Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38936832

RESUMO

d-Xylose is a metabolizable carbon source for several non-Saccharomyces species, but not for native strains of S. cerevisiae. For the potential application of xylose-assimilating yeasts in biotechnological processes, a deeper understanding of pentose catabolism is needed. This work aimed to investigate the traits behind xylose utilization in diverse yeast species. The performance of 9 selected xylose-metabolizing yeast strains was evaluated and compared across 3 oxygenation conditions. Oxygenation diversely impacted growth, xylose consumption, and product accumulation. Xylose utilization by ethanol-producing species such as Spathaspora passalidarum and Scheffersomyces stipitis was less affected by oxygen restriction compared with other xylitol-accumulating species such as Meyerozyma guilliermondii, Naganishia liquefaciens, and Yamadazyma sp., for which increased aeration stimulated xylose assimilation considerably. Spathaspora passalidarum exhibited superior conversion of xylose to ethanol and showed the fastest growth and xylose consumption in all 3 conditions. By performing assays under identical conditions for all selected yeasts, we minimize bias in comparisons, providing valuable insight into xylose metabolism and facilitating the development of robust bioprocesses. ONE-SENTENCE SUMMARY: This work aims to expand the knowledge of xylose utilization in different yeast species, with a focus on how oxygenation impacts xylose assimilation.


Assuntos
Etanol , Fermentação , Oxigênio , Xilose , Xilose/metabolismo , Etanol/metabolismo , Oxigênio/metabolismo , Leveduras/metabolismo , Leveduras/crescimento & desenvolvimento , Cinética , Saccharomycetales/metabolismo , Saccharomycetales/crescimento & desenvolvimento , Aerobiose
2.
Methods Enzymol ; 689: 201-234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37802571

RESUMO

The 17ß-hydroxysteroid dehydrogenase type 1 (HSD17B1) has a key role in estrogen biosynthesis as it catalyzes the reduction of estrone to the most potent estrogen, estradiol. Estradiol has a high affinity for estrogen receptors and thus stimulates their transactivation, which leads to cell proliferation and numerous other effects. HSD17B2 catalyzes the oxidation of estradiol to the less potent estrone, thereby decreasing estrogen receptor activation, which results in reduction of estrogen-associated effects. HSD17B1 and HSD17B2 overexpressing E.coli homogenates or recombinant enzymes can be used for screening and development of drugs against various pathologies such as cancer, endometriosis or osteoporosis. Here we describe the preparation of HSD17B1 and HSD17B2 bacterial homogenates and purified recombinant HSD17B1 protein as enzyme sources as well as enzymatic assays based on radiometric and mass-spectrometric detection for enzyme characterization.


Assuntos
Estrogênios , Estrona , Feminino , Humanos , Estrona/metabolismo , Estrogênios/metabolismo , Estradiol/metabolismo , Ensaios Enzimáticos
3.
Protein J ; 42(6): 664-674, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37634213

RESUMO

INTRODUCTION: L-asparaginase (also known as L-ASNase) is a crucial therapeutic enzyme that is widely used in treatment of ALL (acute lymphoblastic leukemia) as a chemotherapeutic drug. Besides, this enzyme is used in the food industry as a food processing reagent to reduce the content of acrylamide in addition to the clinical industry. The improvement of activity and kinetic parameters of the L-ASNase enzyme may lead to higher efficiency resulting in practical achievement. In order to achieve this goal, we chosen glycine residue in position 88 as a potential mutation with advantageous outcomes. METHOD: In this study, firstly to find the appropriate mutation on glycine 88, various in silico analyses, such as MD simulation and molecular docking, were carried out. Then, the rational design was adopted as the best strategy for molecular modifications of the enzyme to improve its enzymatic properties. RESULT: Our in silico findings show that the four mutations G88Q, G88L, G88K, and G88A may be able to increase L-ASNase's asparaginase activity. The catalytic efficiency of each enzyme (kcat/Km) is the most important feature for comparing the catalytic activity of the mutants with the wild type form. The laboratory experiments showed that the kcat/Km for the G88Q mutant is 36.32% higher than the Escherichia coli K12 ASNase II (wild type), which suggests that L-ASNase activity is improved at lower concentration of L-ASN. Kinetic characterization of the mutants L-ASNase activity confirmed the high turnover rate (kcat) with ASN as substrate relative to the wild type enzyme. CONCLUSION: In silico analyses and laboratory experiments demonstrated that the G88Q mutation rather than other mutation (G88L, G88K, and G88A) could improve the kinetics of L-ASNase.

4.
Int J Mol Sci ; 24(6)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36982927

RESUMO

The enzyme encoded by slr1022 gene from Synechocystis sp. PCC6803 was reported to function as N-acetylornithine aminotransferase, γ-aminobutyric acid aminotransferase, and ornithine aminotransferase, which played important roles in multiple metabolic pathways. Among these functions, N-acetylornithine aminotransferase catalyzes the reversible conversion of N-acetylornithine to N-acetylglutamate-5-semialdehyde with PLP as cofactor, which is a key step in the arginine biosynthesis pathway. However, the investigation of the detailed kinetic characteristics and catalytic mechanism of Slr1022 has not been carried out yet. In this study, the exploration of kinetics of recombinant Slr1022 illustrated that Slr1022 mainly functioned as N-acetylornithine aminotransferase with low substrate specificity to γ-aminobutyric acid and ornithine. Kinetic assay of Slr1022 variants and the model structure of Slr1022 with N-acetylornithine-PLP complex revealed that Lys280 and Asp251 residues were the key amino acids of Slr1022. The respective mutation of the above two residues to Ala resulted in the activity depletion of Slr1022. Meanwhile, Glu223 residue was involved in substrate binding and it served as a switch between the two half reactions. Other residues such as Thr308, Gln254, Tyr39, Arg163, and Arg402 implicated a substrate recognition and catalytic process of the reaction. The results of this study further enriched the understanding of the catalytic kinetics and mechanism of N-acetylornithine aminotransferase, especially from cyanobacteria.


Assuntos
Synechocystis , Synechocystis/genética , Synechocystis/metabolismo , Transaminases/metabolismo , Ornitina-Oxo-Ácido Transaminase , Ácido gama-Aminobutírico
5.
Microbiol Spectr ; 10(6): e0381822, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36354357

RESUMO

Glucose-6-phosphate dehydrogenase (Zwf) is an important enzyme in glucose metabolism via the Entner-Doudoroff pathway and the first enzyme in the oxidative pentose-phosphate pathway. It generates NAD(P)H during the conversion of glucose-6-phosphate (G6P) to 6-phosphogluconolactone, thus aiding in anabolic processes, energy yield, and oxidative stress responses. Pseudomonas bharatica CSV86T preferentially utilized aromatic compounds over glucose and exhibited a significantly lower growth rate on glucose (0.24 h-1) with a prolonged lag phase (~10 h). In strain CSV86T, glucose was metabolized via the intracellular phosphorylative route only because it lacked an oxidative (gluconate and 2-ketogluconate) route. The genome harbored three genes zwfA, zwfB, and zwfC encoding three Zwf isozymes. The present study aimed to understand gene arrangement, gene expression profiling, and molecular and kinetic properties of the purified enzymes to unveil their physiological significance in the strain CSV86T. The zwfA was found to be a part of the zwfA-pgl-eda operon, which was proximal to other glucose transport and metabolic clusters. The zwfB was found to be arranged as a gnd-zwfB operon, while zwfC was present independently. Among the three, zwfA was transcribed maximally, and the purified ZwfA displayed the highest catalytic efficiency, cooperativity with respect to G6P, and dual cofactor specificity. Isozymes ZwfB and ZwfC were NADP+-preferring and NADP+-specific, respectively. Among other functionally characterized Zwfs, ZwfA from strain CSV86T displayed poor catalytic efficiency and the further absence of oxidative routes of glucose metabolism reflected its lower growth rate on glucose compared to P. putida KT2440 and could be probable reasons for the unique carbon source utilization hierarchy. IMPORTANCE Pseudomonas bharatica CSV86T metabolizes glucose exclusively via the intracellular phosphorylative Entner-Doudoroff pathway leading the entire glucose flux through Zwf as the strain lacks oxidative routes. This may lead to limiting the concentration of downstream metabolic intermediates. The strain CSV86T possesses three isoforms of glucose-6-phosphate dehydrogenase, ZwfA, ZwfB, and ZwfC. The expression profile and kinetic properties of purified enzymes will help to understand glucose metabolism. Isozyme ZwfA dominated in terms of expression and displayed cooperativity with dual cofactor specificity. ZwfB preferred NADP+, and ZwfC was NADP+ specific, which may aid in redox cofactor balance. Such beneficial metabolic flexibility facilitated the regulation of metabolic pathways giving survival/fitness advantages in dynamic environments. Additionally, multiple genes allowed the distribution of function among these isoforms where the primary function was allocated to one of the isoforms.


Assuntos
Pseudomonas putida , Pseudomonas , Pseudomonas/metabolismo , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , NADP/metabolismo , Glucose/metabolismo
6.
J Biol Chem ; 298(6): 102023, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35568197

RESUMO

3C-like protease (3CLpro) processes and liberates functional viral proteins essential for the maturation and infectivity of severe acute respiratory syndrome coronavirus 2, the virus responsible for COVID-19. It has been suggested that 3CLpro is catalytically active as a dimer, making the dimerization interface a target for antiviral development. Guided by structural analysis, here we introduced single amino acid substitutions at nine residues at three key sites of the dimer interface to assess their impact on dimerization and activity. We show that at site 1, alanine substitution of S1 or E166 increased by twofold or reduced relative activity, respectively. At site 2, alanine substitution of S10 or E14 eliminated activity, whereas K12A exhibited ∼60% relative activity. At site 3, alanine substitution of R4, E290, or Q299 eliminated activity, whereas S139A exhibited 46% relative activity. We further found that the oligomerization states of the dimer interface mutants varied; the inactive mutants R4A, R4Q, S10A/C, E14A/D/Q/S, E290A, and Q299A/E were present as dimers, demonstrating that dimerization is not an indication of catalytically active 3CLpro. In addition, present mostly as monomers, K12A displayed residual activity, which could be attributed to the conspicuous amount of dimer present. Finally, differential scanning calorimetry did not reveal a direct relationship between the thermodynamic stability of mutants with oligomerization or catalytic activity. These results provide insights on two allosteric sites, R4/E290 and S10/E14, that may promote the design of antiviral compounds that target the dimer interface rather than the active site of severe acute respiratory syndrome coronavirus 2 3CLpro.


Assuntos
Proteases 3C de Coronavírus , SARS-CoV-2 , Alanina/química , Substituição de Aminoácidos , Antivirais/química , Proteases 3C de Coronavírus/metabolismo , Multimerização Proteica , SARS-CoV-2/enzimologia
7.
Biomolecules ; 12(4)2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35454167

RESUMO

Aedes aegypti Trypsin Modulating Oostatic Factor (AeaTMOF). a mosquito decapeptide that controls trypsin biosynthesis in female and larval mosquitoes. enters the gut epithelial cells of female mosquitoes using ABC-tmfA receptor/importer. To study the ultimate targeted receptor after AeaTMOF enters the cell, AeaTMOF was incubated in vitro with either Escherichia coli or Spodoptera frugiperda protein-expressing extracts containing 70S and 80S ribosomes, respectively. The effect of AeaTMOF on luciferase biosynthesis in vitro using 70S ribosomes was compared with that of oncocin112 (1-13), a ribosome-binding antibacterial peptide. The IC50 of 1 µM and 2 µM, respectively, for both peptides was determined. Incubation with a protein-expressing system and S. frugiperda 80S ribosomes determined an IC50 of 1.8 µM for Aedes aegypti larval late trypsin biosynthesis. Incubation of purified E. coli ribosome with increasing concentration of AeaTMOF shows that the binding of AeaTMOF to the bacterial ribosome exhibits a high affinity (KD = 23 ± 3.4 nM, Bmax = 0.553 ± 0.023 pmol/µg ribosome and Kassoc = 4.3 × 107 M-1). Molecular modeling and docking experiments show that AeaTMOF binds bacterial and Drosophila ribosome (50S and 60S, respectively) at the entrance of the ribosome exit tunnel, blocking the tRNA entrance and preventing protein biosynthesis. Recombinant E. coli cells that express only ABC-tmfA importer are inhibited by AeaTMOF but not by oncocin112 (1-13). These results suggest that the ribosome is the ultimate targeted receptor of AeaTMOF.


Assuntos
Aedes , Escherichia coli , Sequência de Aminoácidos , Animais , Escherichia coli/metabolismo , Feminino , Larva , Oligopeptídeos , Ribossomos/metabolismo , Tripsina/metabolismo
8.
Food Chem ; 383: 132427, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35248864

RESUMO

We present an easy-to-use lateral flow immunoassay for rapid, precise and sensitive quantification of one of the most hazardous mycotoxins - ochratoxin A (OTA), which is widely present in food and agricultural commodities. The achieved limit of detection during the 20-min OTA registration is 11 pg/mL. The assay provides accurate results in both low- and high-concentration ranges. That is due to the extraordinary steepness of the linear calibration plot: 5-order dynamic range of concentrations causes almost a 1000-fold change in the signal obtained by electronic detection of magnetic biolabels using their non-linear magnetization. High specificity, repeatability, and reproducibility of the assay have been verified, including measuring OTA in real samples of contaminated corn flour. The developed assay is a promising analytical tool for food and feed safety control; it may become an express, convenient and high-precision alternative to the traditional sophisticated laboratory techniques based on liquid chromatography.


Assuntos
Ocratoxinas , Contaminação de Alimentos/análise , Imunoensaio/métodos , Fenômenos Magnéticos , Ocratoxinas/análise , Reprodutibilidade dos Testes
9.
Chemosphere ; 296: 134036, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35202667

RESUMO

Avocado is one of the most important fruits with a high nutritional content; this fruit is consumed and cultivated worldwide. It is originally grown in Central America and the West Indies islands. But it is now cultivated in the tropical and subtropical regions of the world. Avocado waste is an abundantly available raw material that can be converted into adsorbents to remove different pollutants from aqueous solutions. This review article explores the utilization of avocado waste as raw material to develop an efficient adsorbent and its use against various toxicants. Many research papers have been published on the use of avocado waste-derived adsorbents in the recent past. The factors that affect the adsorption processes are examined in light of published references. Some critical adsorption parameters, such as equilibrium (isotherms), kinetics, and thermodynamics, have been reported in the published literature; these parameters and their data are critically discussed. The characterization, mechanism, and surface chemistry of avocado waste-derived adsorbents are also discussed. To date, no review article on avocado waste-derived adsorbents is available, where researchers can get an overview of the preparation, characterization, and adsorption attributes of avocado waste adsorbents against various pollutants. Recent literature demonstrates the effective utilization of avocado waste as a cleaner and sustainable raw material for the production of adsorbents.


Assuntos
Poluentes Ambientais , Persea , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Poluentes Químicos da Água/química
10.
Appl Biochem Biotechnol ; 194(4): 1775-1789, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35000123

RESUMO

Herein, laccase from Trametes versicolor was used to fabricate carrier-free cross-linked laccase crystals (CLLCs) and deployed as a robust catalyst for waste effluent treatment. The surface morphology and involvement of functional group attributes of CLLCs were scrutinized by scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). As fabricated CLLCs were subjected to kinetic characterization by assessing the effects of pH environment, thermal profile, and substrate (determination of Km and Vmax) on the activity. A fully characterized CLLCs fraction was used to treat synthetic dyes containing waste effluents taken from various industries, i.e., Chenab Textile Industry, M-tax, Sitara, and National Silk & Rayon Mills. Degradation profile revealed 36.8%, 27.6%, 39.9%, and 26.4% degradation of Chenab Textile Industry, M-tax, Sitara, and National Silk & Rayon Mills, respectively, by the free form of laccase, whereas the biocatalytic activity of CCLCs led to 78.6%, 75.6%, 85.5%, and 63.3% degradation of those effluents. The decrease in peak and mass region alongside the presence of new peaks in GC-MS affirms the effective decolorization of contaminated waste effluents. CLLCs retained over 70% and 50% of their degradation activity after 3 and 5 cycles, respectively. In conclusion, CLLCs might represent a robust bioprocess to improve the usability of laccase for various synthetic dyes containing waste effluents to diminish environmental pollution from the dye-based industries.


Assuntos
Lacase , Trametes , Biodegradação Ambiental , Corantes/metabolismo , Resíduos Industriais/análise , Lacase/metabolismo , Indústria Têxtil , Têxteis
11.
Foods ; 12(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36613293

RESUMO

The development of green and sustainable biotechnological approaches for preventing chill haze formation is currently under investigation. In this preliminary study, laccase and tannase (pure or combined) were applied as phenolic-degrading enzymes during two crucial brewing steps (i. post-mashing and ii. before the yeast inoculum). In post-mashing and irrespective of the dosage applied (100 µL/L or 1 mL/L), tannase-based treatment ensured the complete removal of haze active (HA) phenols, which was proved by the full prevention of chill haze (about 1 EBC vs. 22 EBC in the control sample). Before yeast inoculum for the alcoholic fermentation, the removal of haze active phenols and the prevention of chill haze were both tannase-dosage-dependent (15 and 2 EBC for the lowest and the highest dosages, respectively) although they failed to completely break down the HA phenols. This biotechnological approach did not significantly affect the chromatic properties of treated beer.

12.
Front Microbiol ; 12: 710678, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603237

RESUMO

The apicomplexan Babesia microti is a main pathogenic parasite causing human babesiosis, which is one of the most widely distributed tick-borne diseases in humans. Pyruvate kinase (PYK) plays a central metabolic regulatory role in most living organisms and catalyzes the essentially irreversible step in glycolysis that converts phosphoenolpyruvate (PEP) to pyruvate. Hence, PYK is recognized as an attractive therapeutic target in cancer and human pathogens such as apicomplexans. In this study, we cloned, expressed, and purified B. microti PYK I (BmPYKI). Western blotting illustrated that anti-rBmPYKI antibody could specifically recognize the native BmPYKI protein in the lysate of B. microti with a 54-kDa band, which is consistent with the predicted size. In addition, the enzymatic activity of the purified recombinant PYKI (rPYKI) was tested under a range of pH values. The results showed that the maximum catalytic activity could be achieved at pH 7.0. The saturation curves for substrates demonstrated that the K m value for PEP was 0.655 ± 0.117 mM and that for ADP was 0.388 ± 0.087 mM. We further investigated the effect of 13 compounds on rBmPYKI. Kinetic analysis indicated that six inhibitors (tannic acid, shikonin, apigenin, PKM2 inhibitor, rosiglitazone, and pioglitazone) could significantly inhibit the catalytic activity of PYKI, among which tannic acid is the most efficient inhibitor with an IC50 value 0.49 µM. Besides, four inhibitors (tannic acid, apigenin, shikonin, and PKM2 inhibitor) could significantly decrease the growth of in vitro-cultured B. microti with IC50 values of 0.77, 2.10, 1.73, and 1.15 µM. Overall, the present study provides a theoretical basis for the design and development of new anti-Babesia drugs.

13.
Biomolecules ; 11(7)2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201823

RESUMO

Trypsin Modulating Oostatic Factor (TMOF) receptor was solubilized from the guts of female Ae. Aegypti and cross linked to His6-TMOF and purified by Ni affinity chromatography. SDS PAGE identified two protein bands (45 and 61 kDa). The bands were cut digested and analyzed using MS/MS identifying a protein sequence (1306 amino acids) in the genome of Ae. aegypti. The mRNA of the receptor was extracted, the cDNA sequenced and cloned into pTAC-MAT-2. E. coli SbmA- was transformed with the recombinant plasmid and the receptor was expressed in the inner membrane of the bacterial cell. The binding kinetics of TMOF-FITC was then followed showing that the cloned receptor exhibits high affinity to TMOF (KD = 113.7 ± 18 nM ± SEM and Bmax = 28.7 ± 1.8 pmol ± SEM). Incubation of TMOF-FITC with E. coli cells that express the receptor show that the receptor binds TMOF and imports it into the bacterial cells, indicating that in mosquitoes the receptor imports TMOF into the gut epithelial cells. A 3D modeling of the receptor indicates that the receptor has ATP binding sites and TMOF transport into recombinant E. coli cells is inhibited with ATPase inhibitors Na Arsenate and Na Azide.


Assuntos
Aedes/genética , Clonagem Molecular/métodos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Receptores de Peptídeos/química , Receptores de Peptídeos/genética , Sequência de Aminoácidos , Animais , Feminino , Trato Gastrointestinal/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
14.
Protein Expr Purif ; 183: 105877, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33775769

RESUMO

The Leishmania major leucyl-aminopeptidase (LAPLm), a member of the M17 family of proteases, is a potential drug target for treatment of leishmaniasis. To better characterize enzyme properties, recombinant LAPLm (rLAPLm) was expressed in Escherichia coli. A LAPLm gene was designed, codon-optimized for expression in E. coli, synthesized and cloned into the pET-15b vector. Production of rLAPLm in E. coli Lemo21(DE3), induced for 4 h at 37 °C with 400 µM IPTG and 250 µM l-rhamnose, yielded insoluble enzyme with a low proportion of soluble and active protein, only detected by an anti-His antibody-based western-blot. rLAPLm was purified in a single step by immobilized metal ion affinity chromatography. rLAPLm was obtained with a purity of ~10% and a volumetric yield of 2.5 mg per liter, sufficient for further characterization. The aminopeptidase exhibits optimal activity at pH 7.0 and a substrate preference for Leu-p-nitroanilide (appKM = 30 µM, appkcat = 14.7 s-1). Optimal temperature is 50 °C, and the enzyme is insensitive to 4 mM Co2+, Mg2+, Ca2+ and Ba2+. However, rLAPLm was activated by Zn2+, Mn2+ and Cd2+ but is insensitive towards the protease inhibitors PMSF, TLCK, E-64 and pepstatin A, being inhibited by EDTA and bestatin. Bestatin is a potent, non-competitive inhibitor of the enzyme with a Ki value of 994 nM. We suggest that rLAPLm is a suitable target for inhibitor identification.


Assuntos
Aminopeptidases , Escherichia coli , Leishmania major , Proteínas de Protozoários , Aminopeptidases/biossíntese , Aminopeptidases/química , Aminopeptidases/genética , Aminopeptidases/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Leishmania major/enzimologia , Leishmania major/genética , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
15.
ACS Nano ; 15(1): 489-502, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33370106

RESUMO

DNA polymerases have revolutionized the biotechnology field due to their ability to precisely replicate stored genetic information. Screening variants of these enzymes for specific properties gives the opportunity to identify polymerases with different features. We have previously developed a single-molecule DNA sequencing platform by coupling a DNA polymerase to an α-hemolysin pore on a nanopore array. Here, we use this approach to demonstrate a single-molecule method that enables rapid screening of polymerase variants in a multiplex manner. In this approach, barcoded DNA strands are complexed with polymerase variants and serve as templates for nanopore sequencing. Nanopore sequencing of the barcoded DNA reveals both the barcode identity and kinetic properties of the polymerase variant associated with the cognate barcode, allowing for multiplexed investigation of many polymerase variants in parallel on a single nanopore array. Further, we develop a robust classification algorithm that discriminates kinetic characteristics of the different polymerase mutants. As a proof of concept, we demonstrate the utility of our approach by screening a library of ∼100 polymerases to identify variants for potential applications of biotechnological interest. We anticipate our screening method to be broadly useful for applications that require polymerases with altered physical properties.


Assuntos
Nanoporos , DNA , DNA Polimerase Dirigida por DNA , Cinética , Análise de Sequência de DNA
16.
Biochimie ; 181: 86-95, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33221375

RESUMO

Different methodologies for determining the dissociation equilibrium constant (Ki) of protein tight binding inhibitors are frequently found in the scientific literature. Taking into account that the Ki value is the main parameter characterizing the inhibition strength, its determination often represents the first step during the characterization of a potential drug. The purpose of this review is to summarize the current information related to tight binding inhibitors Ki values determination and discuss about the importance of different factors as the enzyme concentration, the inhibitor concentration dilution series, the enzyme-inhibitor incubation time and the dose-response data mathematical fitting. For this aim, the bi-functional SmCI protease inhibitor is used as a tool for exemplifying the experimental and mathematical steps performed during tight binding inhibitors Ki values determination. In addition, the natural and the different recombinant forms of SmCI were used to go deeply into the comparison of some mathematic approaches that are frequently used in the literature. Finally, other biochemical techniques that could be potentially used for tight binding inhibitors Ki values determination are also commented.


Assuntos
Modelos Químicos , Modelos Moleculares , Peptídeo Hidrolases/química , Inibidores de Proteases/química , Cinética
17.
Data Brief ; 33: 106588, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33318976

RESUMO

Biosynthesis of poly-3-hydroxybutyrate (PHB) as a fermentation product enables the coupling of growth and product generation. Moreover, the reduction of oxygen supply should reduce operative cost and increase product yield. Generation of PHB as a fermentation product depends on the in vivo activity of an NADH-preferring acetoacetyl-CoA reductase. Proof of this concept requires (i) quantification of the cofactor preference, in physiologically relevant conditions, of a putative NADH-preferring acetoacetyl-CoA reductase and (ii) verification of PHB accumulation using an NADH-preferring acetoacetyl-CoA reductase in a species naturally incapable of doing so, for example, Escherichia coli. This dataset contains kinetic data obtained by spectrophotometry and data from a continuous culture of an engineered E. coli strain accumulating PHB under oxygen-limiting conditions. In this dataset it is possible to find (1) enzyme stability assays; (2) initial rates and progress curves from reactions catalyzed by two acetoacetyl-CoA reductases; (3) estimations of the relative use of NADH and NADPH by two acetoacetyl-CoA reductases; (4) estimations of the flux capacity of the reaction catalyzed by an acetoacetyl-CoA reductase; (5) biomass composition of an engineered E. coli strain transformed with a plasmid; (6) calculation of reconciled specific rates of this engineered strain growing on sucrose as the sole carbon source under oxygen limitation and (7) metabolic fluxes distributions during the continuous growth of this engineered strain. Because a relatively small number of acetoacetyl-CoA reductases have been kinetically characterized, data and scripts here provided could be useful for further kinetic characterizations. Moreover, the procedure described to estimate biomass composition could be interesting to estimate plasmid and protein burden in other strains. Application of data reconciliation to fermentations should help to obtain specific rates consistent with the principle of mass and electron conservation. All the required data and scripts to perform these analyses are deposited in a Mendeley Data repository. This article was co-submitted with the manuscript entitled "An NADH preferring acetoacetyl-CoA reductase is engaged in poly-3-hydroxybutyrate accumulation in Escherichiasia. coli".

18.
Int J Biol Macromol ; 164: 1256-1266, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32721460

RESUMO

The pathways of melanization and sclerotization of the cuticle in insects are carried out by the action of laccases on dopamine and related compounds. In this work, the laccase action of Trametes versicolor (TvL) on catecholamines and related compounds has been kinetically characterized. Among them, dopamine, l-dopa, l-epinephrine, l-norepinephrine, dl-isoprenaline, l-isoprenaline, dl-α-methyldopa, l-α-methyldopa and l-dopa methylester. A chronometric method has been used, which is based on measuring the lag period necessary to consume a small amount of ascorbic acid, added to the reaction medium. The use of TvL has allowed docking studies of these molecules to be carried out at the active site of this enzyme. The hydrogen bridge interaction between the hydroxyl oxygen at C-4 with His-458, and with the acid group of Asp-206, would make it possible to transfer the electron to the T1 Cu-(II) copper centre of the enzyme. Furthermore, Phe-265 would facilitate the adaptation of the substrate to the enzyme through Π-Π interactions. To kinetically characterize these compounds, we need to take into consideration that, excluding l-dopa, l-α-methyldopa and dl-α-methyldopa, all compounds are in hydrochloride form. Because of this, first we need to kinetically characterize the inhibition by chloride and, after that, calculate the kinetic parameters KM and VmaxS. From the kinetic data obtained, it appears that the best substrate is dopamine. The presence of an isopropyl group bound to nitrogen (isoprenaline) makes it especially difficult to catalyse. The formation of the ester (l-dopa methyl ester) practically does not affect catalysis. The addition of a methyl group (α-methyl dopa) increases the rate but decreases the affinity for catalysis. l-Epinephrine and l-norepinephrine have an affinity similar to isoprenaline, but faster catalysis, probably due to the greater nucleophilic power of their phenolic hydroxyl.


Assuntos
Catecolaminas/química , Dopamina/química , Lacase/química , Oxigênio/química , Animais , Isótopos de Carbono , Catálise , Domínio Catalítico , Simulação por Computador , Concentração de Íons de Hidrogênio , Radical Hidroxila , Insetos , Cinética , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Dinâmica não Linear , Fenóis/química , Polyporaceae/química
19.
Curr Med Sci ; 40(2): 239-248, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32337685

RESUMO

Phenolic compounds such as chlorogenic acid, cryptochlorogenic acid, neochlorogenic acid and caffeic acid are widely distributed in fruits, vegetables and traditional Chinese medicines with a wide range of biological activities. Tyrosinase plays a critical role in the food industry, but recent studies have proposed unexplored aspects of clinical application. Tyrosinase-catalyzed oxidation of four polyphenols as well as its underlying mechanism remains unclear. In the current work, we investigated the kinetic properties of tyrosinase-catalyzed oxidation of the four polyphenols of interest. To measure the unstable o-quinone products, an analytical method using 3-methyl-2-benzothiazolinone hydrazone (MBTH) was established. The optimal incubation time, buffer pH, temperature and enzyme concentration for the enzyme activity in the presence of each polyphenol of interest were investigated. Under the final optimized conditions, the kinetics and substrate specificity of four polyphenols were examined. Kinetic data showed that tyrosinase had the greatest substrate affnity to chlorogenic acid compared with its isomers and caffeic acid. The catalytic effciency with chlorogenic acid was 8- to 15-fold higher than that with the other 3 polyphenols. Molecular docking study demonstrated that the tight binding of chlorogenic acid at the peripheral site should be the major reason for the specifcity to chlorogenic acid. In light of this, the rational design of high-affnity inhibitors against tyrosinase may focus on the binding of both the Cu site and peripheral site. This study will supply a basis for the selection of phenolic acids in food industry and health care.


Assuntos
Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/metabolismo , Polifenóis/química , Polifenóis/metabolismo , Sítios de Ligação , Ácidos Cafeicos/química , Ácidos Cafeicos/metabolismo , Ácido Clorogênico/análogos & derivados , Ácido Clorogênico/química , Ácido Clorogênico/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Simulação de Acoplamento Molecular , Oxirredução , Ácido Quínico/análogos & derivados , Especificidade por Substrato , Fatores de Tempo
20.
Heliyon ; 6(4): e03733, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32322725

RESUMO

Nicotinamide adenine dinucleotide (NAD) is an essential coenzyme involved in REDOX reactions and oxidative stress defense systems. Furthermore, NAD is used as substrate by proteins that regulate essential cellular functions as DNA repair, genetic, and signal transduction, among many others. NAD biosynthesis can be completed through the de novo and salvage pathways, which converge at the common step catalyzed by the nicotinate/nicotinamide mononucleotide adenylyltransferase (NMNAT EC: 2.7.7.1/18). Here, we report the kinetic characterization of the NMNAT of Leishmania braziliensis (LbNMNAT), one of the etiological agents of leishmaniasis, a relevant parasitic disease. The expression and homogeneous purification of the recombinant 6xHis-LbNMNAT protein was carried out and its kinetic study, which included analysis of K m , V max , K cat and the equilibrium constant (K D ) for both the forward and reverse reactions, was completed. The oligomeric state of the recombinant 6xHis-LbNMNAT protein was studied through size exclusion chromatography. Our results indicated the highest and lowest K m values for ATP and NAD, respectively. According to the calculated K D , the pyrophosphorolytic cleavage of NAD is favored in vitro. Moreover, the recombinant 6xHis-LbNMNAT protein showed a monomeric state, although it exhibits a structural element involved in potential subunits interaction. Altogether, our results denote notable differences of the LbNMNAT protein in relation to the human orthologs HsNMNAT1-3. These differences constitute initial findings that have to be continued to finally propose the NMNAT as a promissory pharmacological target in L. braziliensis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA