 410: 132227, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38844091

RESUMO

BACKGROUND: Acute ST-elevation myocardial infarction (STEMI) remains a globally significant health challenge in spite of improvement in management strategy. Being aware that mitochondrial dysfunction plays a crucial role in ischaemia-reperfusion injury (IRI) modulation, empirical evidence suggests functional mitochondrial transplantation strikes as a reliable therapeutic approach for patients with acute myocardial infarction. METHODS AND RESULTS: We conducted a prospective, triple-blinded, parallel-group, blocked randomised clinical trial to investigate the therapeutic effects and clinical outcomes of platelet-derived mitochondrial transplantation in 30 patients with acute STEMI, such that the 15 subjects in the control group were given standard of care treatment, whereas the subjects in the intervention group received autologous platelet-derived mitochondria through the intracoronary injection. We observed that within 40 days, the intervention group had a slightly greater improvement in the left ventricular ejection fraction (LVEF) compared to the control group and experienced a significant enhancement in the exercise capacity (p < 0.001). Moreover, major adverse cardiac events (MACE), arrhythmia, fever, and tachycardia were compared between the groups and lack of significant difference marks the safety of mitochondrial transplantation (p > 0.05). Furthermore, the two groups were not significantly distinct as regards the average length of stay for a hospitalisation (p > 0.05). CONCLUSION: We suggest platelet-derived mitochondrial transplantation appears as a beneficial and highly promising therapeutic option for patients of ischaemic heart disease (IHD); however, we are aware that further in-depth studies with larger sample sizes along with longer follow-up periods are necessary for validating the clinical implications of our findings.


Assuntos
Plaquetas , Isquemia Miocárdica , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Prospectivos , Resultado do Tratamento , Isquemia Miocárdica/cirurgia , Isquemia Miocárdica/terapia , Infarto do Miocárdio com Supradesnível do Segmento ST/cirurgia , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Idoso , Mitocôndrias/transplante
10.
Clin Sci (Lond) ; 138(10): 599-614, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739452

RESUMO

AIM: Acute kidney injury (AKI) increases the risk for progressive chronic kidney disease (CKD). MicroRNA (miR)-486-5p protects against kidney ischemia-reperfusion (IR) injury in mice, although its long-term effects on the vasculature and development of CKD are unknown. We studied whether miR-486-5p would prevent the AKI to CKD transition in rat, and affect vascular function. METHODS: Adult male rats were subjected to bilateral kidney IR followed by i.v. injection of liposomal-packaged miR-486-5p (0.5 mg/kg). Kidney function and histologic injury were assessed after 24 h and 10 weeks. Kidney endothelial protein levels were measured by immunoblot and immunofluorescence, and mesenteric artery reactivity was determined by wire myography. RESULTS: In rats with IR, miR-486-5p blocked kidney endothelial cell increases in intercellular adhesion molecule-1 (ICAM-1), reduced neutrophil infiltration and histologic injury, and normalized plasma creatinine (P<0.001). However, miR-486-5p attenuated IR-induced kidney endothelial nitric oxide synthase (eNOS) expression (P<0.05). At 10 weeks, kidneys from rats with IR alone had decreased peritubular capillary density and increased interstitial collagen deposition (P<0.0001), and mesenteric arteries showed impaired endothelium-dependent vasorelaxation (P<0.001). These changes were inhibited by miR-486-5p. Delayed miR-486-5p administration (96 h, 3 weeks after IR) had no impact on kidney fibrosis, capillary density, or endothelial function. CONCLUSION: In rats, administration of miR-486-5p early after kidney IR prevents injury, and protects against CKD development and systemic endothelial dysfunction. These protective effects are associated with inhibition of endothelial ICAM-1 and occur despite reduction in eNOS. miR-486-5p holds promise for the prevention of ischemic AKI and its complications.


Assuntos
Injúria Renal Aguda , Molécula 1 de Adesão Intercelular , Rim , MicroRNAs , Ratos Sprague-Dawley , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Masculino , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Insuficiência Renal Crônica/prevenção & controle , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Rim/patologia , Rim/irrigação sanguínea , Rim/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/metabolismo
11.
Autoimmunity ; 57(1): 2345919, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38721693

RESUMO

Dual-specificity phosphatase 12 (DUSP12) is abnormally expressed under various pathological conditions and plays a crucial role in the pathological progression of disorders. However, the role of DUSP12 in cerebral ischaemia/reperfusion injury has not yet been investigated. This study explored the possible link between DUSP12 and cerebral ischaemia/reperfusion injury using an oxygen-glucose deprivation/reoxygenation (OGD/R) model. Marked decreases in DUSP12 levels have been observed in cultured neurons exposed to OGD/R. DUSP12-overexpressed neurons were resistant to OGD/R-induced apoptosis and inflammation, whereas DUSP12-deficient neurons were vulnerable to OGD/R-evoked injuries. Further investigation revealed that DUSP12 overexpression or deficiency affects the phosphorylation of apoptosis signal-regulating kinase 1 (ASK1), c-Jun NH2-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) in neurons under OGD/R conditions. Moreover, blockade of ASK1 diminished the regulatory effect of DUSP12 deficiency on JNK and p38 MAPK activation. In addition, DUSP12-deficiency-elicited effects exacerbating neuronal OGD/R injury were reversed by ASK1 blockade. In summary, DUSP12 protects against neuronal OGD/R injury by reducing apoptosis and inflammation through inactivation of the ASK1-JNK/p38 MAPK pathway. These findings imply a neuroprotective function for DUSP12 in cerebral ischaemia/reperfusion injury.


Assuntos
Apoptose , Fosfatases de Especificidade Dupla , Glucose , Inflamação , MAP Quinase Quinase Quinase 5 , Neurônios , Oxigênio , Traumatismo por Reperfusão , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Camundongos , Células Cultivadas , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/genética , Glucose/metabolismo , Inflamação/metabolismo , Inflamação/patologia , MAP Quinase Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases , Neurônios/metabolismo , Neurônios/patologia , Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Proteína Quinase 14 Ativada por Mitógeno
12.
J Extracell Vesicles ; 13(5): e12445, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711334

RESUMO

Small extracellular vesicles (sEV) derived from various cell sources have been demonstrated to enhance cardiac function in preclinical models of myocardial infarction (MI). The aim of this study was to compare different sources of sEV for cardiac repair and determine the most effective one, which nowadays remains limited. We comprehensively assessed the efficacy of sEV obtained from human primary bone marrow mesenchymal stromal cells (BM-MSC), human immortalized MSC (hTERT-MSC), human embryonic stem cells (ESC), ESC-derived cardiac progenitor cells (CPC), human ESC-derived cardiomyocytes (CM), and human primary ventricular cardiac fibroblasts (VCF), in in vitro models of cardiac repair. ESC-derived sEV (ESC-sEV) exhibited the best pro-angiogenic and anti-fibrotic effects in vitro. Then, we evaluated the functionality of the sEV with the most promising performances in vitro, in a murine model of MI-reperfusion injury (IRI) and analysed their RNA and protein compositions. In vivo, ESC-sEV provided the most favourable outcome after MI by reducing adverse cardiac remodelling through down-regulating fibrosis and increasing angiogenesis. Furthermore, transcriptomic, and proteomic characterizations of sEV derived from hTERT-MSC, ESC, and CPC revealed factors in ESC-sEV that potentially drove the observed functions. In conclusion, ESC-sEV holds great promise as a cell-free treatment for promoting cardiac repair following MI.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Infarto do Miocárdio , Miócitos Cardíacos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Humanos , Animais , Camundongos , Infarto do Miocárdio/terapia , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Fibroblastos/metabolismo , Masculino , Traumatismo por Reperfusão Miocárdica/terapia , Traumatismo por Reperfusão Miocárdica/metabolismo , Modelos Animais de Doenças , Neovascularização Fisiológica , Células Cultivadas
13.
Int J Clin Exp Pathol ; 17(4): 151-164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716349

RESUMO

OBJECTIVES: Acute Kidney Injury (AKI) and Chronic Kidney Disease (CKD) are increasingly recognised as one disease continuum, rather than distinct entities, and are associated with a huge burden to healthcare services. The leading cause of AKI worldwide is Ischaemia Reperfusion Injury (IRI), most commonly seen in clinical settings of sepsis-driven hypotension. Ischaemic Preconditioning (IPC) is a strategy aimed at reducing the deleterious effects of IRI. The objectives of this study were to demonstrate an efficacious in vivo model of Kidney IRI, and the protective influence of IPC in attenuating AKI and development of renal fibrosis. METHODS: A rat model of bilateral kidney IRI was used: Male Lewis rats (n=84) were assigned to IRI, sham or IPC. In IRI, renal pedicles were clamped for 45 minutes. IPC groups underwent pulsatile IPC prior to IRI. Kidneys were retrieved at 24 hours, 48 hours, 7 days, 14 days and 28 days, and assessed histologically. RESULTS: IRI led to marked AKI (24-48 h) and renal fibrosis development by 28 days. IPC attenuated this damage, with 66% less fibrosis. Interestingly, at 14-days, the histological appearance of both IRI and IPC kidneys was rather similar, potentially representing an important transitional point at which kidneys commit to either fibrosis or recovery. This may provide a suitable inflexion point for introduction of novel anti-fibrotic therapies. CONCLUSIONS: In conclusion, we have characterised a model of kidney injury from acute to chronic phases, allowing detailed mechanistic understanding and which can be manipulated by effective treatment strategies such as IPC.

14.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791106

RESUMO

Acute kidney injury (AKI) is common following liver transplantation and is associated with liver ischeamia reperfusion (IR) injury. The purpose of this study was to use a mouse model of liver IR injury and AKI to study the role of Neutrophil Gelatinase Associated Lipocalin (NGAL), a biomarker of AKI, in liver IR injury and AKI. We demonstrate an adapted, reproducible model of liver IR injury and AKI in which remote ischemic preconditioning (RIPC) by repeated episodes of hindleg ischemia prior to liver IR reduced the severity of the IR injury. In this model, serum NGAL at 2 h post reperfusion correlated with AKI development early following IR injury. This early rise in serum NGAL was associated with hepatic but not renal upregulation of NGAL mRNA, suggesting NGAL production in the liver but not the kidney in the early phase post liver IR injury.


Assuntos
Injúria Renal Aguda , Precondicionamento Isquêmico , Lipocalina-2 , Fígado , Traumatismo por Reperfusão , Animais , Masculino , Camundongos , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Biomarcadores , Modelos Animais de Doenças , Precondicionamento Isquêmico/métodos , Rim/metabolismo , Lipocalina-2/metabolismo , Lipocalina-2/sangue , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/metabolismo
16.
Gut ; 73(9): 1543-1553, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38724220

RESUMO

OBJECTIVE: Previous studies indicate that eosinophils are recruited into the allograft following orthotopic liver transplantation and protect from ischaemia reperfusion (IR) injury. In the current studies, we aim to explore whether their protective function could outlast during liver repair. DESIGN: Eosinophil-deficient mice and adoptive transfer of bone marrow-derived eosinophils (bmEos) were employed to investigate the effects of eosinophils on tissue repair and regeneration after hepatic IR injury. Aside from exogenous cytokine or neutralising antibody treatments, mechanistic studies made use of a panel of mouse models of eosinophil-specific IL-4/IL-13-deletion, cell-specific IL-4rα-deletion in liver macrophages and hepatocytes and macrophage-specific deletion of heparin-binding epidermal growth factor-like growth factor (hb-egf). RESULT: We observed that eosinophils persisted over a week following hepatic IR injury. Their peak accumulation coincided with that of hepatocyte proliferation. Functional studies showed that eosinophil deficiency was associated with a dramatic delay in liver repair, which was normalised by the adoptive transfer of bmEos. Mechanistic studies demonstrated that eosinophil-derived IL-4, but not IL-13, was critically involved in the reparative function of these cells. The data further revealed a selective role of macrophage-dependent IL-4 signalling in liver regeneration. Eosinophil-derived IL-4 stimulated macrophages to produce HB-EGF. Moreover, macrophage-specific hb-egf deletion impaired hepatocyte regeneration after IR injury. CONCLUSION: Together, these studies uncovered an indispensable role of eosinophils in liver repair after acute injury and identified a novel crosstalk between eosinophils and macrophages through the IL-4/HB-EGF axis.


Assuntos
Eosinófilos , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Interleucina-4 , Regeneração Hepática , Macrófagos , Traumatismo por Reperfusão , Animais , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Regeneração Hepática/fisiologia , Traumatismo por Reperfusão/metabolismo , Interleucina-4/metabolismo , Camundongos , Eosinófilos/metabolismo , Macrófagos/metabolismo , Fígado/patologia , Fígado/metabolismo , Fígado/irrigação sanguínea , Hepatócitos/metabolismo , Interleucina-13/metabolismo , Transferência Adotiva , Camundongos Endogâmicos C57BL
17.
Eur J Pharmacol ; 976: 176698, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38821168

RESUMO

Myocardial infarction (MI) is a life-threatening cardiovascular disease that, on average, results in 8.5 million deaths worldwide each year. Timely revascularization of occluded vessels is a critical method of myocardial salvage. However, reperfusion paradoxically leads to the worsening of myocardial damage known as myocardial ischaemia/reperfusion injury (MI/RI). Therefore, reducing the size of myocardial infarction after reperfusion is critical and remains an important therapeutic goal. The susceptibility of the myocardium to MI/RI may be increased by diabetes. Currently, some traditional antidiabetic agents such as metformin reduce MI/RI by decreasing inflammation, inhibiting oxidative stress, and improving vascular endothelial function. This appears to be a new direction for the treatment of MI/RI. Recent cardiovascular outcome trials have shown that several oral antidiabetic agents, including glucagon-like peptide-1 receptor agonists (GLP-1RAs), dipeptidyl peptidase-4 inhibitors (DPP-4is), and sodium-glucose-linked transporter-2 inhibitors (SGLT-2is), not only have good antidiabetic effects but also have a protective effect on myocardial protection. This article aims to discuss the mechanisms and effects of oral antidiabetic agents, including GLP-1RAs, DPP-4is, and SGLT-2is, on MI/RI to facilitate their clinical application.


Assuntos
Inibidores da Dipeptidil Peptidase IV , Receptor do Peptídeo Semelhante ao Glucagon 1 , Hipoglicemiantes , Traumatismo por Reperfusão Miocárdica , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Animais , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Administração Oral , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon
18.
Toxicol Appl Pharmacol ; 487: 116954, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705402

RESUMO

Dual-specificity phosphatase 26 (DUSP26) acts as a pivotal player in the transduction of signalling cascades with its dephosphorylating activity. Currently, DUSP26 attracts extensive attention due to its particular function in several pathological conditions. However, whether DUSP26 plays a role in kidney ischaemia-reperfusion (IR) injury is unknown. Aims of the current work were to explore the relevance of DUSP26 in kidney IR damage. DUSP26 levels were found to be decreased in renal tubular epithelial cells following hypoxia-reoxygenation (HR) and kidney samples subjected to IR treatments. DUSP26-overexpressed renal tubular epithelial cells exhibited protection against HR-caused apoptosis and inflammation, while DUSP26-depleted renal tubular epithelial cells were more sensitive to HR damage. Upregulation of DUSP26 in rat kidneys by infecting adenovirus expressing DUSP26 markedly ameliorated kidney injury caused by IR, while also effectively reducing apoptosis and inflammation. The mechanistic studies showed that the activation of transforming growth factor-ß-activated kinase 1 (TAK1)-JNK/p38 MAPK, contributing to kidney injury under HR or IR conditions, was restrained by increasing DUSP26 expression. Pharmacological restraint of TAK1 markedly diminished DUSP26-depletion-exacebated effects on JNK/p38 activation and HR injury of renal tubular cells. The work reported a renal-protective function of DUSP26, which protects against IR-related kidney damage via the intervention effects on the TAK1-JNK/p38 axis. The findings laid a foundation for understanding the molecular pathogenesis of kidney IR injury and provide a prospective target for treating this condition.


Assuntos
Apoptose , Células Epiteliais , Túbulos Renais , MAP Quinase Quinase Quinases , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Traumatismo por Reperfusão/patologia , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Masculino , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/genética , Linhagem Celular , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Transdução de Sinais/fisiologia
19.
J Cell Mol Med ; 28(8): e18281, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652092

RESUMO

Conditions to which the cardiac graft is exposed during transplantation with donation after circulatory death (DCD) can trigger the recruitment of macrophages that are either unpolarized (M0) or pro-inflammatory (M1) as well as the release of extracellular vesicles (EV). We aimed to characterize the effects of M0 and M1 macrophage-derived EV administration on post-ischaemic functional recovery and glucose metabolism using an isolated rat heart model of DCD. Isolated rat hearts were subjected to 20 min aerobic perfusion, followed by 27 min global, warm ischaemia or continued aerobic perfusion and 60 min reperfusion with or without intravascular administration of EV. Four experimental groups were compared: (1) no ischaemia, no EV; (2) ischaemia, no EV; (3) ischaemia with M0-macrophage-dervied EV; (4) ischaemia with M1-macrophage-derived EV. Post-ischaemic ventricular and metabolic recovery were evaluated. During reperfusion, ventricular function was decreased in untreated ischaemic and M1-EV hearts, but not in M0-EV hearts, compared to non-ischaemic hearts (p < 0.05). In parallel with the reduced functional recovery in M1-EV versus M0-EV ischaemic hearts, rates of glycolysis from exogenous glucose and oxidative metabolism tended to be lower, while rates of glycogenolysis and lactate release tended to be higher. EV from M0- and M1-macrophages differentially affect post-ischaemic cardiac recovery, potentially by altering glucose metabolism in a rat model of DCD. Targeted EV therapy may be a useful approach for modulating cardiac energy metabolism and optimizing graft quality in the setting of DCD.


Assuntos
Vesículas Extracelulares , Transplante de Coração , Macrófagos , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Ratos , Macrófagos/metabolismo , Masculino , Transplante de Coração/métodos , Glucose/metabolismo , Miocárdio/metabolismo , Modelos Animais de Doenças , Recuperação de Função Fisiológica , Glicólise , Coração/fisiopatologia , Coração/fisiologia
20.
Clin Sci (Lond) ; 138(8): 491-514, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38639724

RESUMO

The non-stop provision of chemical energy is of critical importance to normal cardiac function, requiring the rapid turnover of ATP to power both relaxation and contraction. Central to this is the creatine kinase (CK) phosphagen system, which buffers local ATP levels to optimise the energy available from ATP hydrolysis, to stimulate energy production via the mitochondria and to smooth out mismatches between energy supply and demand. In this review, we discuss the changes that occur in high-energy phosphate metabolism (i.e., in ATP and phosphocreatine) during ischaemia and reperfusion, which represents an acute crisis of energy provision. Evidence is presented from preclinical models that augmentation of the CK system can reduce ischaemia-reperfusion injury and improve functional recovery. Energetic impairment is also a hallmark of chronic heart failure, in particular, down-regulation of the CK system and loss of adenine nucleotides, which may contribute to pathophysiology by limiting ATP supply. Herein, we discuss the evidence for this hypothesis based on preclinical studies and in patients using magnetic resonance spectroscopy. We conclude that the correlative evidence linking impaired energetics to cardiac dysfunction is compelling; however, causal evidence from loss-of-function models remains equivocal. Nevertheless, proof-of-principle studies suggest that augmentation of CK activity is a therapeutic target to improve cardiac function and remodelling in the failing heart. Further work is necessary to translate these findings to the clinic, in particular, a better understanding of the mechanisms by which the CK system is regulated in disease.


Assuntos
Insuficiência Cardíaca , Traumatismo por Reperfusão , Humanos , Creatina Quinase/metabolismo , Trifosfato de Adenosina/metabolismo , Coração , Metabolismo Energético/fisiologia , Traumatismo por Reperfusão/metabolismo , Fosfocreatina/metabolismo , Doença Crônica , Miocárdio/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA