Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.136
Filtrar
1.
J Environ Sci (China) ; 149: 551-563, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181666

RESUMO

The increased frequency and intensity of heavy rainfall events due to climate change could potentially influence the movement of nutrients from land-based regions into recipient rivers. However, little information is available on how the rainfall affect nutrient dynamics in subtropical montane rivers with complex land use. This study conducted high-frequency monitoring to study the effects of rainfall on nutrients dynamics in an agricultural river draining to Lake Qiandaohu, a montane reservoir of southeast China. The results showed that riverine total nitrogen (TN) and total phosphorus (TP) concentrations increased continuously with increasing rainfall intensity, while TN:TP decreased. The heavy rainfall and rainstorm drove more than 30% of the annual N and P loading in only 5.20% of the total rainfall period, indicating that increased storm runoff is likely to exacerbate eutrophication in montane reservoirs. NO3--N is the primary nitrogen form lost, while particulate phosphorus (PP) dominated phosphorus loss. The main source of N is cropland, and the main source of P is residential area. Spatially, forested watersheds have better drainage quality, while it is still a potential source of nonpoint pollution during rainfall events. TN and TP concentrations were significantly higher at sites dominated by cropland and residential area, indicating their substantial contributions to deteriorating river water quality. Temporally, TN and TP concentrations reached high values in May-August when rainfall was most intense, while they were lower in autumn and winter than that in spring and summer under the same rainfall intensities. The results emphasize the influence of rainfall-runoff and land use on dynamics of riverine N and P loads, providing guidance for nutrient load reduction planning for Lake Qiandaohu.


Assuntos
Monitoramento Ambiental , Nitrogênio , Fósforo , Chuva , Rios , Poluentes Químicos da Água , Fósforo/análise , Nitrogênio/análise , China , Rios/química , Poluentes Químicos da Água/análise , Agricultura
2.
J Environ Sci (China) ; 148: 387-398, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095174

RESUMO

Land use and precipitation are two major factors affecting phosphorus (P) pollution of watershed runoff. However, molecular characterization of dissolved organic phosphorus (DOP) in runoff under the joint influences of land use and precipitation remains limited. This study used Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to study the molecular characteristics of DOP in a typical P-polluted watershed with spatially variable land use and precipitation. The results showed that low precipitation and intense human activity, including phosphate mining and associated industries, resulted in the accumulation of aliphatic DOP compounds in the upper reaches, characterized by low aromaticity and low biological stability. Higher precipitation and widespread agriculture in the middle and lower reaches resulted in highly unsaturated DOP compounds with high biological stability constituting a higher proportion, compared to in the upper reaches. While, under similar precipitation, more aliphatic DOP compounds characterized by lower aromaticity and higher saturation were enriched in the lower reaches due to more influence from urban runoff relative to the middle reaches. Photochemical and/or microbial processes did result in changes in the characteristics of DOP compounds during runoff processes due to the prevalence of low molecular weight and low O/C bioavailable aliphatic DOP molecules in the upper reaches, which were increasingly transformed into refractory compounds from the upper to middle reaches. The results of this study can increase the understanding of the joint impacts of land use and precipitation on DOP compounds in watershed runoff.


Assuntos
Monitoramento Ambiental , Fósforo , Poluentes Químicos da Água , Fósforo/análise , Poluentes Químicos da Água/análise , Chuva/química , Agricultura
3.
Environ Monit Assess ; 196(10): 964, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39304543

RESUMO

Uncontrolled human activity and nature are causing the deterioration of Saint Martin Island, Bangladesh's only tropical island, necessitating sustainable land use strategies and ecological practices. Therefore, the present study measures the land use/cover transition from 1974 to 2021, predicts 2032 and 2042, and constructs the spatiotemporal features of the Landscape Ecological Risk Index based on land use changes. The study utilized Maximum Likelihood Classification (MLC) on Landsat images from 1974, 1988, 2001, 2013, and Sentinel 2B in 2021, achieving ≥ 80% accuracy. The MLP-MC approach was also used to predict 2032 and 2042 LULC change patterns. The eco-risk index was developed using landscape disturbance and vulnerability indices, Bayesian Kriging interpolation, and spatial autocorrelations to indicate spatial clustering. The research found that settlements increased from 2.06 to 28.62 ha between 1974 and 2021 and would cover 41.22 ha in 2042, causing considerable losses in agricultural areas, waterbodies, sand, coral reefs, and vegetation. The area under study showed a more uniform and homogenous environment as Shannon's diversity and evenness scores decreased. The ecological risk of Saint Martin Island increased from 4.31 to 31.05 ha between 1974 and 2042 due to natural and human factors like erosion, tidal bores, population growth, coral mining, habitat destruction, and intensive agricultural practices and tourism, primarily in Nazrul Para, Galachipa, and Western Dakhin Para. The findings will benefit St. Martin Island stakeholders and policymakers by providing insights into current and potential landscape changes and land eco-management.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Monitoramento Ambiental , Sistemas de Informação Geográfica , Ilhas , Tecnologia de Sensoriamento Remoto , Bangladesh , Monitoramento Ambiental/métodos , Medição de Risco/métodos , Humanos , Teorema de Bayes
4.
Sci Rep ; 14(1): 21955, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304695

RESUMO

Lishu County, which is located in the black soil region of Northeast China, represents a key site for the analysis of soil erosion intensity. This study offers a scientific foundation for the development of targeted soil and water conservation strategies within the region. The Revised Universal Soil Loss Equation (RUSLE) was employed to compute the soil erosion modulus in Lishu County, with the objective of conducting a quantitative analysis of the temporal and spatial distribution patterns of soil erosion. Additionally, the changing characteristics of soil erosion were examined from the perspectives of land use types and slope variations. The Generalized Connectivity Causality Model (GCCM) was utilized to identify the causal relationship between soil erosion and land use types through the reconstruction of state space and cross-mapping predictions. (1) Soil erosion in Lishu County between 2000 and 2020 predominantly exhibited mild to moderate levels, characterized by patchy and sporadic erosion, with relatively severe occurrences in the northern and central regions. (2) Soil erosion was correlated with land use and slope variations, with more than 90% of erosion incidents transpiring in cultivated land areas. The 3°-5° slope range in Lishu County emerged as a focal point for erosion, necessitating targeted prevention and control measures. (3) The GCCM model illustrated a discernible causal relationship between soil erosion and land use, revealing mutual influences between the two factors. Between 2000 and 2020, both the area and intensity of soil erosion in Lishu County exhibited an initial increase, followed by a subsequent decrease. This suggests an overall trend of amelioration in soil erosion conditions. However, notable spatial disparities persist in the erosion distribution across the region.

5.
Sci Total Environ ; 954: 176355, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39306136

RESUMO

Soil conservation adheres to various United Nations Sustainable Development Goals while in Brazil is a constitutional obligation. To attain the goals and fulfil the obligation, laws, policies, governance and science must be imbricated to deliver suitable conservation solutions for the long term, namely appropriate to positively influence other downstream chains such as the food chain. However, in Brazil, a major world producer and exporter of food, weaknesses were recently diagnosed by judicial authorities concerning soil governance and coordinated land use policies. Integrated scientific assessments on soil conservation and mitigation of degraded soil are also lacking in this country. This was enough motivation and the purpose to present here a holistic view over the soil conservation agenda and promoting policies in Brazil, based on a literature review that followed the guidelines and criteria of PRISMA approach. We termed this analysis a review hinged on "edge-to-edge" science contributions for two reasons. Firstly, the intent of retrieving from the recently published literature solely papers centered on a relevant soil conservation topic (e.g., soil characterization, here called an "edge") but with complementary analyses over boundary topics (frontier "edges", such as soil degradation). Secondly, the intent of underlining the urgency to assist decision-makers with scientific evidence in all dimensions of the soil conservation agenda ("edge-to-edge" science), namely soil characterization (e.g., quality reference values), soil degradation assessment (e.g., anthropogenic-related soil erosion or contamination), soil degradation consequences focused on the carbon cycle (e.g., net CO2 emissions and climate warming), sustainable management practices and production systems (e.g., no-tillage agriculture and integrated crop-livestock-forestry systems), and scientific evaluation of existing laws as well as of governance and policy programs with potential implications on soil quality (e.g., the Forest Code). Thus, this literature review addressed all these topics following a multidisciplinary discourse, which produced an extensive but comprehensive document about soil conservation in Brazil.

6.
Environ Monit Assess ; 196(10): 975, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312081

RESUMO

To accurately assess the bioavailability risk of heavy metals (HMs) in a representative polymetallic mining region, we undertook an exhaustive analysis of Cu, Pb, Ni, Co, Cd, Zn, Mn, and Cr in soils from diverse land-use types, encompassing agricultural, forest, residential, and mining areas. We employed speciation analysis methods and a modified risk assessment approach to ascertain potential ecological threats posed by the HMs. Our findings reveal that both the total potential ecological risk and the modified bioavailability risks are most pronounced in the soil of the mining area. The modified bioavailability threats are primarily caused by Pb, Ni, Cd, and Co. Although the total potential ecological risk of Cu is high in the local soil, the predominance of its stable forms reduces its mobility, thereby mitigating its detrimental impact on the ecosystem. Additionally, medium modified bioavailability risks were identified in the peripheries of agricultural and forest areas, potentially attributable to geological processes and agricultural activities. Within the urban district, medium risks were observed in residential and mining areas, likely resulting from mining, metallurgy, industrial operations, and traffic-related activities. This study provides critical insights that can assist governmental authorities in devising targeted policies to alleviate health hazards associated with soils in polymetallic mining regions.


Assuntos
Monitoramento Ambiental , Metais Pesados , Mineração , Poluentes do Solo , Solo , Metais Pesados/análise , Poluentes do Solo/análise , Medição de Risco , Solo/química , Agricultura , Disponibilidade Biológica
7.
Environ Pollut ; 362: 124951, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39284405

RESUMO

This study investigated geospatial distributions of endocrine-disrupting chemicals (EDCs) in the waters of the Dongjiang River and their associations with anthropogenic activities. Fifteen EDCs, with total concentrations in the river water of 149-2525 ng/L were detected, with bisphenol-A, 4-nonylphenol, 4-tert-octylphenol, p-hydroxybenzoic acid, and methylparaben being the five predominant EDCs. The total estrogen concentration was high downstream and significantly correlated with the spatial distribution of urban land use, wastewater discharge, population, and gross domestic product, indicating human activities have increased estrogen levels and threatened ecological health. The total risk quotient indicated a high ecological risk of estrogens to fish and a moderate to high ecological risk of personal care products to algae. Estrone, triclosan, bisphenol-A, 4-nonylphenol, and 4-tert-octylphenol were categorized as priority pollutants, which required special concern. Triclosan and triclocarban can serve as reliable chemical indicators for predicting EDC levels based on correlation analysis. The crucial factors affecting EDC levels were identified through the Mantel test and predictor importance was quantified using a multiple regression model, which can help predict occurrences and geospatial distributions of EDCs. Total phosphorus and electrical conductivity were the major predictors of EDC levels, providing promising indicators for monitoring EDCs in river water. Urban land proportion significantly affected phenolic environmental estrogens, natural estrogens, and disinfectants. In the main stream, urban population, urbanization rate, and gross domestic product influenced phenolic environmental estrogen levels. A mini-review of the global distribution of EDCs in river water revealed that income and population differences among countries affect their occurrence, suggesting socioeconomic factors should be considered to mitigate EDC pollution.

8.
Sensors (Basel) ; 24(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39275559

RESUMO

Land-use and land-cover change (LULCC) is a critical environmental issue that has significant effects on biodiversity, ecosystem services, and climate change. This study examines the land-use and land-cover (LULC) spatiotemporal dynamics across a three-decade period (1998-2023) in a district area. In order to forecast the LULCC patterns, this study suggests a hybrid strategy that combines the random forest method with multi-layer perceptron (MLP) and Markov chain analysis. To predict the dynamics of LULC changes for the year 2035, a hybrid technique based on multi-layer perceptron and Markov chain model analysis (MLP-MCA) was employed. The area of developed land has increased significantly, while the amount of bare land, vegetation, and forest cover have all decreased. This is because the principal land types have changed due to population growth and economic expansion. This study also discovered that between 1998 and 2023, the built-up area increased by 468 km2 as a result of the replacement of natural resources. It is estimated that 25.04% of the study area's urbanization will increase by 2035. The performance of the model was confirmed with an overall accuracy of 90% and a kappa coefficient of around 0.89. It is important to use advanced predictive models to guide sustainable urban development strategies. The model provides valuable insights for policymakers, land managers, and researchers to support sustainable land-use planning, conservation efforts, and climate change mitigation strategies.

9.
J Environ Manage ; 370: 122486, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39278015

RESUMO

Microorganisms in the sediment play a pivotal role in the functioning and stability of seagrass ecosystems and their dynamics are influenced by the nutrient acquisition strategies of host plants. While the distinct impacts of microbial generalists and specialists on community dynamics are recognized, their distribution patterns and ecological roles within seagrass ecosystems remain largely unexplored. To address this issue, we conducted an analysis of community assembly processes and co-occurrence relationships of both microbial generalists and specialists within sediment profiles (0-100 cm) from seagrass habitats subjected to differing land use conditions. The results revealed that seagrasses in Yifeng Estuary experienced the large proportion of cultivated land and exhibited higher organic carbon content in the 0-20 cm surface sediment layer. Nitrogen-cycling bacteria were predominantly associated with seagrasses from Yifeng Estuary, whereas Vibrio spp. was more prevalent in seagrasses from Liusha Bay. Notably, seagrass Halophia beccarii (YHB) in Yifeng Estuary harbored higher niche breadths for both microbial generalist and specialist compared to Halodule uninervis (LHU) and Halophia ovalis (LHO) from Liusha Bay. Stochastic processes were pivotal in shaping seagrass sediment microbial communities, with a higher immigration rate observed in YHB, suggesting greater microbial turnover in this area. Additionally, YHB sediment presented lower drift and higher dispersal limitation among generalists compared to LHU and LHO, whereas the pattern was reversed among specialists. Specialists were found to play a crucial role in shaping microbial interactions within YHB sediment, with genera Halioglobus identified as keystone species in the network. The specialists were further found to significantly influence microbial ß-diversity in seagrass sediment directly. Overall, our findings illustrated how microbial generalists and specialists were distributed in seagrass sediments in response to land use changes and provided new insights into the potential roles of microbial regulation in degraded seagrass ecosystems.

10.
Sci Total Environ ; 952: 175930, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39218104

RESUMO

The coastal region of China is a typical area characterized by a developed economy, yet it faces prominent resource and environmental issues, and it is of great significance to quantitatively assess the ecological effects resulting from rapid urbanization and industrialization. Based on the land use data from 1985 to 2020, and the InVEST modeling and relevant spatial data sources, the paper analyzed the spatial and temporal changes in land use cover and habitat quality in the coastal China over the past 30 years. The results show that: 1) land use cover in the coastal China has changed significantly during the study period, with the area of cultivated land continuing to decrease and construction land expanding; 2) the trend of habitat quality degradation in was obvious, with the area of low-value habitat quality continuing to increase. Spatially, they were mainly located in the three major urban agglomerations undergoing rapid industrialization and urbanization; 3) The average degradation of habitats increased significantly between 1990 and 2000 and 2010-2020. The rate of change in areas with different degradation levels from 1990 to 2000 was higher than in other periods. The low-value areas of habitat degradation are mainly located in hilly and mountainous regions. 4) The transfer of habitat grades was generally characterized by a shift from high grade to low grade. This trend of conversion was due to the large-scale occupation of cultivated land by construction land and the long-term encroachment of ecological land by cultivated land. For future development, it is recommended to improve the land use regulation system based on the principles of sustainable development, with a particular focus on habitat protection. Additionally, efforts should be made to strengthen the development of ecological agriculture, carry out ecological protection and restoration, and improve the mechanisms for coordinating land and sea management.

11.
Sci Total Environ ; 952: 175836, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39222822

RESUMO

Novel brominated flame retardants (NBFRs) have emerged as an alternative to traditional brominated flame retardants (BFRs) and may pose risks to the environment and human health. However, the distribution pattern of NBFRs in urbanized zones and their association with multiple socioeconomic variables have not been adequately explored. Herein, seven NBFRs were investigated in surface soil samples from Tianjin, China, a typical urbanized area. The ∑7NBFRs ranged from n.d. to 101 ng/g, dry weight (dw) (mean: 12.6 ± 17.6 ng/g dw), which exhibited a relatively elevated level compared to NBFRs in soils from other regions worldwide. Decabromodiphenylethane (DBDPE) was the main contaminant, and its concentration ranged from 0.378 to 99 ng/g, dry weight (dw) (mean: 11.4 ± 17.0 ng/g dw), accounting for 81 % of the ∑7NBFRs. Notably, NBFRs exhibited peak concentrations within residential zones, significantly surpassing those recorded in the remaining four regions (green, farmland, water environment and other) (p < 0.05). Furthermore, the concentration of NBFRs in the soil of the Binhai New District within Tianjin was the highest, significantly exceeding that of other administrative areas, which was closely related to the intensive industrial activities in this region. The above results indicate that human activities are a key factor affecting the concentration of NBFRs in the soil. Moreover, a variety of statistical methods were employed to investigate the correlation between socioeconomic variables and the distribution of NBFRs. The concentration of NBFRs showed a significant correlation with population density and the gross domestic product (GDP) (p < 0.05), and the incorporation of administrative regional planning into structural equation models demonstrated an indirect influence on the spatial distribution of NBFRs concentration, mediated by its impact on population density. These results emphasize the association between NBFRs contamination and the degree of urbanization, thereby providing valuable insights for assessing the exposure risk of NBFRs among urban residents.


Assuntos
Monitoramento Ambiental , Retardadores de Chama , Poluentes do Solo , Solo , Urbanização , Retardadores de Chama/análise , China , Poluentes do Solo/análise , Solo/química
12.
Sci Total Environ ; 954: 176157, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39260504

RESUMO

High-efficiency land use facilitates the maximization of land utilization, lowers urban construction costs, and optimizes urban functional patterns. The Sustainable Development Goal 11.3.1 (SDG 11.3.1) can be used to assess land use efficiency (LUE), understand the current state of land use, and identify the potential for optimization. This study combines SDG 11.3.1 with other supplementary indicators to establish a land use efficiency evaluation system. This system provides a more precise understanding of internal city changes and enables a scientific assessment of urban LUE in Mainland China. The results showed that: (1) A significant number of cities were growing cities, particularly in the eastern region, with the population of built-up areas increased by 2.92 times from 2000 to 2020; (2) From 2000 to 2020, cities in China underwent rapid urban expansion, with the most significant urban expansion index in 2015-2020; (3) The coordination between population growth rate (PGR) and land consumption rate (LCR) worsened in the western region, while the central and eastern regions showed better coordination. (4) As the urban expansion index increased, the compactness index of the cities in the above three regions decreased and were at lower levels. This study establishes an evaluation system to assess the LUE and reveals the spatial and temporal characteristics of urban and population change. It holds paramount significance in enhancing LUE and encouraging sustainable development in Mainland China and serves as a valuable reference for global urban management.

13.
Sci Total Environ ; 954: 176260, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39277016

RESUMO

Studying the impacts of land use and river network structure on perfluoroalkyl acids (PFAAs) footprint in rivers is crucial for predicting the fate of PFAAs in aquatic environments. This study investigated the distribution, ecological risks, sources and influence factors of 17 PFAAs in water and sediments of rivers from hills to plain areas. The results showed that the detection frequencies were higher for short-chain PFAAs than long-chain PFAAs in water, whereas an opposite pattern was found in sediments. The concentration of ∑PFAAs ranged from 59.2 to 414 ng/L in water and from 1.4 to 60.1 ng/g in sediments. Perfluorohexanoic acid and perfluorooctanoic acid were identified as the main pollutants in the river. The average concentrations of PFAAs were higher in the aquaculture areas (water: 309.8 ng/L; sediments: 43.27 ng/g) than in residential areas (water: 206.03 ng/L; sediments: 11.7 ng/g) and farmland areas (water: 123.12 ng/L; sediments: 9.4 ng/g). Environmental risk assessment showed that PFAAs were mainly low risk or no risk in water, but were moderate risk and even high risk in sediments, especially for perfluorooctane sulfonate. Source apportionment found that PFAA sources were mostly from industry, wastewater discharge, and surface runoff. Dissolved oxygen, chemical oxygen demand, water system circularity, network connectivity and organic matter were significantly correlated to PFAA concentration, indicating that the physicochemical properties and river network might directly influence the environmental behavior of PFAAs. The built-up area was positively correlated with PFAAs. These findings indicated that a comprehensive understanding of the influences of land use and river network structure on PFAAs in rivers is essential for managers to formulate effective PFAA control strategies.

14.
Heliyon ; 10(18): e37499, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39309933

RESUMO

Watershed ecosystems are important for the provision of multiple ecosystem services (ES) that are critical to human welfare. Few studies particularly in the tropics assess the multiple ecosystem services, economic value, and effect of land use change on economic value. This paper provides evidence of the quantitative. economic value and effect of land use change on the economic value of watershed ESs from Barekese and Owabi in Ghana. Geospatial analysis and the stated preference method were used for the study. Primary and secondary data were collected from households, institutions, and other sources to quantify and estimate ecosystem services. The geospatial analysis showed that forest degradation and deforestation have increased over the last three decades in the watershed with settlements and cropland being the major land use changes. The two watersheds provide many ecosystem services, including provisioning services (water, fuelwood, bushmeat, fish), regulating services (carbon sequestration, water supply, water purification, soil fertility), and cultural services (ecotourism). An aggregated economic value for the ESs of GH₵ 707.701 x 106 ($144.428 x 106) was estimated for the two watersheds. For the different sites, the economic value for the Barekese and Owabi watersheds were $110.645 x 106 ($6609.06/ha/yr) and $33.783 x 106 ($5857.76/ha/yr) respectively. Our analysis showed that conversion of forest to other land uses resulted in a significant reduction in the value of ecosystem services. Conversion of the watershed to Tree Crop, Food Crop, Grassland or Settlement could reduce the economic value of ESs by 4%-80 %. The study demonstrates that ecosystem services assessment could provide important information for conservation and development policies related to watershed management in the tropics. To ensure ecosystem service supply, the risks of land use change should be considered in watershed conservation strategies including land use zoning and adaptive management systems.

15.
Artigo em Inglês | MEDLINE | ID: mdl-39313609

RESUMO

The management and design of urban areas in metropolises pose significant challenges. Balancing diverse land uses within a metropolitan structure and addressing spatial and environmental constraints are just some of these challenges. Urban heat islands, which stem from factors such as inappropriate construction materials, inadequate building insulation, improper land use locations, and unsuitable built-up density, reflect environmental imbalances within urban infrastructure. Effectively addressing these temperature discrepancies can lead to energy preservation, reduced environmental hazards, and enhanced comfort for urban residents. This study employed Landsat-8 satellite images to identify and monitor positive and convex temperature disparities across various districts of Tehran over 3 years (2018 to 2020) using three different strategies. These disparities are estimated through the differences in land surface temperature from the thermal trend of each district and their persistence has been assessed in seasonal, semi-annual, and annual strategies. The study found that industrial areas, including warehouses, were the significant contributors to the persistent presence of urban heat islands in summer and winter. Open areas with impervious surfaces or bare soil, particularly those lacking sufficient green cover, also significantly contributed to the heat island effect. Certain large shopping centers, often due to their air conditioning systems, were also consistently identified as persistent heat islands. Evaluations demonstrated that over 78.8% of the identified persistent heat islands were meaningful, with most located in the northern and western parts of Tehran.

16.
Heliyon ; 10(17): e36904, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39296148

RESUMO

Urbanization presents significant challenges to air quality and climate resilience, necessitating pioneering urban design solutions to enhance air circulation and mitigate pollutants. This urgency intensifies in densely populated and rapidly evolving regions like Wuhan, China, where effective strategies are crucial for sustainable development. This study introduces an innovative 3D Urban Form Optimization (3D-UFO) methodology aimed at advancing urban block design configurations to improve urbanization quality. The 3D-UFO approach systematically addresses the multifaceted challenges of climate change and air quality degradation in rapidly urbanizing areas. Integrating GIS-based analysis for comprehensive Land-Use and Land-Cover Change (LULCC) evaluation with Computational Fluid Dynamics (CFD), our approach employs systematic exploration guided by established urban airflow study protocols. Robust metrics-Airspeed-Ratio (ASR) and Average-Age-of-Local-Air (ALA)-quantify the impact of diverse urban block design strategies on air-circulation efficiency and pollutant dispersion. Analysis across various urban scenarios, yielded by the proposed 3D-UFO approach, reveal significant variations in air-circulation efficiency at street and building levels (SBLs). Optimal urban air circulation achieves efficiency levels of 50-70 % when airflow aligns orthogonally across and parallel to streets. Adjusting street-level building heights, especially incorporating taller structures, boosts ventilation efficiency by 20-30 %, which is crucial for improving airflow dynamics in urban settings. Higher Height-to-Width (H/W) ratios (>5.5) yield a 218.5 % increase in ventilation in specific urban layouts. Notably, the synergy of street-aspect-ratio and building-height-ratio adjustments significantly enhance ASR and ALA, providing a quantitative foundation for sustainable urban development. This 3D-UFO methodology, fusing LULCC analysis, CFD simulations, and systematic exploration, emerge as a valuable framework for urban planners and designers. The study offers informed insights into urban sustainability challenges, demonstrating advancements in addressing environmental concerns and improving living conditions within densely populated environments.

17.
Heliyon ; 10(17): e37247, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39296228

RESUMO

Land use types, land development and utilization intensity within watersheds have changed based on intensifying human activities and climate change, thereby inducing spatiotemporal variations in non-point source pollution (NPS), significantly impacting soil and water quality. This study performed a case study on an ecological environment functional zone at the northern foot of Qinling Mountains, an area strongly affected by human activities and land use changes. It employed an improved potential non-point pollution index (PNPI) model to analyze potential non-point source pollution (PNPS) and associated risk evolution characteristics in watershed over the past 30 years. The results indicate that from 1990 to 2020, the dominant land use categories were forest and arable land, making up 95 % of the entire watershed area. Notably, urban residential land presented the most significant expansion rates and nearly doubled in area between 1990 and 2020, whereas shrubland, grassland, and unused land showed a decreasing trend. With the application of the quantile classification method, PNPS risk values were divided into five categories: very low, low, moderate, high, and very high. A polarized trend in risk was observed, with increases in areas influenced by human activities and rapid expansion of very high-risk regions. Concurrently, the pollution risk in the upstream water source area decreased. In recent years, accelerated urbanization has been the main driver causing expansion of high PNPS risk regions. This study explores the spatial and temporal evolution of PNPS risk in the Heihe Basin by using an improved PNPI model. The improved model is more accurate in calculations and provides a better understanding of the distribution of PNPS, which is an important reference for watershed management and water resource governance.

18.
Water Res X ; 25: 100251, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39297053

RESUMO

Freshwater biodiversity is increasingly threatened by dams and many other anthropogenic stressors, yet our understanding of the complex responses of different biotas and their multiple facets remains limited. Here, we present a multi-faceted and integrated-indices approach to assess the differential responses of freshwater biodiversity to multiple stressors in the Yangtze River, the third longest and most dam-densely river in the world. By combining individual biodiversity indices of phytoplankton, zooplankton, periphyton, macroinvertebrates, and fish with a novel integrated aquatic biodiversity index (IABI), we disentangled the effects of hydrology, water quality, land use, and natural factors on both α and ß diversity facets in taxonomic, functional, and phylogenetic dimensions. Our results revealed that phytoplankton and fish species and functional richness increased longitudinally, while fish taxonomic and phylogenetic ß diversity increased but phytoplankton and macroinvertebrate ß diversity remained unchanged. Hydrology and water quality emerged as the key drivers of all individual biodiversity indices, followed by land use and natural factors, with fish and phytoplankton showed the strongest responses. Importantly, we found that natural, land use, and hydrological factors indirectly affected biodiversity by altering water quality, which in turn directly influenced taxonomic and phylogenetic IABIs. Our findings highlight the complex interplay of multiple stressors in shaping freshwater biodiversity and underscore the importance of considering both individual and integrated indices for effective conservation and management. We propose that our multi-faceted and integrated-indices approach can be applied to other large, dam-modified river basins globally.

19.
J Environ Manage ; 370: 122463, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39299105

RESUMO

This study critically examines future carbon (CO2) emissions in the Belt & Road Initiative (BRI) region, considering factors such as energy consumption, economic growth, population growth, and population density. The objective of this study is to identify critical areas of higher emissions, which require policy intervention capable of strengthening sustainability in the BRI compact. A combined approach of stochastic modeling and Monte Carlo simulations was employed, utilizing panel data from 45 countries in the BRI region from 1990 to 2021. Results confirm that emissions are higher in all scenarios in direct proportion to electric power consumption, population growth, and Gross Domestic Product (GDP) growth. In scenarios with high emissions, a continuous and significant upward trend in CO2 emissions was observe. The medium emissions scenario exhibited a more moderated rise in emissions, suggesting a balance between economic development and environmental considerations. Critical areas for future environmental policy-making resides in electric power consumption, population growth, and GDP growth. The study strongly recommends for a shift from the current focus on road and railway infrastructure to renewable energy infrastructure, green innovations and efficient technology transfer to member countries. Without this, the BRI region is likely to face increased emissions, posing significant challenges to future sustainable development and global environmental sustainability.

20.
Heliyon ; 10(18): e37806, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39315176

RESUMO

Agricultural soil contamination is increasing day-by-day and becoming a major problem over the globe. Trace elements accumulation in the bulk soil is frequently documented, however, there is no precise mechanism of their distribution in the different soil aggregates level. We collected twelve composite soil samples from banana fields, fallow land, rice cultivated with pond water (rice field-I), and rice cultivated with rain water (rice field-II). We separated soil samples into four different size of aggregates (4-2, 2-0.25, 0.25-0.053, <0.053-mm) and then, aggregate stability (MWD), soil organic carbon (SOC), and heavy metals content (Pb, Cd, Cr, As, Fe, Mn, Zn, Ni, Co, Cu) in the soil samples were measured with different techniques. Results showed that MWD was higher in the rice-based land use, which was significantly contributed by SOC (p < 0.001). The concentration of Pb, As, Cd, Fe, and Mn were increased, while Cu and Zn concentration were reduced with increasing aggregate size (p < 0.05). In contrast, aggregate size did not influence on Ni and Co accumulation (p > 0.05). Moreover, macroaggregate acted as an accumulator for Fe, Mn, and As, while all the aggregate fractions acted as accumulators for Cu and Zn. Our study indicated that MWD, SOC, aggregate size and composition, and metal species were the controlling factors of trace elements accumulation and distribution in the various sizes of soil aggregates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA