Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.785
Filtrar
1.
Br Poult Sci ; : 1-8, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995227

RESUMO

1. The production of chicken meat has resulted in high volumes of byproducts, such as feathers, bones, skin, viscera, and feet. The structure of feathers is one of the most complex among vertebrates, with a central axis and lateral filamentary structures, providing rigidity, lightness, and flexibility. Chicken feathers are composed of proteins, lipids, and water, with the highest protein content, especially keratin, which is responsible for the material's rigidity.2. Industries still make little use of feathers, which are generally intended for the production of flour or organic fertilisers. These are low added value products, and discarded feathers can harm the environment.3. Keratin extraction techniques and resulting protein hydrolysates have been studied in chicken feathers. Acid, alkaline or enzymatic hydrolysis is the most commonly used method for obtaining molecules with functional properties such as antioxidant, antimicrobial, antihypertensive and antidiabetic activity.4. The development of keratin-based biodegradable films represents an area of interest for reducing the economic and environmental impacts caused by inappropriate disposal of feathers.

2.
J Environ Manage ; 366: 121648, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39018864

RESUMO

The purpose of this work is to produce keratin hydrolysate from sheep wool by alkaline hydrolysis and to assess its effectiveness in improving maize plant growth under greenhouse conditions. A hybrid response surface methodology with Box-Behnken design (RSM-BBD) was used to model and optimize the hydrolysis process. The synergistic effects between three critical independent variables including temperature, hydrolysis time, and concentration of KOH on the hydrolysis rate were statistically investigated and optimized. Under optimized conditions, a hydrolysis rate of 95.08% was achieved. The produced hydrolysate consists of water-soluble peptides, free amino acids and potassium ions, making it suitable to be used as a valuable agricultural input material for crop production. Amino acid analysis revealed high levels of proline and phenylalanine, which are responsible for water conditioning and the preservation of abiotic stress as readily available. The efficacy of the produced hydrolysate was assessed in the cultivation of maize as a crop model under greenhouse conditions. Results revealed that the application of the hydrolysate positively influenced the morphological traits of the maize crop such as plant height and leaf surface area. The magnitude of the response to the hydrolysate application depended on its concentration with the most positive effects observed at a dose 2 for the leaf's chlorophyll content, fresh shoot biomass and dry shoot biomass. The application of the hydrolysate improved fresh and dry shoot biomass by 32.5 and 34.4% compared to the control and contributed to the improvement of nitrogen use efficiency by the studied crop. The hydrolysate proved to be beneficial in improving overall plant growth and can be suitable and effective agricultural input for maize cultivation.

3.
Cancers (Basel) ; 16(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39001484

RESUMO

We report the results of X-ray diffraction (XRD) measurements of the dogs' claws and show the feasibility of using this approach for early, non-invasive cancer detection. The obtained two-dimensional XRD patterns can be described by Fourier coefficients, which were calculated for the radial and circular (angular) directions. We analyzed these coefficients using the supervised learning algorithm, which implies optimization of the random forest classifier by using samples from the training group and following the calculation of mean cancer probability per patient for the blind dataset. The proposed algorithm achieved a balanced accuracy of 85% and ROC-AUC of 0.91 for a blind group of 68 dogs. The transition from samples to patients additionally improved the ROC-AUC by 10%. The best specificity and sensitivity values for 68 patients were 97.4% and 72.4%, respectively. We also found that the structural parameter (biomarker) most important for the diagnostics is the intermolecular distance.

4.
Cell Rep ; 43(7): 114480, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003737

RESUMO

The cytoskeleton of the cell is constantly exposed to physical forces that regulate cellular functions. Selected members of the LIM (Lin-11, Isl-1, and Mec-3) domain-containing protein family accumulate along force-bearing actin fibers, with evidence supporting that the LIM domain is solely responsible for this force-induced interaction. However, LIM domain's force-induced interactions are not limited to actin. LIMK1 and LMO1, both containing only two tandem LIM domains, are recruited to force-bearing keratin fibers in epithelial cells. This unique recruitment is mediated by their LIM domains and regulated by the sequences outside the LIM domains. Based on in vitro reconstitution of this interaction, LIMK1 and LMO1 directly interact with stretched keratin 8/18 fibers. These results show that LIM domain's mechano-sensing abilities extend to the keratin cytoskeleton, highlighting the diverse role of LIM proteins in force-regulated signaling.

5.
Heliyon ; 10(12): e32338, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988557

RESUMO

Keratin waste has become an increasingly serious environmental and health hazard. Keratin waste is mainly composed of keratin protein, which is one of the most difficult polymers to break down in nature and is resistant to many physical, chemical, and biological agents. With physical and chemical methods being environment damaging and costly, microbial degradation of keratin using keratinase enzyme is of great significance as it is both environment friendly and cost-effective. The aim of this study was to extract and purify keratinase from bacterial species isolated from the soil. Among the organisms, an isolate of Bacillus velezensis, coded as MAMA could break down chicken feathers within 72 hours (h). The isolated strain produced significant levels of keratinase in mineral salt medium by supplying chicken feathers as the sole source of nitrogen and carbon. Feather deterioration was observed with the naked eye, and enzyme activity was evaluated using a spectrophotometric assay. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and zymography results revealed that the keratinase protein produced by Bacillus velezensis had a molecular weight between 40 and 55 kilodalton (kDa).

6.
Int J Biol Macromol ; 275(Pt 2): 133722, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977053

RESUMO

The valorization of discarded wool from dairy sheep breeding is a challenging issue. The most proposed strategies lie in the processing of keratin extracted from wool without reducing the molecular weight of the protein chains (the high molecular weight-HMW keratin). Here, the HMW keratin has been spun for the first time by solution blow spinning. A screening study of the process carried out with a 2-level full factorial design revealed that keratin filaments can be obtained by using the polyethylene oxide at 900 kDa, a 2 bar air pressure, and a 30 cm needle-collector distance. An annealing at 80 °C for 15 min, at pH 3.5 with citric acid contributes to increasing the viscosity of the keratin solutions thereby allowing the production of defect-free and water-stable filaments having diameters from 1 to 6 µm. A negligible toxic effect was observed after 24 and 48 h on HT29 epithelial cells and normal blood cells displayed behavior similar to the control demonstrating that the patches are hemocompatible. Therefore, the developed SBS process of keratin aqueous solutions could represent a valuable platform for developing patches that need to be blood-contacting and deposited in-situ.

7.
J Dent Sci ; 19(3): 1525-1532, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39035284

RESUMO

Background/purpose: Oral lichen planus (OLP) is a chronic inflammatory disease with unknown mechanisms of pathogenesis. Keratin 17 (KRT17) is a protein that regulates numerous cellular processes. This study aimed to explore the expression of KRT17 in OLP and its correlation with the severity of OLP. Materials and methods: RNA sequencing using epithelium from 5 OLP patients and 5 health control (HC) was performed, followed by functional analysis. The validation cohort of 20 OLP and 20 HC tissues were used to investigate positive area value of KRT17 by immunohistochemical analysis. Reticular, erosive and ulcerative (REU) scores were used for measuring the severity of OLP. Results: A total of 15493 genes were detected, of which 1492 genes were significantly up-regulated in OLP and 622 were down-regulated. The mRNA expression of KRT17 was elevated by 13.09-fold in OLP compared to that in HC. Pathway analysis demonstrated high KRT17 expression was associated with multiple biological processes. The median of percentage of KRT17 positive area value was 19.30 % in OLP and 0.01 % in HC (P < 0.001). Percentage of KRT17 positive area value was higher in erosive OLP patients (27.25 %) compared to that in non-erosive patients (15.02 %, P = 0.006). REU scores were positively correlated with percentage of KRT17 positive area value (r = 0.628, P = 0.003). Conclusion: The mRNA expression of KRT17 was elevated in OLP tissues compared to that in HC. KRT17 was positively correlated with the severity of OLP, indicating KRT17 might play a vital role in the pathogenesis of OLP.

8.
Dev Cell ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39002537

RESUMO

Keratin intermediate filaments confer structural stability to epithelial tissues, but the reason this simple mechanical function requires a protein family with 54 isoforms is not understood. During skin wound healing, a shift in keratin isoform expression alters the composition of keratin filaments. If and how this change modulates cellular functions that support epidermal remodeling remains unclear. We report an unexpected effect of keratin isoform variation on kinase signal transduction. Increased expression of wound-associated keratin 6A, but not of steady-state keratin 5, potentiated keratinocyte migration and wound closure without compromising mechanical stability by activating myosin motors to increase contractile force generation. These results substantially expand the functional repertoire of intermediate filaments from their canonical role as mechanical scaffolds to include roles as isoform-tuned signaling scaffolds that organize signal transduction cascades in space and time to influence epithelial cell state.

9.
Exp Dermatol ; 33(7): e15137, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39031460

RESUMO

AP collagen peptides (APCPs) are enzymatically decomposed collagen peptides that contain tri-peptides such as glycine-proline-hydroxyproline. We found that APCPs increased the proliferation of both human dermal papilla cells (hDPCs) and human outer root sheath cells (hORSCs). APCPs also stimulated the secretion of several growth factors, including IGFBP-6, PDGF-AB, PIGF and VEGF in hDPCs. Moreover, APCPs enhanced the phosphorylation of Akt(Ser473), GSK-3ß(Ser9) and ß-catenin(Ser675), indicating the activation of the GSK-3ß/ß-catenin signalling pathway. Ex vivo culture of human hair follicles (hHFs) tissue and in vivo patch assay revealed that APCPs promoted the elongation of hHFs and the induction of new hair shafts. In a mouse model, APCPs significantly promoted the transition from telogen to anagen phase and prolonged anagen phase, resulting in increased hair growth. APCPs also improved the thickness, amino acid content (cystine and methionine) and roughness of mouse hair. Taken together, these findings demonstrate that APCPs accelerate hair growth and contribute to overall hair health. Therefore, APCPs have the potential to be utilized as a food supplement and ingredient for preventing hair loss and maintaining hair health.


Assuntos
Glicogênio Sintase Quinase 3 beta , Folículo Piloso , Cabelo , beta Catenina , Animais , Glicogênio Sintase Quinase 3 beta/metabolismo , beta Catenina/metabolismo , Humanos , Camundongos , Cabelo/crescimento & desenvolvimento , Cabelo/efeitos dos fármacos , Folículo Piloso/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais , Colágeno/metabolismo , Fosforilação , Células Cultivadas , Peptídeos/farmacologia
10.
Int J Biol Macromol ; 275(Pt 2): 133690, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971280

RESUMO

In pursuing sustainable thermal insulation solutions, this study explores the integration of human hair and feather keratin with alginate. The aim is to assess its potential in thermal insulation materials, focusing on the resultant composites' thermal and mechanical characteristics. The investigation uncovers that the type and proportion of keratin significantly influence the composites' porosity and thermal conductivity. Specifically, higher feather keratin content is associated with lesser sulfur and reduced crosslinking due to shorter amino acids, leading to increased porosity and pore sizes. This, in turn, results in a decrease in ß-structured hydrogen bond networks, raising non-ordered protein structures and diminishing thermal conductivity from 0.044 W/(m·K) for pure alginate matrices to between 0.033 and 0.038 W/(m·K) for keratin-alginate composites, contingent upon the specific ratio of feather to hair keratin used. Mechanical evaluations further indicate that composites with a higher ratio of hair keratin exhibit an enhanced compressive modulus, ranging from 60 to 77 kPa, demonstrating the potential for tailored mechanical properties to suit various applications. The research underscores the critical role of sulfur content and the crosslinking index within keratin's structures, significantly impacting the thermal and mechanical properties of the matrices. The findings position keratin-based composites as environmentally friendly alternatives to traditional insulation materials.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38985428

RESUMO

The increasing global consumption of poultry meat has led to the generation of a vast quantity of feather keratin waste daily, posing significant environmental challenges due to improper disposal methods. A growing focus is on utilizing keratinous polymeric waste, amounting to millions of tons annually. Keratins are biochemically rigid, fibrous, recalcitrant, physiologically insoluble, and resistant to most common proteolytic enzymes. Microbial biodegradation of feather keratin provides a viable solution for augmenting feather waste's nutritional value while mitigating environmental contamination. This approach offers an alternative to traditional physical and chemical treatments. This review focuses on the recent findings and work trends in the field of keratin degradation by microorganisms (bacteria, actinomycetes, and fungi) via keratinolytic and proteolytic enzymes, as well as the limitations and challenges encountered due to the low thermal stability of keratinase, and degradation in the complex environmental conditions. Therefore, recent biotechnological interventions such as designing novel keratinase with high keratinolytic activity, thermostability, and binding affinity have been elaborated here. Enhancing protein structural rigidity through critical engineering approaches, such as rational design, has shown promise in improving the thermal stability of proteins. Concurrently, metagenomic annotation offers insights into the genetic foundations of keratin breakdown, primarily predicting metabolic potential and identifying probable keratinases. This may extend the understanding of microbial keratinolytic mechanisms in a complex community, recognizing the significance of synergistic interactions, which could be further utilized in optimizing industrial keratin degradation processes.

12.
Gene ; 927: 148751, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971547

RESUMO

By analyzing the expression patterns of inner root sheath (IRS) specific genes during different developmental stages of hair follicle (HF) in Tan sheep embryos and at birth, this study aims to reveal the influence of the IRS on crimped wool. Skin tissues from the scapular region of male Tan sheep were collected at 85 days (E85) and 120 days (E120) of fetal development, and at 0 days (D0), 35 days (D35), and 60 days (D60) after birth, with four samples at each stage. Real-time quantitative polymerase chain reaction (RT-qPCR) was employed to determine the relative expression levels of IRS type I keratin genes (KRT25, KRT26, KRT27, KRT28), type II keratin genes (KRT71, KRT72, KRT73, KRT74), and the trichohyalin gene (TCHH) in the skin of Tan sheep at different stages. Results showed that the expression levels of all IRS-specific genes peaked at D0, with the expression of all genes significantly higher than at E85 (P < 0.01), except for KRT73 and TCHH. The expression levels of KRT25, KRT26, and KRT72 were also significantly higher than at E120 (P < 0.01). Furthermore, the expression levels of KRT27, KRT28, KRT71, and KRT74 were significantly higher than both at E120 and D35 (P < 0.01). The expression levels of other genes at different stages showed no significant difference (P > 0.05). Conclusion: The IRS-specific genes exhibit the highest expression levels in Tan sheep at the neonatal stage. The expression levels of KRT71, KRT72, and TCHH, which are consistent with the pattern of wool crimp, may influence the morphology of the IRS and thereby affect the crimp of Tan sheep wool.

13.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000266

RESUMO

Liver resection (LR) is the primary treatment for hepatic tumors, yet posthepatectomy liver failure (PHLF) remains a significant concern. While the precise etiology of PHLF remains elusive, dysregulated inflammatory processes are pivotal. Therefore, we explored the theragnostic potential of extracellular high-mobility-group-box protein 1 (HMGB1), a key damage-associated molecular pattern (DAMP) released by hepatocytes, in liver recovery post LR in patients and animal models. Plasma from 96 LR patients and liver tissues from a subset of 24 LR patients were analyzed for HMGB1 levels, and associations with PHLF and liver injury markers were assessed. In a murine LR model, the HMGB1 inhibitor glycyrrhizin, was administered to assess its impact on liver regeneration. Furthermore, plasma levels of keratin-18 (K18) and cleaved cytokeratin-18 (ccK18) were quantified to assess suitability as predictive biomarkers for PHLF. Patients experiencing PHLF exhibited elevated levels of intrahepatic and circulating HMGB1, correlating with markers of liver injury. In a murine LR model, inhibition of HMGB1 improved liver function, reduced steatosis, enhanced regeneration and decreased hepatic cell death. Elevated levels of hepatic cell death markers K18 and ccK18 were detected in patients with PHLF and correlations with levels of circulating HMGB1 was observed. Our study underscores the therapeutic and predictive potential of HMGB1 in PHLF mitigation. Elevated HMGB1, K18, and ccK18 levels correlate with patient outcomes, highlighting their predictive significance. Targeting HMGB1 enhances liver regeneration in murine LR models, emphasizing its role in potential intervention and prediction strategies for liver surgery.


Assuntos
Proteína HMGB1 , Hepatectomia , Falência Hepática , Proteína HMGB1/metabolismo , Proteína HMGB1/sangue , Animais , Humanos , Hepatectomia/efeitos adversos , Camundongos , Falência Hepática/etiologia , Falência Hepática/metabolismo , Falência Hepática/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Regeneração Hepática , Biomarcadores , Morte Celular , Queratina-18/metabolismo , Queratina-18/sangue , Idoso , Hepatócitos/metabolismo , Fígado/metabolismo , Fígado/patologia , Ácido Glicirrízico/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
14.
J Cell Physiol ; : e31387, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014890

RESUMO

Keratins are typical intermediate filament proteins of the epithelium that exhibit highly specific expression patterns related to the epithelial type and stage of cellular differentiation. They are important for cytoplasmic stability and epithelial integrity and are involved in various intracellular signaling pathways. Several keratins are associated with enamel formation. However, information on their expression patterns during tooth development remains lacking. In this study, we analyzed the spatiotemporal expression of keratin family members during tooth development using single-cell RNA-sequencing (scRNA-seq) and microarray analysis. scRNA-seq datasets from postnatal Day 1 mouse molars revealed that several keratins are highly expressed in the dental epithelium, indicating the involvement of keratin family members in cellular functions. Among various keratins, keratin 5 (Krt5), keratin 14 (Krt14), and keratin 17 (Krt17) are highly expressed in the tooth germ; KRT17 is specifically expressed in the stratum intermedium (SI) and stellate reticulum (SR). Depletion of Krt17 did not affect cell proliferation in the dental epithelial cell line SF2 but suppressed their differentiation ability. These results suggest that Krt17 is essential for SI cell differentiation. Furthermore, scRNA-seq results indicated that Krt5, Krt14, and Krt17 exhibited distinct expression patterns in ameloblast, SI, and SR cells. Our findings contribute to the elucidation of novel mechanisms underlying tooth development.

15.
Genes (Basel) ; 15(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38927617

RESUMO

Keratins are the main structural protein components of wool fibres, and variation in them and their genes (KRTs) is thought to influence wool structure and characteristics. The PCR-single strand conformation polymorphism technique has been used previously to investigate genetic variation in selected coding and intron regions of the type II sheep keratin gene KRT81, but no variation was identified. In this study, we used the same technique to explore the 5' untranslated region of KRT81 and detected three sequence variants (A, B and C) that contain four single nucleotide polymorphisms. Among the 389 Merino × Southdown cross sheep investigated, variant B was linked to a reduction in clean fleece weight, while C was associated with an increase in both greasy fleece weight and clean fleece weight. No discernible effects on staple length or mean-fibre-diameter-related traits were observed. These findings suggest that variation in ovine KRT81 might influence wool growth by changing the density of wool follicles in the skin, the density of individual fibres, or the area of the skin producing fibre, as opposed to changing the rate of extrusion of fibres or their diameter.


Assuntos
Polimorfismo de Nucleotídeo Único , Fibra de Lã , , Animais , Ovinos/genética , Ovinos/crescimento & desenvolvimento , Lã/crescimento & desenvolvimento , Queratinas Tipo II/genética , Queratinas Tipo II/metabolismo , Queratinas/genética , Queratinas/metabolismo , Carneiro Doméstico/genética , Carneiro Doméstico/crescimento & desenvolvimento
16.
Gels ; 10(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38920937

RESUMO

Acute and chronic wounds present a significant healthcare challenge, requiring innovative solutions for effective treatment. The exploitation of natural by-products with advanced cell regeneration potential and plant-based materials, which possess bioactive properties, is an innovative topic in wound management. This study investigates the potential of donkey gelatin and keratin for blending with natural bioactive extracts such as sumac, curcumin, and oak acorn to fabricate antioxidant and antimicrobial nanofibers with accelerated wound healing processes. The fabricated nanofibers possess good in vitro biocompatibility, except for the sumac-based donkey nanofibers, where cell viability significantly dropped to 56.25% (p < 0.05 compared to non-treated cells). The nanofiber dimensions showed structural similarities to human extracellular matrix components, providing an ideal microenvironment for tissue regeneration. The donkey nanofiber-based sumac and curcumin extracts presented a higher dissolution in the first 10 min (74% and 72%). Curcumin extract showed similar antimicrobial and antifungal performances to rivanol, while acorn and sumac extracts demonstrated similar values to each other. In vitro tests performed on murine fibroblast cells demonstrated high migration rates of 89% and 85% after 24 h in the case of acorn and curcumin nanofibers, respectively, underscoring the potential of these nanofibers as versatile platforms for advanced wound care applications.

17.
Gels ; 10(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38920957

RESUMO

Combinations of synthetic polymers, such as poly(N-isopropylacrylamide) (PNIPAM), with natural biomolecules, such as keratin, show potential in the field of biomedicine, since these hybrids merge the thermoresponsive properties of PNIPAM with the bioactive characteristics of keratin. This synergy aims to produce hybrids that can respond to environmental stimuli while maintaining biocompatibility and functionality, making them suitable for various medical and biotechnological uses. In this study, we exploit keratin derived from wool waste in the textile industry, extracted via sulfitolysis, to synthesize hybrids with PNIPAM microgel. Utilizing two distinct methods-polymerization of NIPAM with keratin (HYB-P) and mixing preformed PNIPAM microgels with keratin (HYB-M)-resulted in hybrids with 20% and 25% keratin content, respectively. Dynamic light scattering (DLS) and transmission electron microscopic (TEM) analyses indicated the formation of colloidal systems with particle sizes of around 110 nm for HYB-P and 518 nm for HYB-M. The presence of keratin in both systems, 20% and 25%, respectively, was confirmed by spectroscopic (FTIR and NMR) and elemental analyses. Distinct structural differences were observed between HYB-P and HYB-M, suggesting a graft copolymer configuration for the former hybrid and a complexation for the latter one. Furthermore, these hybrids demonstrated temperature responsiveness akin to PNIPAM microgels and pH responsiveness, underscoring their potential for diverse biomedical applications.

18.
J Microorg Control ; 29(2): 63-73, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38880618

RESUMO

Cutibacterium acnes is an opportunistic pathogen recognized as a contributing factor to acne vulgaris. The accumulation of keratin and sebum plugs in hair follicles facilitates C. acnes proliferation, leading to inflammatory acne. Although numerous antimicrobial cosmetic products for acne-prone skin are available, their efficacy is commonly evaluated against planktonic cells of C. acnes. Limited research has assessed the antimicrobial effects on microorganisms within keratin and sebum plugs. This study investigates whether an antibacterial toner can penetrate keratin and sebum plugs, exhibiting bactericidal effects against C. acnes. Scanning electron microscopy and next-generation sequencing analysis of the keratin and sebum plug suggest that C. acnes proliferate within the plug, predominantly in a biofilm-like morphology. To clarify the potential bactericidal effect of the antibacterial toner against C. acnes inside keratin and sebum plugs, we immersed the plugs in the toner, stained them with LIVE/DEAD BacLight Bacterial Viability Kit to visualize microorganism viability, and observed them using confocal laser scanning microscopy. Results indicate that most microorganisms in the plugs were killed by the antibacterial toner. To quantitatively evaluate the bactericidal efficacy of the toner against C. acnes within keratin and sebum, we immersed an artificial plug with inoculated C. acnes type strain and an isolate collected from acne-prone skin into the toner and obtained viable cell counts. The number of the type strain and the isolate inside the artificial plug decreased by over 2.2 log and 1.2 log, respectively, showing that the antibacterial toner exhibits bactericidal effects against C. acnes via keratin and sebum plug penetration.


Assuntos
Acne Vulgar , Antibacterianos , Queratinas , Sebo , Sebo/metabolismo , Antibacterianos/farmacologia , Humanos , Queratinas/metabolismo , Acne Vulgar/microbiologia , Acne Vulgar/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Propionibacteriaceae/efeitos dos fármacos , Propionibacteriaceae/metabolismo , Propionibacteriaceae/genética , Propionibacterium acnes/efeitos dos fármacos , Propionibacterium acnes/metabolismo , Folículo Piloso/microbiologia , Folículo Piloso/metabolismo , Microscopia Eletrônica de Varredura
19.
Sci Rep ; 14(1): 12864, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834664

RESUMO

Natural polymer-based hydrogels have demonstrated great potential as wound-healing dressings. They help to maintain a moist wound environment as well as promote faster healing. In this work, a multifunctional hydrogel was prepared using keratin, sodium alginate, and carboxymethyl chitosan with tannic acid modification. Micro-morphology of hydrogels has been performed by scanning electron microscopy. Fourier Transform Infrared Spectroscopy reveals the presence of hydrogen bonding. The mechanical properties of the hydrogels were examined using a universal testing machine. Furthermore, we investigated several properties of the modified hydrogel. These properties include swelling rate, water retention, anti-freezing properties, antimicrobial and antioxidant properties, hemocompatibility evaluation and cell viability test in vitro. The modified hydrogel has a three-dimensional microporous structure, the swelling rate was 1541.7%, the elastic modulus was 589.74 kPa, the toughness was 211.74 kJ/m3, and the elongation at break was 75.39%, which was similar to the human skin modulus. The modified hydrogel also showed inhibition of S. aureus and E. coli, as well as a DPPH scavenging rate of 95%. In addition, the modified hydrogels have good biological characteristics. Based on these findings, the K/SA/CCS hydrogel holds promise for applications in biomedical engineering.


Assuntos
Alginatos , Quitosana , Hidrogéis , Queratinas , Taninos , Quitosana/química , Quitosana/análogos & derivados , Taninos/química , Alginatos/química , Hidrogéis/química , Humanos , Queratinas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antioxidantes/química , Antioxidantes/farmacologia , Escherichia coli/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Módulo de Elasticidade , Antibacterianos/química , Antibacterianos/farmacologia
20.
Arch Oral Biol ; 165: 106026, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38875772

RESUMO

OBJECTIVE: This study aimed to reveal the effects of SET domain bifurcated 1 (SETDB1) on epithelial cells during tooth development. DESIGN: We generated conditional knockout mice (Setdb1fl/fl,Keratin14-Cre+ mice), in which Setdb1 was deleted only in epithelial cells. At embryonic day 14.5 (E14.5), immunofluorescence staining was performed to confirm the absence of SETDB1 within the epithelium of tooth embryos from Setdb1fl/fl,Keratin14-Cre+ mice. Mouse embryos were harvested after reaching embryonic day 13.5 (E13.5), and sections were prepared for histological analysis. To observe tooth morphology in detail, electron microscopy and micro-CT analysis were performed at postnatal months 1 (P1M) and 6 (P6M). Tooth embryos were harvested from postnatal day 7 (P7) mice, and the epithelial components of the tooth embryos were isolated and examined using quantitative RT-PCR for the expression of genes involved in tooth development. RESULTS: Setdb1fl/fl,Keratin14-Cre+ mice exhibited enamel hypoplasia, brittle and fragile dentition, and significant abrasion. Coronal sections displayed abnormal ameloblast development, including immature polarization, and a thin enamel layer that detached from the dentinoenamel junction at P7. Electron microscopic analysis revealed characteristic findings such as an uneven surface and the absence of an enamel prism. The expression of Msx2, Amelogenin (Amelx), Ameloblastin (Ambn), and Enamelin (Enam) was significantly downregulated in the epithelial components of tooth germs in Setdb1fl/fl,Keratin14-Cre+ mice. CONCLUSIONS: These results indicate that SETDB1 in epithelial cells is important for tooth development and clarify the relationship between the epigenetic regulation of SETDB1 and amelogenesis imperfecta for the first time.


Assuntos
Células Epiteliais , Histona-Lisina N-Metiltransferase , Camundongos Knockout , Odontogênese , Animais , Camundongos , Histona-Lisina N-Metiltransferase/genética , Células Epiteliais/metabolismo , Amelogenina , Microtomografia por Raio-X , Ameloblastos/metabolismo , Esmalte Dentário/anormalidades , Esmalte Dentário/embriologia , Dente/embriologia , Dente/crescimento & desenvolvimento , Microscopia Eletrônica , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA