Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(36): 48257-48268, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39222048

RESUMO

Maintaining the adhesion strength of flexible pressure-sensitive adhesives (PSAs) is crucial for advanced applications, such as health monitoring. Sustainable mounting is critical for wearable sensor devices, especially under challenging surroundings such as low and high temperatures (e.g., polar regions or deserts), underwater and sweat environments (physical activity), and cyclical shear complex stresses. In this article, we consider the adhesive, mechanical, and optical properties of medical-grade double-sided PSAs by simulating extreme human-centric environments. Diverse temperature conditions, water and humidity exposures, and cyclical loads were selected and tested over long intervals, up to 28 days. We observed that high temperatures increased the shear adhesion strength due to the pore closing and expanding contact area between the adhesive layer and substrate. Conversely, low temperatures caused the adhesive layers to harden and reduce the adhesive strength. Immersion in salty and weakly acidic water and excessive humidity reduced adhesion as water interfered with the interfacial interactions. PSA films showed either adhesive or cohesive failure under extreme mechanical stresses and cyclical loading, which is also affected by the presence of various polar solvents. We demonstrated that the variable adhesive performance, mechanical properties, and optical transparency of pressure-sensitive materials can be directly related to changes in their morphologies, surface roughness, swelling state, and alternation of the mechanical contact area, helping to establish the broader rules of design for wearable human health monitoring sensors for the long-term application of wearable devices, sensors, and electrodes.

2.
J Thermoplast Compos Mater ; 36(4): 1651-1679, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36974323

RESUMO

In-situ manufacturing of thermoplastic composites using Hot Gas Torch (HGT)-assisted Automated Fiber Placement (AFP) has the potential to produce laminates in an efficient manner by avoiding a secondary process, like autoclave consolidation. One of the advantages of AFP technique is its capability to steer fiber path and to manufacture Variable Angle Tow (VAT) laminates which have shown to have improved mechanical performance. This study investigates the process parameters that affect steering of carbon fiber reinforced thermoplastic tapes (AS4/polyether ether ketone) using an HGT-assisted AFP machine. The effect of the steering radius, laydown speed, number of repasses, and substrate angle on the geometry and bond strength of steered tape was investigated through observation and testing. A modified lap shear test was devised and used to study the bond strength between the steered tape and the substrate and the results were compared with autoclave treated samples which served as a reference. It was found that with a decrease in the steering radius of the tape, there was a decrease in the tape width and an increase in the tape thickness. A significant reduction in the steering-induced defects was observed at higher laydown speeds where the defects were intermittent unlike in the case of lower laydown speeds. Performing a repass over the steered tape smoothed some of the tape defects caused by steering. Furthermore, the lap shear strengths of the steered tapes were found to be functions of laydown speed and substrate angle.

3.
Materials (Basel) ; 15(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36499914

RESUMO

An approach was proposed to optimize dissimilar friction stir lap welding of aluminum and titanium alloys. The basic concept of the new technique included (i) the plunging of the welding tool solely into the aluminum part (i.e., no direct contact with the titanium side) and (ii) the welding at a relatively high-heat input condition. It was shown that sound welds could be readily produced using an ordinary cost-effective tool, with no tool abrasion and no dispersion of harmful titanium fragments within the aluminum side. Moreover, the intermetallic layer was found to be as narrow as ~0.1 µm, thus giving rise to excellent bond strength between aluminum and titanium. On the other hand, several important shortcomings were also revealed. First of all, the high-heat input condition provided significant microstructural changes in the aluminum part, thereby resulting in essential material softening. Furthermore, the new approach was not feasible in the case of highly alloyed aluminum alloys due to the relatively low rate of self-diffusion in these materials. An essential issue was also a comparatively narrow processing window.

4.
Polymers (Basel) ; 14(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956611

RESUMO

The current work presents a comparative study of hybrid models that use support vector machines (SVMs) and meta-heuristic optimization algorithms (MOAs) to predict the ultimate interfacial bond strength (IBS) capacity of fiber-reinforced polymer (FRP). More precisely, a dataset containing 136 experimental tests was first collected from the available literature for the development of hybrid SVM models. Five MOAs, namely the particle swarm optimization, the grey wolf optimizer, the equilibrium optimizer, the Harris hawks optimization and the slime mold algorithm, were used; five hybrid SVMs were constructed. The performance of the developed SVMs was then evaluated. The accuracy of the constructed hybrid models was found to be on the higher side, with R2 ranges between 0.8870 and 0.9774 in the training phase and between 0.8270 and 0.9294 in the testing phase. Based on the experimental results, the developed SVM-HHO (a hybrid model that uses an SVM and the Harris hawks optimization) was overall the most accurate model, with R2 values of 0.9241 and 0.9241 in the training and testing phases, respectively. Experimental results also demonstrate that the developed hybrid SVM can be used as an alternate tool for estimating the ultimate IBS capacity of FRP concrete in civil engineering projects.

5.
Materials (Basel) ; 14(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34501058

RESUMO

This paper mainly demonstrates an advanced type of the vaporizing foil actuator welding (VFAW) process between GPa-grade steel (TRIP1180) and aluminum alloy (AA5052-H32) without applying standoff. To secure a flying distance during the VFAW process, the preformed target sheet shaped like a circular indentation has been utilized. It is necessary to optimize process parameters integrated with geometrical design of the preform since the welding strength can be decreased beyond the optimum input energy in the standoff-free VFAW process. The welded surface was evaluated by SEM-EDS, XRD, EBDS, and TEM to analyze the welding mechanism and composition at the welding interface. The diffusion zone including the AlFe3 phase was observed at the welded interface which has high grain density due to the high-speed impact by increasing the welding strength, which leads to the perfect welding between the dissimilar materials.

6.
Polymers (Basel) ; 13(8)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920548

RESUMO

Hybrid joints of metal- and fiber-reinforced-polymer offer great potential for lightweight applications. Thereby, a fast and reliable joining process is mandatory for mass-production applications. To this end, this study assesses inductive spot-joining in combination with prior thermal spray coating of the metal adherent. A nickel-aluminum 95/5 coating was applied to achieve high adhesion through mechanical interlocking and to act as susceptor for the inductive joining process. The joint strength was assessed with lap shear specimens consisting of EN AW-6082 aluminum alloy and glass fiber reinforced polyamide 6 or polypropylene, respectively. The joints were further investigated in terms of heating time and hygrothermal cyclic loading. The results showed that significant time savings for the joining process as well as strong adhesion were achieved due to the coating. Moreover, the high strengths were even preserved under hygrothermal cyclic loading.

7.
Materials (Basel) ; 13(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126618

RESUMO

Structural adhesives play an important role in aerospace manufacturing, since they provide fewer points of stress concentration compared to faster joints. The importance of adhesives in aerospace is increasing significantly because composites are being adopted to reduce weight and manufacturing costs. Furthermore, adhesive joints are also studied to determine the crashworthiness of airframe structure, where the main task for the adhesive is not to dissipate the impact energy, but to keep joint integrity so that the impact energy can be consumed by plastic work. Starting from an extensive campaign of experimental tests, a finite element model and a methodology are implemented to develop an accurate adhesive model in a single lap shear configuration. A single lap joint finite element model is built by MSC Apex, defining two specimens of composite material connected to each other by means of an adhesive; by the Digimat multi-scale modeling solution, the composite material is treated; and finally, by MSC's Marc, the adhesive material is characterized as a cohesive applying the Cohesive Zone Modeling theory. The objective was to determine an appropriate methodology to predict interlaminar crack growth in composite laminates, defining the mixed mode traction separation law variability in function of the cohesive energy (Gc), the ratio between the shear strength τ and the tensile strength σ (ß1), and the critical opening displacement υc.

8.
J Biomed Mater Res A ; 106(12): 3231-3238, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30208260

RESUMO

Recessive dystrophic Epidermolysis Bullosa (RDEB) is caused by mutations in collagen-type VII gene critical for the dermoepidermal junction (DEJ) formation. Neither tissues of animal models nor currently available in vitro models are amenable to the quantitative assessment of mechanical adhesion between dermal and epidermal layers. Here, we created a 3D in vitro DEJ model using extracellular matrix (ECM) proteins of the DEJ anchored to a poly(ethylene glycol)-based slab (termed ECM composites) and seeded with human keratinocytes and dermal fibroblasts. Keratinocytes and fibroblasts of healthy individuals were well maintained in the ECM composite and showed the expression of collagen type VII over a 2-week period. The ECM composites with healthy keratinocytes and fibroblasts exhibited yield stress associated with the separation of the model DEJ at 0.268 ± 0.057 kPa. When we benchmarked this measure of adhesive strength with that of the model DEJ fabricated with cells of individuals with RDEB, the yield stress was significantly lower (0.153 ± 0.064 kPa) consistent with our current mechanistic understanding of RDEB. In summary, a 3D in vitro model DEJ was developed for quantification of mechanical adhesion between epidermal- and dermal-mimicking layers, which can be utilized for assessment of mechanical adhesion of the model DEJ applicable for Epidermolysis Bullosa-associated therapeutics. © 2018 The Authors. Journal Of Biomedical Materials Research Part A Published By Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3231-3238, 2018.


Assuntos
Epidermólise Bolhosa Distrófica/patologia , Proteínas da Matriz Extracelular/química , Fibroblastos/patologia , Queratinócitos/patologia , Polietilenoglicóis/química , Alicerces Teciduais/química , Fenômenos Biomecânicos , Células Cultivadas , Técnicas de Cocultura , Colágeno Tipo VII/análise , Derme/patologia , Humanos , Proteínas Imobilizadas/química , Masculino , Estresse Mecânico
9.
J Mech Behav Biomed Mater ; 86: 390-396, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30016758

RESUMO

Biomedical grade UHMWPE double lap joint, welded by a diode laser, has been mechanically characterized by static and dynamic tests. A nanocomposite sheet (UHMWPE filled with low carbon nanoparticles amount) was interposed between two polymeric sheets in order to absorb the laser light, sealing the sheets by means of a melting process. Fatigue test has been performed in the joint with 0.016 wt% of carbon nanofiller for its best mechanical static resistance among those studied. Its fatigue limits resulted to be equal to 22000 cycles. Breaks occurred at the 2nd welded interface, where a poor melting process weakens the entire joint.


Assuntos
Materiais Biocompatíveis , Lasers Semicondutores , Teste de Materiais/instrumentação , Polietileno , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA