Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14293, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906942

RESUMO

As natural landscapes are modified and converted into simplified agricultural landscapes, the community composition and interactions of organisms persisting in these modified landscapes are altered. While many studies examine the consequences of these changing interactions for crops, few have evaluated the effects on wild plants. Here, we examine how pollinator and herbivore interactions affect reproductive success for wild resident and phytometer plants at sites along a landscape gradient ranging from natural to highly simplified. We tested the direct and indirect effects of landscape composition on plant traits and reproduction mediated by insect interactions. For phytometer plants exposed to herbivores, we found that greater landscape complexity corresponded with elevated herbivore damage, which reduced total flower production but increased individual flower size. Though larger flowers increased pollination, the reduction in flowers ultimately reduced plant reproductive success. Herbivory was also higher in complex landscapes for resident plants, but overall damage was low and therefore did not have a cascading effect on floral display and reproduction. This work highlights that landscape composition directly affects patterns of herbivory with cascading effects on pollination and wild plant reproduction. Further, the absence of an effect on reproduction for resident plants suggests that they may be adapted to their local insect community.


Assuntos
Flores , Herbivoria , Polinização , Reprodução , Flores/fisiologia , Polinização/fisiologia , Animais , Reprodução/fisiologia , Agricultura/métodos , Insetos/fisiologia , Produtos Agrícolas
2.
Sci Total Environ ; 916: 170182, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244626

RESUMO

Reducing pesticide use while maintaining agricultural production is a key challenge. Ecological theory predicts that landscape simplification is likely to increase insect pest outbreaks and limit their control by natural enemies, and this situation could boost insecticide use. Some studies have indeed detected that simpler landscapes were associated with higher insecticide use, but very few have demonstrated that this association is caused by landscape effects on pest abundance. Here, we analysed insecticide use and pest pressure in response to landscape simplification across 557 arable farms across France. Accounting for potentially confounding covariates, we found that lower cover of hedgerows in the landscape, but not semi natural areas, were associated with higher on-farm insecticide use. We also found that greater hedgerow coverage was associated with lower aphid pest pressure. Specifically, increasing the landscape-scale cover of hedgerows from 1 % to 3 % meant that insecticide use was halved. These findings suggest that restoring hedgerow cover at the landscape scale should be targeted in order to speed-up the ecological intensification of agriculture.


Assuntos
Inseticidas , Praguicidas , Animais , Ecossistema , Agricultura , Fazendas , Controle Biológico de Vetores
3.
Ecol Appl ; 31(6): e02365, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33938606

RESUMO

Understanding the mechanisms contributing to positive relationships between predator diversity and natural pest control is fundamental to inform more effective management practices to support sustainable crop production. Predator body size can provide important insights to better understand and predict such predator-pest interactions. Yet, most studies exploring the link between predator body size and pest control have been conducted in species-poor communities under controlled environmental conditions, limiting our ability to generalize this relationship across heterogeneous landscapes. Using the community of naturally occurring ground beetles in cabbage fields, we examined how landscape composition (percent cropland) influences the size structure (mean, variance, and skewness of body size distribution) of predator communities and the subsequent effects on pest control. We found that predator communities shifted their size distribution toward larger body sizes in agriculturally dominated landscapes. This pattern arose from increasing numerical dominance of a few large-bodied species rather than an aggregated response across the community. Such landscape-driven changes in community size structure led to concomitant impacts on pest control, as the mean body size of predators was positively related to predation rates. Notably, the magnitude of pest control depended not only on the size of the dominant predators but was also strongly determined by the relative proportion of small vs. large-bodied species (i.e., skewness). Predation rates were higher in predator assemblages with even representation of small and large-bodied species relative to communities dominated by either large or small-bodied predators. Landscape composition may therefore modulate the relationship between predator body size and pest control by influencing the body size distribution of co-occurring species. Our study highlights the need to consider agricultural practices that not only boost effective predators, but also sustain a predator assemblage with a diverse set of traits to maximize overall pest control.


Assuntos
Besouros , Ecossistema , Animais , Tamanho Corporal , Controle Biológico de Vetores , Comportamento Predatório
4.
Ecol Lett ; 24(2): 288-297, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33201599

RESUMO

Measuring habitat specialisation is pivotal for predicting species extinctions and for understanding consequences on ecosystem functioning. Here, we sampled pollinator and natural enemy communities in all major habitat types occurring across multiple agricultural landscapes and used species-habitat networks to determine how habitat specialisation changed along gradients in landscape composition and configuration. Although it is well known that landscape simplification often causes the replacement of specialists with generalists, our study provided evidence for intraspecific variation in habitat specialisation, highlighting how a large number of arthropod species adapted their way of selecting habitat resources depending on the landscape structure. Groups with higher diet specialisation and limited foraging flexibility appeared to have a reduced ability to respond to landscape changes, indicating that some arthropod taxa are better able than others to adapt to an increasingly broad set of resources and persist in highly impacted landscapes.


Assuntos
Artrópodes , Ecossistema , Agricultura , Animais , Extinção Biológica , Especialização
5.
Landsc Ecol ; 35(10): 2287-2300, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33071456

RESUMO

CONTEXT: By linking species of conservation concern to their abiotic and biotic requirements, habitat suitability models (HSM) can assist targeted conservation measures. Yet, conservation measures may fail if HSM are unable to predict crucial resources. HSM are typically developed using remotely sensed land-cover classification data but not information on resources per se. OBJECTIVES: While a certain land-cover class may correlate with crucial resources in the area of calibration, political boundaries can abruptly alter these associations. We investigate this potential discrepancy in a well-known study system highly relevant for farmland bird conservation. METHODS: We compared land cover, land-use intensity and resource availability between plots of highest habitat suitability for little owls (Athene noctua) among two neighbouring, but politically separated areas (i.e. south-western Germany vs. northern Switzerland). RESULTS: Land cover and land-use richness did not differ between German and Swiss plots. Yet there were marked differences in terms of land-use intensity and the availability of resources. Land-use intensity was significantly higher and resource availability lower in Swiss compared to German plots. CONCLUSIONS: While accounting well for remotely sensed data such as land cover, HSM may fail to predict land-use intensity and resources across borders. The relationship between geodata used as proxies and ecologically relevant resources may differ according to history, policies and socio-cultural context, constraining the viability of HSM across political borders. This study emphasises the need for fine-scale resource assessments complementing landscape-scale suitability models. Conservation measures need to consider the availability of crucial resources and their socio-economic moderators to be effective.

6.
Proc Biol Sci ; 287(1937): 20202116, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33109015

RESUMO

Recent synthesis studies have shown inconsistent responses of crop pests to landscape composition, imposing a fundamental limit to our capacity to design sustainable crop protection strategies to reduce yield losses caused by insect pests. Using a global dataset composed of 5242 observations encompassing 48 agricultural pest species and 26 crop species, we tested the role of pest traits (exotic status, host breadth and habitat breadth) and environmental context (crop type, range in landscape gradient and climate) in modifying the pest response to increasing semi-natural habitats in the surrounding landscape. For natives, increasing semi-natural habitats decreased the abundance of pests that exploit only crop habitats or that are highly polyphagous. On the contrary, populations of exotic pests increased with an increasing cover of semi-natural habitats. These effects might be related to changes in host plants and other resources across the landscapes and/or to modified top-down control by natural enemies. The range of the landscape gradient explored and climate did not affect pests, while crop type modified the response of pests to landscape composition. Although species traits and environmental context helped in explaining some of the variability in pest response to landscape composition, the observed large interspecific differences suggest that a portfolio of strategies must be considered and implemented for the effective control of rapidly changing communities of crop pests in agroecosystems.


Assuntos
Produtos Agrícolas , Ecossistema , Agricultura , Animais , Insetos , Controle Biológico de Vetores
7.
Annu Rev Entomol ; 65: 81-100, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31923378

RESUMO

Disturbances associated with agricultural intensification reduce our ability to achieve sustainable crop production. These disturbances stem from crop-management tactics and can leave crop fields more vulnerable to insect outbreaks, in part because natural-enemy communities often tend to be more susceptible to disturbance than herbivorous pests. Recent research has explored practices that conserve natural-enemy communities and reduce pest outbreaks, revealing that different components of agroecosystems can influence natural-enemy populations. In this review, we consider a range of disturbances that influence pest control provided by natural enemies and how conservation practices can mitigate or counteract disturbance. We use four case studies to illustrate how conservation and disturbance mitigation increase the potential for biological control and provide co-benefits for the broader agroecosystem. To facilitate the adoption of conservation practices that improve top-down control across significant areas of the landscape, these practices will need to provide multifunctional benefits, but should be implemented with natural enemies explicitly in mind.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais , Produtos Agrícolas , Insetos , Controle Biológico de Vetores , Animais
8.
Environ Entomol ; 49(1): 197-202, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31789341

RESUMO

Industrial hemp, Cannabis sativa (Cannabaceae), is a newly introduced and rapidly expanding crop in the American agricultural landscape. As an exclusively wind-pollinated crop, hemp lacks nectar but produces an abundance of pollen during a period of floral dearth in agricultural landscapes. These pollen resources are attractive to a range of bee species but the diversity of floral visitors and their use of hemp across a range of agricultural contexts remains unclear. We made repeated sweep net collections of bees visiting hemp flowers on farms in New York, which varied in both landscape context and phenotypic traits of hemp varieties. We identified all bee visitors to the species level and found that hemp supported 16 different bee species. Landscape simplification negatively impacted the abundance of bees visiting hemp flowers but did not affect the species richness of the community. Plant height, on the other hand, was strongly correlated with bee species richness and abundance for hemp plots with taller varieties attracting a broader diversity of bee species. Because of its temporally unique flowering phenology, hemp has the potential to provide a critical nutritional resource to a diverse community of bees during a period of floral scarcity and thereby may help to sustain agroecosystem-wide pollination services for other crops in the landscape. As cultivation of hemp increases, growers, land managers, and policy makers should consider its value in supporting bee communities and take its attractiveness to bees into account when developing pest management strategies.


Assuntos
Cannabis , Animais , Abelhas , Flores , New York , Néctar de Plantas , Polinização
9.
Front Plant Sci ; 11: 592881, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519849

RESUMO

In the Anthropocene, more than three quarters of ice-free land has experienced some form of human-driven habitat modification, with agriculture dominating 40% of the Earth's surface. This land use change alters the quality, availability, and configuration of habitat resources, affecting the community composition of plants and insects, as well as their interactions with each other. Landscapes dominated by agriculture are known to support a lower abundance and diversity of pollinators and frequently larger populations of key herbivore pests. In turn, insect communities subsidized by agriculture may spill into remaining natural habitats with consequences for wild plants persisting in (semi) natural habitats. Adaptive responses by wild plants may allow them to persist in highly modified landscapes; yet how landscape-mediated variation in insect communities affects wild plant traits related to reproduction and defense remains largely unknown. We synthesize the evidence for plant trait changes across land use gradients and propose potential mechanisms by which landscape-mediated changes in insect communities may be driving these trait changes. Further, we present results from a common garden experiment on three wild Brassica species demonstrating variation in both defensive and reproductive traits along an agricultural land use gradient. Our framework illustrates the potential for plant adaptation under land use change and predicts how defense and reproduction trait expression may shift in low diversity landscapes. We highlight areas of future research into plant population and community effects of land use change.

10.
Proc Biol Sci ; 286(1904): 20182898, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31164058

RESUMO

Complex landscapes including semi-natural habitats are expected to favour natural enemies thereby enhancing natural pest biocontrol in crops. However, when considering a large number of situations, the response of natural biocontrol to landscape properties is globally inconsistent, a possible explanation being that local agricultural practices counteract landscape effects. In this study, along a crossed gradient of pesticide use intensity and landscape simplification, we analysed the interactive effects of landscape characteristics and local pesticide use intensity on natural biocontrol. During 3 years, using a set of sentinel prey (weed seeds, aphids and Lepidoptera eggs), biocontrol was estimated in 80 commercial fields located in four contrasted regions in France. For all types of prey excepted weed seeds, the predation rate was influenced by interactions between landscape characteristics and local pesticide use intensity. Proportion of meadow and length of interface between woods and crops had a positive effect on biocontrol of aphids where local pesticide use intensity was low but had a negative effect elsewhere. Moreover, the landscape proportion of suitable habitats for crop pests decreased the predation of sentinel prey, irrespectively of the local pesticide use intensity for weed seeds, but only in fields with low pesticide use for Lepidoptera eggs. These results show that high local pesticide use can counteract the positive expected effects of semi-natural habitats, but also that the necessary pesticide use reduction should be associated with semi-natural habitat enhancement to guarantee an effective natural biocontrol.


Assuntos
Agricultura/métodos , Ecossistema , Controle Biológico de Vetores , Praguicidas , Animais , Afídeos , Produtos Agrícolas , França , Plantas Daninhas , Comportamento Predatório , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA