Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 358: 120882, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663080

RESUMO

This study offers an insightful and detailed examination of microplastic pollution in the Huixian karst wetland's groundwater, providing novel insights into the complex interplay of microplastic characteristics and their seasonal dynamics. We meticulously quantified microplastic concentrations, observing significant seasonal variation with values ranging from 4.9 to 13.4 n·L-1 in the wet season and 0.53-49.4 n·L-1 in the dry season. Our analysis pinpoints human activities and atmospheric deposition as key contributors to this contamination. A critical finding of our research is the pronounced disparity in microplastic levels between open wells and covered artesian wells, highlighting the vulnerability of open wells to higher pollution levels. Through correlation analysis, we unearthed the crucial influence of the karst region's unique hydrogeological characteristics on microplastic migration, distinctively different from non-karst areas. The karst terrain, characterized by its caves and subterranean rivers, facilitates the downward movement of microplastics from surface to groundwater, exacerbating pollution levels. Our investigation identifies agricultural runoff and domestic wastewater as primary pollution sources. These findings not only underscore the urgent need for environmental stewardship in karst regions but also provide a crucial foundation for formulating effective strategies to mitigate microplastic pollution in karst groundwater. The implications of this study extend beyond the Huixian karst wetland, offering a template for addressing microplastic pollution in similar ecosystems globally.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Microplásticos , Estações do Ano , Poluentes Químicos da Água , Áreas Alagadas , Água Subterrânea/química , Água Subterrânea/análise , Poluentes Químicos da Água/análise , Microplásticos/análise , Ecossistema
2.
Parasitol Int ; 98: 102817, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37852573

RESUMO

Based on morphology and ITS sequence data, we identify and supplementally describe Gyrodactylus pseudorasborae Ondracková, Seifertová & Tkachenko, 2023 on the fins of topmouth gudgeon (Pseudoraspora parva) from freshwaters of southern China. The highest similarity (99.57% and 99.47%) to G. pseudorasborae suggested they were the same species. Prevalence and mean intensity were 45% and 2.3, respectively. The gyrodactylid species morphologically resembled G. pseudorasborae recorded from the same host species P. parva in Czech Republic, Ukraine, and Central China. But there were slight morphological differences in the shape and size of the marginal hook. Comparisons of marginal hook sickles of various Gyrodactylus species suggested that G. pseudorasborae and G. parvae were members of the G. wageneri-group. A molecular phylogeny of G. pseudorasborae with related species is presented and discussed within the context of the mechanism of local evolution of these sister species.


Assuntos
Cyprinidae , Doenças dos Peixes , Trematódeos , Animais , Cyprinidae/parasitologia , Filogenia , República Tcheca/epidemiologia , Ucrânia , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia
3.
Sci Total Environ ; 901: 165963, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37543316

RESUMO

China has one of the widest distributions of carbonate rocks in the world. Karst wetland is a special and important ecosystem of carbonate rock regions. Chlorophyll-a (Chla) concentration is a key indicator of eutrophication, and could quantitatively evaluate water quality status of karst wetland. However, the spectral reflectance characteristics of the water bodies of karst wetland are not yet clear, resulting in remote sensing retrieval of Chla with great challenges. This study is a pioneer in utilizing field-based full-spectrum hyperspectral data to reveal the spectral response characteristics of karst wetland water body and determine the sensitive spectral bands of Chla. We further evaluated the Chla retrieval performance of multi-platform spectral data between Analytical Spectral Device (ASD), Unmanned aerial vehicle (UAV), and PlanetScope (Planet). We proposed two multi-sensor weighted integration strategies and two transfer learning frameworks for estimating water Chla from the largest karst wetland in China by combing a partial least square with adaptive ensemble algorithms. The results showed that: (1) In the range of 500-850 nm, the spectral reflectance of water bodies in the karst wetland was overall 0.001-0.105 higher than the inland water bodies, and the sensitive spectral ranges of water Chla focus on 603-778 nm; (2) UAV images outperformed ASD and Planet data, and produced the highest inversion accuracy (R2 = 0.670) for water Chla in karst wetland; (3) Multi-sensor weighted integration retrieval methods improved the Chla estimation accuracy (R2 = 0.716). Integration retrieval methods with the different weights produced the better Chla estimation accuracy than that of methods with the equal weights; (4) The transfer learning methods from ASD to UAV platform provided the better retrieval performance (the average R2 = 0.669) than that of methods from UAV to Planet platform. The transfer learning methods obtained the highest estimation accuracy of Chla (R2 = 0.814) when the ratio of the training and test data in the target domain was 7:3. The transfer learning methods produced the higher estimation accuracies with the distribution of the absolute residuals between predicted and measured values <20.957 mg/m3 compared to the multi-sensor weighted integration retrieval methods, which demonstrated that transfer learning is more suitable for estimating Chla in karst wetland water bodies using multi-platform and multi-sensor data. The results provide a scientific basis for the protection and sustainable development of karst wetlands.

4.
Environ Sci Pollut Res Int ; 30(16): 47769-47779, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36746865

RESUMO

Wetlands are facing gradual drying, leading to large carbon loss due to the transformation from anaerobic to aerobic conditions, but the temperature and drought effects from the temperature and moisture fluctuation on soil organic carbon (SOC) mineralization remain uncertain. An incubation study with three moisture levels (100%, 60%, and 40% WHC, marked as W100, W60, and W40, respectively) and four temperature levels (5, 10, 15, 20 °C, marked as T5, T10, T15, and T20, respectively) was conducted to determine the effect of temperature and moisture interactions on SOC mineralization in the karst wetland of the Yunnan-Guizhou Plateau. Compared with T5, the cumulative mineralization CO2 in T20 increased by 83.18% (W40), 154.63% (W60), and 148.16% (W100), respectively. The mineralized CO2 at W60 and W40 significantly decreased compared to that at W100 at the four temperature levels. Temperature, moisture and their interactions had significant positive effects on SOC mineralization rates and cumulative mineralized CO2. The temperature sensitivity of SOC mineralization rates (Q10) under W40 and W60 increased by 22.03% and 24.52%, respectively, compared to that under W100. The cumulative mineralized CO2 was positively related to soil urease activity and negatively related to soil pH, N-NH4+, SOM, and catalase activity. Temperature and moisture fluctuation and soil properties explained 85.40% of the variation in SOC mineralization, among which temperature and moisture fluctuation, soil properties, and their interactions explained 19.71%, 4.81%, and 60.88%, respectively. Our results indicated that SOC mineralization is influenced by the joint effect of temperature and drought, as well as their induced changes in soil properties, in which higher temperatures can increase soil CO2 emissions by enhancing the SOC mineralization rate, but the positive effect may be weakened from the drying wetland.


Assuntos
Carbono , Solo , Carbono/análise , Solo/química , Áreas Alagadas , Temperatura , Dióxido de Carbono , China
5.
Chemosphere ; 313: 137435, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36462567

RESUMO

Nitrate (NO3-) pollution in karst water is an important environmental issue in intensive agricultural regions worldwide. The integrated understanding of the spatiotemporal variability and control factors of NO3- pollution in karst water is imperative for controlling the diffuse pollution caused by agricultural activities. In this study, 49 water samples were collected from surface water (SW) and groundwater (GW) in the Huixian karst wetland (HKW) and analyzed using hydrogeochemical and isotopic data (δ18O-NO3-, δ15N-NO3- and δ13CDIC) in combination with a Bayesian mixing model to investigate the spatiotemporal distribution and control factors in NO3--polluted karst water. The results showed that approximately 40.82% of the karst water samples exceeded the natural threshold value of 3 mg/L for NO3--N, and 32.14% of the GW samples exceeded the permissible limit for drinking water established by WHO (10 mg/L as NO3--N), indicating that high levels of NO3- were mainly found in GW samples from the agricultural core area, especially in the dry season. The NH4+-synthetic fertilizer (NHF) and soil organic nitrogen (SON) were the dominant factors controlling pollution sources in the HKW, accounting for 36.13% ± 4.66% and 28.68% ± 4.75% of the karst GW NO3- concentration, respectively. However, the seasonal differences in NO3- pollution sources were not significant in GW. Microbial nitrification was the main process affecting the NO3- levels in GW, whereas the occurrence of denitrification did not significantly affect NO3- concentration in the HKW due to the relatively low rate. Moreover, the HNO3 produced from NH4+ via microbial nitrification facilitated carbonate weathering, thereby controlling NO3- enrichment in karst GW. Our results suggest that NHF should be controlled to prevent further GW pollution in the HKW. Our study also provides a scientific basis for understanding the factors controlling the NO3- concentrations in karst water systems.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Isótopos de Nitrogênio/análise , Áreas Alagadas , Teorema de Bayes , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Poluição da Água , Nitratos/análise , China , Água
6.
Huan Jing Ke Xue ; 43(8): 4353-4363, 2022 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-35971731

RESUMO

Studying the impact of land-use changes in wetland systems on the community structure of bacteria in soil aggregates can provide a theoretical basis for elucidating the impact mechanisms of the stability of wetland soil aggregates. The soil samples (0-20 cm) were collected from a natural wetland and paddy field in the Huixian karst wetland. The bacterial community structure in soil aggregates (macroaggregates 0.25-2 mm, microaggregates 0.053-0.25 mm, and silt-clay<0.053 mm) were analyzed using high-throughput sequencing and ecological network analysis. The results showed that ① the proportion of microaggregates in the paddy field was 29.64%, which was significantly higher than that in the natural wetland (22.20%), and ② there were differences in the relative abundance of bacteria between the natural wetland and paddy field. The relative abundance of Chloroflexi in macroaggregates, microaggregates, and silt-clay in the paddy field were 7.97%, 8.56%, and 7.40%, respectively, which were significantly higher than those in the natural wetland (4.93%, 4.81%, and 3.76%). The relative abundance of Anaerolineales in macroaggregates, microaggregates, and silt-clay in the paddy field were 2.35%, 3.03%, and 2.65%, respectively, which were significantly higher than those in the natural wetland (0.92%, 0.91%, and 0.43%).③ Ecological network analysis showed that the number of nodes, edges, and the average numbers of neighbors in microaggregates and the silt-clay network in the paddy field were higher than those in the natural wetland, the average connectivity of the network was greater in the two components, and the characteristic path length was shorter. There was a longer characteristic path length, higher modularity, and lower average connectivity in the macroaggregate network of the paddy field. The above results indicated that the bacterial community structure in soil aggregates was altered after a natural wetland was used as a paddy field. The material circulation and information transmission efficiency of bacterial communities was higher in both microaggregates and silt-clay of the paddy field, whereas the bacterial community structure with low network tightness and high modularity in macroaggregates was more stable.


Assuntos
Solo , Áreas Alagadas , Bactérias , Carbono/análise , Argila , Solo/química , Microbiologia do Solo
7.
Environ Pollut ; 291: 118173, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34537600

RESUMO

The sedimentary history of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) over the past 140 years in a lake sediment core from Huixian karst wetland was reconstructed. The total PAHs and OCPs concentrations ranged from 40.0 to 210 ng g-1 and 0.98 to 31.4 ng g-1, respectively. The vertical distribution of PAHs and OCPs in different stages was great consistent with the history of regional socio-economic development and the usage of OCPs. As the indicators of socio-economic development, gross domestic product (GDP), population, energy consumption, highway mileage, and private vehicles correlated with the PAHs concentrations, indicating the impact of human activities on PAHs levels. The PAHs and OCPs concentrations were also affected by environmental changes in the wetland, as reconstructed by total organic carbon (TOC), sand, silt, clay, quartz, and calcite in sediments. Redundancy analysis (RDA) results showed TOC was the dominant factor to explain the concentrations of PAHs and OCPs with the explanation of 86.7% and 43.5%, respectively. In addition, TOC content had significantly positive correlation with PAHs (0.96, p < 0.01) and OCPs (0.78, p < 0.01). In particular, the significantly positive correlation (p < 0.05) between calcite and PAHs and OCPs inferred that karstification might play an important role in the migration of PAHs and OCPs in the karst area. Therefore, the lake in Huixian wetland tended to be a sink more than a source of PAHs and OCPs influenced by the increasing TOC content and karstification under climate warming.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , China , Monitoramento Ambiental , Sedimentos Geológicos , Atividades Humanas , Humanos , Hidrocarbonetos Clorados/análise , Lagos , Praguicidas/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Áreas Alagadas
8.
Front Microbiol ; 12: 675665, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539596

RESUMO

Archaea are ubiquitous and play an important role in elemental cycles in Earth's biosphere; but little is known about their diversity, distribution, abundance, and impact in karst environments. The present study investigated the effect of environmental factors on the variability of archaeal communities in the sediment of the Huixian karst wetland, the largest karst wetland in South China. Sediment cores were obtained from four sampling sites with different water depths and macrophyte inhabitants in both the winter of 2016 and the summer of 2018. The community analysis was based on PacBio sequencing and quantitative PCR of the archaeal 16S rRNA gene. The results showed that Euryarchaeota (57.4%) and Bathyarchaeota (38.7%) were dominant in all the samples. Methanogenic Methanosarcinales (25.1%) and Methanomicrobiales (13.7%), and methanotrophic archaea ANME-2d (9.0%) were the dominant Euryarchaeota; MCG-11 (16.5%), MCG-6 (9.1%), and MCG-5b (5.5%) were the dominant Bathyarchaeota. The community composition remained stable between summer and winter, and the vertical distributions of the archaeal phyla conformed to two patterns among the four sampling sites. In the winter samples, the archaeal 16S rRNA gene abundance was approximately 1.0E+10 copies/g of wet sediment and the Shannon index was 7.3±5, which were significantly higher than in the summer samples and in other karst environments. A correlation analysis showed that the moisture content and pH were the factors that mostly affected the archaeal communities. The prevalence of nitrate in the summer may be a key factor causing a significant decrease in archaeal abundance and diversity. Two features specific to karst environments, calcium-richness and weak alkalescence of the water supplies, may benefit the prevalence of bathyarchaeotal subgroups MCG-11, MCG-5b, and MCG-6. These results suggest that in karst wetlands, most of the archaea belong to clades that have significant roles in carbon turnover; their composition remains stable, but their abundance and diversity vary significantly from season to season.

9.
Huan Jing Ke Xue ; 42(5): 2240-2250, 2021 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-33884793

RESUMO

To reveal the hydrochemical characteristics of karst wetland located in a subtropical area and at lower elevations in China, 27 surface water samples were collected during three periods (wet, normal, and dry) in the Huixian karst wetland to investigate the distributions, pollution, and irrigation application of 12 inorganic ions and 10 heavy metals. Based on their concentrations, the Nemerow index and the four evaluation systems of the sodium adsorption ratio (SAR), sodium concentration (SC), permeability index (PI), and residual sodium carbonate (RSC) were applied to evaluate the pollution characteristics and irrigation application. It was found that the water type in this area was Ca2+-HCO3- and weakly alkaline. Regarding the 12 inorganic ions and 10 heavy metals, NH4+ exceeded the Chinese standards for drinking water with an exceedance rate of 25.93%, and the exceedance rates of Al, Mn, and Hg were 11.11%, 44.44%, and 37.04%, respectively. The spatiotemporal scaling effect on inorganic ions was lower than that of heavy metals, and the distributions of the inorganic ions and heavy metals were in the order of wet period > normal period > dry period. However, the surface water quality in the Huixian karst wetland was generally well-protected based on the pollution assessment. The Nemerow index ranged from 0.75 to 2.69, which recognized the main pollution contributors as NH4+, Mn, Al, and Hg with the contamination grade from slight pollution to moderate pollution, especially in the core area during the wet period. According to the limits of standards for irrigation water quality and environmental quality for surface water, as well as the evaluation results of the SAR, SC, PI, and RSC, the surface water in the Huixian karst wetland was generally suitable for irrigation, and the water quality in the dry period was better than that in the wet and normal periods. The surface water from site PH1 during the normal period with 19.1 µg·L-1 of Hg and site FH8 during the wet period with 13.7 mg·L-1 of NH4+ were not suitable for agricultural irrigation.

10.
Huan Jing Ke Xue ; 42(4): 1750-1760, 2021 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-33742810

RESUMO

To investigate the major ionic chemical characteristics and seasonal variations, 27 groundwater samples were collected from the wet season, flat season, and dry season during 2018-2019 in the Huixian Karst wetland, which is the largest low-altitude karst wetland in China. The single pollution standard index was applied to evaluate the groundwater pollution during different periods, and the major ionic factors of the karst groundwater were analyzed using the statistical analysis method, Gibbs diagram, and ion ratio. The results revealed that the groundwater samples were a weakly alkaline fresh water that were rich in Ca2+ and HCO3-. The average concentrations of the primary ions followed the order of flat season > wet season > dry season; meanwhile, the water quality in the dry season was better than that in the wet and flat seasons. The K+ and NO3- in the karst groundwater were mostly affected by the spatial distributions of the aquifers, and the Mg2+, SO42-, NO2-, NH4+, and TDS were related to the space-season scale. Na+, Ca2+, HCO3-, and Cl- were relatively stable ions in the karst groundwater. The hydrochemical characteristics were primarily determined by carbonate rock dissolution and were found to be the HCO3-Ca type, which accounted for 77.78%, 77.78%, and 88.89% in the wet season, flat season, and dry season, respectively. The karst groundwater was predominantly polluted by SO42-, NO3-, and NO2-; particularly, NO3- exhibited serious pollution points, and SO42- had heavy pollution points in the wet and flat seasons. The chemical composition of the karst groundwater was controlled mostly by water-rock interactions. Ca2+ and HCO3- primarily came from calcite dissolution, and the high concentrations of Mg2+ and SO42- in a few number of points were controlled by dolomite, dolomitic limestone, and pyrite. K+, Na+, SO42-, NO3-, and Cl- partly came from atmospheric precipitation, and Na+ and Cl- partly came from human activities; K+ was related to potash fertilizer, and the main source of NO3- was chemical fertilizer.

11.
Huan Jing Ke Xue ; 42(1): 184-194, 2021 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-33372470

RESUMO

The concentrations of 10 metals (Cd, Cr, As, Al, Cu, Pb, Zn, Mn, Hg, and Fe) in 27 groundwater samples collected during different periods (wet, normal, and dry) in the Huixian Karst wetland, the largest subtropical low-altitude karst wetland in China, were detected and analyzed to investigate pollution and health risks. The pollution characteristics, distribution, and health risks of the metals in groundwater were revealed by a comprehensive pollution assessment, multivariate statistical analysis, and health risk assessment model, respectively. The results showed that the average concentrations of metals in groundwater were followed the order of Mn > Fe > Zn > Al > Hg > Cr > Cu > Cd > As > Pb. The maximum concentration of Mn (1022.00 µg·L-1) was found in the wet season, while that of Hg (42.40 µg·L-1) was found in the normal season, and both were over the corresponding standard limits. The results of the pollution assessment indicated that only Mn pollution reached level Ⅵ in the wet season, while Cd, Al, Zn, and Fe pollution were at the level of Ⅲ. Only the Hg pollution level reached level Ⅵ while Al pollution reached the level of Ⅲ in the normal water period. According to the above results, the water quality in the dry season was better than that in the wet and normal seasons in terms of the 10 metals. The concentrations of Zn, Cd, Mn, and Al in groundwater were affected by human activities, while the time-scale characteristics of these were not obvious. The concentrations of As, Fe, Cu, and Cr were all affected by human activities and the time-scale, while the concentrations of Hg and Pb were mainly manifested in time-scale characteristics. The results of the health risk assessment of the water due to drinking and the skin penetration pathway indicated that the total health risks followed the order of normal season > the wet season > the dry season. The carcinogenic risks caused by Cr for adults and children through drinking pathway in the wet season (8.03×10-5 a-1 and 8.76×10-5 a-1), normal season (1.15×10-4 a-1 and 1.26×10-4 a-1),and dry season (8.72×10-5 a-1 and 9.51×10-5 a-1) exceeded the maximum allowed level (5.0×10-5 a-1) in all periods. Hence, Cr was the main metal element that caused carcinogenic risks. For the sake of drinking water safety, the concentrations of Mn, Hg, and Cr in groundwater should be controlled before drinking.


Assuntos
Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Adulto , Criança , China , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Medição de Risco , Poluentes Químicos da Água/análise , Áreas Alagadas
12.
Huan Jing Ke Xue ; 41(11): 4948-4957, 2020 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-33124238

RESUMO

The concentrations of nine metals (As, Cr, Al, Cu, Pb, Zn, Ni, Mn, and Hg), in 23 water samples collected from four main types of water (well, surface river, subterranean stream and blue hole), in the Huixian karst wetland were determined and analyzed to investigate their distributions and health risks. A multivariate statistical analysis was used to study the distribution characteristics of the metals. A human health risk assessment model was developed to assess the health risks. The results found that the mean concentrations of metals in water from the Huixian karst wetland were in the order:Al > Mn > Zn > Cr > Ni > As > Hg > Cu > Pb. The maximum concentrations of Hg (1.08 µg·L-1) in the well water, Hg (0.78 µg·L-1) and Mn (259.00 µg·L-1) in the surface river water, and Hg (0.47 µg·L-1) and Al (300.00 µg·L-1) in the blue hole water all exceeded the corresponding standard limits. The metal concentrations in the subterranean stream samples were all within the regulated limits. For the nine metals, the well water and the subterranean stream water qualities were better than those of the surface river and the blue hole. The results of the multivariate statistical analysis showed that the concentrations of Cr, Ni, Cu, and Zn in the well water were mainly related to the regional geological background, while the concentrations of Al and Pb in the blue hole water were mainly affected by pyrite mining and residential activities. The concentrations of As and Mn in rivers may be affected by tourism activity, aquaculture and river sediments. The results of the health risk assessment on water through the drinking and skin penetration pathway indicated that the total health risks order was:well > subterranean stream > blue hole > surface river. The total health risks values of well water as drinking water for adults (6.11×10-5 a-1) and children (6.67×10-5 a-1) exceeded the maximum allowance level (5.0×10-5 a-1). Cr was the main metal element that causes carcinogenic risks. For drinking water safety, the concentrations of Hg and Cr in well water should be controlled before drinking.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adulto , Criança , China , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Metais Pesados/análise , Medição de Risco , Rios , Poluentes Químicos da Água/análise , Áreas Alagadas
13.
Huan Jing Ke Xue ; 41(9): 4294-4304, 2020 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-33124311

RESUMO

Studying the impact of land-use on fungal communities and their functional groups in wetland soil can provide a theoretical basis for the protection of wetlands. The top soil (0-20 cm) samples were collected from the wetlands with Phragmites communis (PCW), wetlands with Cladium chinense (CCW), abandoned paddy fields (APF), paddy fields (PF), and corn fields (CF) in the Huixian Karst Wetland. The fungal community structure and its functional groups were analyzed using high-throughput sequencing methods and the FUNGuild database, respectively. The results showed that the Simpson and Shannon index in PF and CF were significantly higher than those in PCW and CCW. Ascomyceta was the most dominant phylum in five land-use types with the abundance of 70.60%-87.02%, followed by Rozellomycota in PCW with the abundance of 7.14% and Basidiomycota in CCW, APF, PF, and CF with the abundance of 9.70%, 5.19%, 8.13%, and 7.50%, respectively. Pleosporales was the most dominant order in PCW with the abundance of 16.47%, while Hypocreales was the dominant one in CCW, APF, PF, and CF with the abundance of 22.52%, 23.50%, 17.60, and 23.80%, respectively. Ascobolus and Archaeorhizomyces were the most dominant genera in PCW and CCW with the abundance of 6.65% and 13.44%, respectively, and Fusarium was the most dominant genus in APF, PF, and CF with the abundance of 10.22%, 10.51%, and 11.12%, respectively. Saprotroph was the main trophic mode in the Huixian wetland with the abundance of 48.67%-80.13%. The abundance of pathotroph in CF (5.39%) was higher than that in PCW (2.34%) and CCW (1.53%). Dung saprotroph-wood saprotroph and soil saprotroph were the most dominant functional groups in PCW and CCW, respectively, while animal pathogen-endophyte-lichen parasite-plant pathogen-soil saprotroph-wood saprotroph was the most dominant functional group in APF, PF, and CF. Redundancy analysis showed that both soil water content and the ratio of carbon-to-nitrogen were the main factors affecting fungal communities, and available nitrogen was the main factor affecting the functional groups. Overall, the results indicated that land-use has changed the soil fungal diversity and community structure, complicated the functional groups, and increased the risk of corn disease in the Huixian Karst wetland.


Assuntos
Micobioma , Animais , China , Nitrogênio/análise , Solo , Microbiologia do Solo , Áreas Alagadas
14.
J Contam Hydrol ; 234: 103700, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32861126

RESUMO

Karst wetland is a special, complex and fragile type of wetland. With increasing economic and agricultural activities, the negative impacts of human activities on water quality particularly on karst wetland is also increasing. In this paper multiple datasets and methods including hydrological, hydrochemical and stable isotope data were used to elucidate the distribution and transport of nitrate pollution in Huixian karst wetland under the influence of seasonal hydrodynamic changes and human activities. Hydrodynamic conditions around the wetland during both wet and dry seasons show large differences due to the complex exchange between surface water and groundwater. The northern recharge area receives rainfall recharge with rapid responses in groundwater level, temperature and electrical conductivity, while those responses are relatively stable in the central area where the surface water interacts with groundwater frequently. However, their diurnal variations are significant. In the western drainage area where groundwater always discharges to rivers, the groundwater levels show sharp responses after rainfall, but their temperatures are stable. In addition, δ15N and δ18O of nitrate suggest that the nitrate pollution mainly comes from NH4+ in fertilizer and rainfall, soil nitrogen, animal feces and livestock manure. The nitrate concentrations of most surface waters are lower during the wet season, affected by the dilution and mixing effect of heavy rainfall and agricultural activities. Nitrate distributions show considerable spatial variability during the dry season, especially in the wells located in residential areas which are mainly polluted by nearby residents. This study highlights the vulnerability of karst wetlands and presents methods that are significant for ecological restoration as well as development of karst water resources in karst areas.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , China , Monitoramento Ambiental , Atividades Humanas , Humanos , Hidrodinâmica , Nitratos/análise , Estações do Ano , Poluentes Químicos da Água/análise , Áreas Alagadas
15.
Huan Jing Ke Xue ; 40(7): 3313-3323, 2019 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854733

RESUMO

In order to explore the effect of land-use change on soil bacteria in wetland systems, the topsoil (0-20 cm) of a natural wetland (NW), paddy field (PF), and dry land (DL) were collected in the Huixian karst wetland. The α-diversity, species composition, and abundance of soil bacterial communities were analyzed using high-throughput sequencing. The effect of environmental factors on bacterial community structure was also examined. The results showed that the soil bacteria in the Huixian karst wetland can be divided into 49 phyla and 145 classes. The Shannon index of bacteria in the PF was significantly higher, and the Simpson index of bacteria in the NW is significantly lower, than in the other two land-use types. The dominant phyla (operational taxonomic units, OTUs>1%) in the NW were Proteobacteria (52.15%), Actinobacteria (15.16%), and Acidobacteria (8.80%); the dominant phyla in the PF were Proteobacteria (45.79%), Acidobacteria (17.20%), and Chloroflexi (11.75%); the dominant phyla in the DL were Proteus (51.42%), Acidobacteria (15.51%), and Chloroflexi (7.43%). The dominant classes (OTUs>1%) in the NW were α-Proteobacteria (17.98%), ß-Proteobacteria (13.72%), and Actinobacteria (13.13%); the dominant classes in the PF were Acidobacteria (14.35%), ß-Proteobacteria (13.37%), and δ-Proteobacteria (12.02%); the dominant classes in the DL were α-Proteobacteria (19.44%), Formobacteria (13.30%), and Acidobacteria (13.03%). Among the dominant OTUs (>0.3%), the dominant genera of in the NW were Sphingomonas (OTU2, 59), Micromonospora (OTU5, 24 and 50487), Gemmatimonas (OTU1), and Tenotrophomonas (OTU8); the dominant genera in the PF were Lysobacter (OTU4 and 115) and Aquabacterium (OTU33); the dominant genera in the DL were Sphingomonas (OTU85, 157 and 2916), Rhodanobacter (OTU19 and 52), and Penlobacterium (OTU60). A heatmap showed that there were significant differences in soil bacterial community structure among the three land-use types. Redundancy analysis showed that pH, soil organic carbon (SOC), total nitrogen (TN), alkali-hydrolyzable nitrogen (AN), exchangeable Mg2+, exchangeable Ca2+, soluble organic carbon (DOC), and available phosphorus (AP) were the main factors that affected the bacterial community structure in the Huixian karst wetland. These results indicate that changes in land-use types have significantly shaped the structure of soil bacterial communities in this area.


Assuntos
Agricultura , Bactérias/classificação , Oryza , Microbiologia do Solo , Áreas Alagadas , Cálcio/análise , Carbono/análise , China , Nitrogênio/análise , Fósforo/análise
16.
Ecotoxicol Environ Saf ; 185: 109700, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31557569

RESUMO

In this study, heavy metals including Cd, Pb, Zn, Mn, Cu, Ni, Cr, As, and Hg, in the surface sediment (0-10 cm) of the Huixian wetland in a karst region were investigated in terms of their spatial distribution, ecological risks, and possible sources. Samples were collected from 13 typical sites throughout the Huixian wetland and were analyzed via inductively coupled plasma-mass spectrometry. The results revealed that the mean concentrations of Cd, Pb, Mn, Cr, As, and Hg were higher than the background and Chinese safe standard values. Based on spatial distribution and ecological risk, the study area was differentiated into three groups of sites with the following order of risk: group 3 > group 2 > group 1. The observed concentrations fluctuated slightly with depth. However, an irregular decreasing trend in the concentration with soil depth was observed among the groups. Multivariate statistical analyses showed that the high accumulation of Cd, Pb, Zn and Cu in the sediments of group 3 sites is due to the natural ancient deposition of minerals rich in heavy metals, while the accumulation of Mn, Cr, As, and Hg is attributed to an anthropogenic origin. Agricultural activities, the use of fertilizers and, pesticides, and local automobile repair stations most probably enriched these heavy metals in the Huixian wetland sediments. Hg and Cd have the highest potential ecological risk, which follows the order Hg > Cd > Pb > As > Ni > Cu > Cr > Mn > Zn. The mean geoaccumulation index (Igeo) values of Pb (0.48) and Hg (1.12) suggested moderate contamination in the study area.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Metais Pesados/análise , Poluentes Químicos da Água/análise , Áreas Alagadas , China , Ecologia , Análise Multivariada , Medição de Risco , Solo/química
17.
Huan Jing Ke Xue ; 40(3): 1491-1503, 2019 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-31088002

RESUMO

In order to reveal the effect of vegetation type and soil physicochemical properties on the distribution of soil organic carbon and its components, a field survey was carried out on nine different plant communities along a water table gradient in the Huixian wetland with samples of soil at 0-10 cm, 10-20 cm, and 20-30 cm in depth. The soil organic carbon (SOC), light fraction organic carbon (LFOC), heavy fraction organic carbon (HFOC), easily oxidized organic carbon (EOC), dissolved organic carbon (DOC), particulate organic carbon (POC), and microbial biomass carbon (MBC) were measured. The correlations among soil organic carbon components and soil physicochemical properties were also examined. The results showed that:① The average proportion of LFOC and HFOC to SOC at 0-30 cm soil depth was 11.10% and 88.90%, respectively. The distribution ratio of the heavy component was much higher than of the light component in soils. ② The content of SOC, DOC, EOC, POC, and MBC (except in the Panicum repens community) and the values of DOC/SOC, EOC/SOC, and POC/SOC all decreased with increase of the soil depth. ③ Among the nine different plant communities, the contents of SOC, LFOC, HFOC, MBC, DOC, EOC, and POC of Cladium chinense were significantly higher than for other communities in same soil layers. ④ There were significantly positive correlations among soil organic carbon components (SOC) and soil total nitrogen (TN). LFOC, HFOC, DOC, and POC were also positively correlated with soil pH. The soil bulk density was significantly negative correlated with LFOC, HFOC, DOC, EOC, and POC, and the content of clay was also negatively correlated with LFOC, HFOC, DOC, POC, and MBC. ⑤ Path analysis showed that TN, soil pH, soil sand content, and soil water content (SWC) has indirect effects on HFOC by influencing other soil factors. Soil TN had strong positive effects on EOC, DOC, and POC, and SWC also has the largest direct negative effect on MBC. This showed that there were close interactions between soil physicochemical properties and soil organic carbon components. This study may provide a reference base for sustainable development and scientific predictions regarding the Huixian Karst wetland.


Assuntos
Carbono/análise , Água Subterrânea , Solo/química , Áreas Alagadas , China , Nitrogênio , Plantas
18.
Huan Jing Ke Xue ; 39(4): 1813-1823, 2018 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965008

RESUMO

To investigate the effect of reclamation on soil quality in the Huixian Karst Wetland, samples from different soil levels were collected from marsh wetland, reclaimed paddy field, and reclaimed dry farmland, for analyzing soil nutrient (carbon, nitrogen, phosphorous, and potassium) contents, microbial biomass carbon/nitrogen (MBC/MBN), and microbial activity indicators[i.e. basal respiration (BR), potential respiration (PR), microbial quotient (qMB), and metabolic quotient (qCO2)]. The correlations between the soil nutrient contents and soil microbial activity indictors were examined. The results showed that:①Artificial reclamation led to the trend of slight acidity in the soil and a marked loss in soil nutrients, while, the pH value, soil water content (SWC), and the contents of soil organic carbon (SOC), total nitrogen (TN), available nitrogen (AN), total phosphorus (TP), available phosphorus (AP), total potassium (TK), and available potassium (AK) decreased with reclamation. ②Among all the microbes, bacteria were the most numerous, followed by actinomycetes, and fungi were the least numerous. The microbial quantity decreased with the increase in the soil depth on the whole. The proportion of bacteria and actinomycetes were much higher in the paddy field, and that of fungi was the highest in the dry farmland. ③ In total, protease, sucrase, urease, catalase, and polyphenol oxidase activities decreased with the increasing of soil depths. Soil reclamation reduced the soil enzyme activities. ④qCO2 decreased after an initial increase in the marsh wetland, while it rose gradually in the reclaimed paddy field and reclaimed dry farmland. The contents of MBC, MBN, BR, PR, and qMB were the highest in the marsh wetland, followed by those in the reclaimed paddy field, with the lowest contents occurring in the reclaimed dry farmland. The trend of qCO2 contents in the 0-10 cm and 10-20 cm soil layers followed the order of marsh wetland > paddy field > dry farmland, but in the 20-30 cm and 30-40 cm soil layers, it showed the order dry farmland > paddy field > marsh wetland. The continuation of reclamation resulted in the decrease in soil microbial activity, and soil quality as well, especially in the dry farmland. Meanwhile, we should reduce the areas of paddy fields and dry farmlands under reclamation during the process of wetland ecological restoration in future. Conversion of farmlands to wetlands or lakes, to improve and increase the size of wetland ecosystems of nearby lands, should be done gradually.


Assuntos
Microbiologia do Solo , Solo/química , Áreas Alagadas , Agricultura , Bactérias/classificação , Carbono , China , Fungos/classificação , Nitrogênio , Fósforo , Potássio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA